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QT interval, a surrogate measure for ventricular action potential duration (APD)

in the surface ECG, is widely used to identify cardiac abnormalities and drug

safety. In humans, cardiac APD and QT interval are prominently affected by

heart rate (HR), leading to widely accepted formulas to correct the QT interval

for HR changes (QT corrected - QTc). While QTc is widely used in the clinic, the

proper way to correct the QT interval in small mammals such as rats andmice is

not clear. Over the years, empiric correction formulas were developed for rats

and mice, which are widely used in the literature. Recent experimental findings

obtained from pharmacological and direct pacing experiments in

unanesthetized rodents show that the rate-adaptation properties are

markedly different from those in humans and the use of existing QTc

formulae can lead to major errors in data interpretation. In the present

review, these experimental findings are summarized and discussed.
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Introduction

QT interval measurement is an important aspect of any ECG evaluation and

interpretation. It has significant clinical importance, as there is a correlation between

the QT interval value and the risk of developing ventricular arrhythmias and sudden

cardiac death (Viskin, 2009; Lester et al., 2019). The importance of the QT interval did

not come to light for several decades after the first description of the morphology of

the human ECG by Willem Einthoven in 1885 (Lester et al., 2019). Louise Wolff, an

American cardiologist who described the WPW syndrome with Parkinson andWhite,

was probably the first person to measure the QT interval (G Postema and AM Wilde,

2014). However, the clinical importance of the QT interval was not fully understood

until further work by Jervell and Lange-Nielsen in the late 1950s (Jervell and Lange-

Nielsen, 1957), and by Romano, Gemme, Pongiglione, and Ward in the 1960s

(Romano, 1963; Ward, 1964). Several types of long QT syndrome have since been

described, and the recognition of the relationship between QT prolongation and

serious ventricular arrhythmias has strengthened. Moreover, a series of patients

treated with the antiarrhythmic drug quinidine were reported to have syncope due to

ventricular tachycardia in the setting of a prolonged QT interval in 1964 (Selzer and
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Wray, 1964). The morphology of quinidine-induced

ventricular tachycardia had a peculiar undulating

appearance which in 1966 was termed Torsades de Pointes

(TdP) by Desertennes (Dessertenne, 1966). In the subsequent

decades, additional classes of medications including

antibiotics and psychotropic drugs were linked to TdP and

a number of these agents were subsequently withdrawn by the

Food and Drug Administration (FDA) (Fung et al., 2001).

Drug-induced prolongation of the QT interval is usually

caused by the drug’s ability to inhibit IKr, the rapid

component of the delayed rectifier potassium current. In

humans, this component is encoded by human ether-a-go-

go related gene (hERG) (Redfern et al., 2003). In 2007, the

FDA formed an internal review team responsible for

overseeing the clinical assessment of QT prolongation for

all drugs that the agency reviewed, thus assessment of QT

prolongation has rapidly become an essential part of the

development of new drugs (Darpo, 2010). Although it

recommends correcting of the QT interval for HR, it also

concedes that such correction can yield misleading results

(Food and Drug Administration, 2005). Moreover, literature-

based assessments indicate that only non-rodent mammalian

models can mimic QT interval prolongation and TdP caused

by human therapeutics (Davis, 1998; De Ponti et al., 2001;

Webster et al., 2002; Redfern et al., 2003). IKr plays a small

role if any in rodents and most studies agree that these models

are inappropriate for the study of drug-induced TdP

(Hoffmann and Warner, 2006).

QT interval rate dependence in
humans

The QT interval consists of two components: the QRS

complex and the T wave, which reflect ventricular

depolarization and repolarization, respectively. Duration

of the QT interval can vary widely in each individual (Al-

Khatib et al., 2003). Many determinants contribute to this

variation, including HR, age, sex, autonomic nervous

activity, circadian rhythm, drugs, electrolyte variations,

myocardial disease, and congenital syndromes (Al-Khatib

et al., 2003; Tomaselli Muensterman and Tisdale, 2018). The

greatest variation occurs with HR as it is the principal

modulator of repolarization duration (Locati et al., 2017).

The QT interval dependence on HR reflects the APD

dependence on cycle length (CL), a fundamental property

of cardiac muscle in humans and large mammals (Franz

et al., 1988; Locati et al., 2017). Like APD, QT interval also

decreases at shorter CL and prolongs as the CL increases. The

kinetics of APD/QT interval adaptation consists of a fast

response followed by a gradual course towards a new steady-

state value (Franz et al., 1988; Seethala et al., 2011).

Mechanisms underlying this adaptive response include

inactivation of the L-type calcium current as well as

activation of the slow component of the delayed rectifier

K+ current (Kv7.1/Iks). In addition, it appears that

mechanisms affecting intracellular Na+ accumulation are

important determinants of the slow phase of adaptation

(Pueyo et al., 2010; O’Hara and Rudy, 2012; Schmitt et al.,

2014). ADP and QT interval do not adapt solely on the basis

of changes in CL. Exercise and adrenergic stimulation which

promote both tachycardia and QT interval shortening are

known to induced adaptation beyond that observed during

pacing (Seethala et al., 2011). This phenomena involves

autonomic stimulation of Kv7.1 (Vyas and Ackerman,

2006). Many QTc formulae have been developed to

normalize the QT interval to rate-dependent changes with

variable utility in the clinic (Rautaharju et al., 2009; G

Postema and AM Wilde, 2014; Locati et al., 2017). The

most commonly used correction method in the clinic is

the QT Bazett’s formula (G Postema and AM Wilde, 2014;

Locati et al., 2017) in which QTc is calculated as the QT

interval in seconds divided by the square root of the

preceding CL in seconds (Bazett, 1920). When HR is

particularly fast or slow, the Bazett’s formula may over or

underestimate the baseline QT, respectively. However,

regardless of this limitation it still remains the current

standard in clinical practice (G Postema and AM Wilde,

2014; Locati et al., 2017).

Myocardial repolarization in rats and
mice

Although the overall principles of myocardial excitation

are the same in all mammalian species, the role of

repolarizing currents markedly differ between humans and

rodents (Boukens et al., 2014). This is presumably dictated by

the great variations in HR and HR modulation among

species. Humans have a resting HR of ≈60 bpm, whereas

rats and mice have a HR of on average 6 and 10 times higher,

respectively (Kaese and Verheule, 2012; Milani-Nejad and

Janssen, 2014; Konopelski and Ufnal, 2016). In addition,

while rats and mice can increase their HR by around 40%–

50% and 30%–40% respectively, humans can increase their

HR by up to 300% (Milani-Nejad and Janssen, 2014; Janssen

et al., 2016). These differences require repolarizing K+ ionic

currents with different kinetics in order to adapt the APD

appropriately. In rats and mice, the major repolarizing K+

ionic currents are the transient outward K+ current (Ito) and

ultra-rapid potassium current (Ikur), and the ventricular

APD has a triangular shape, with short repolarization and

no clear plateau phase (Watanabe et al., 1983; Varró et al.,

1993; Knollmann et al., 2001). Importantly, most rodent

studies involve direct pacing under anesthesia, or ex-vivo/

in-vitro preparations, overlooking the effects of autonomic
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TABLE 1 Summary of studies in which QT interval, ERP and APD rate relation were evaluated in rats and mice.

Experiment

Parameter

Unanesthetized Anesthetized Ex-vivo/In-vitro

Pacing Pharmacologic Physiologic Pacing Pharmacologic Physiologic Pacing Pharmacologic Physiologic

R
at
s

QT interval ↔Mulla et al.
(2018)

↔ Wallman et al.
(2021)

↔ Fein et al. (1991),
Adeyemi et al. (2020),
Wallman et al. (2021)

↔ Hayes et al.
(1994)

↔ Kmecova and
Klimas (2010)

↔ Ohtani et al.
(1997)

Atrial ERP ↔
Murninkas
et al. (2020)

↔ Etzion et al.
(2008)

↔ Etzion et al.
(2008)

↓ Li et al. (2020)

Ventricular ERP ↔Mulla et al.
(2018)

↑↔ Ypma (1972) ↑ ↔ Ypma (1972)

Atrial APD ↔↓ Huang et al. (2006) ↔ Couch et al.
(1969)

Ventricular APD ↔ Rapuzzi and
Rindi (1967)

↑ Shimoni et al. (1994),
Shimoni et al. (1995),
Shigematsu et al. (1997),
Fauconnier et al. (2003)

↔ Sakatani et al.
(2006)

↔ Couch et al.
(1969)

↔ Blesa et al. (1970), Pucelik
et al. (1982), Shigematsu
et al. (1997), Pacher et al.
(1999), Benoist et al. (2011),
Benoist et al. (2012), Walton
et al. (2013), Hardy et al.
(2018)

↔↓ Howlett et al.
(2022)

↑↓ Watanabe et al. (1983) ↓ Wang and Fitts
(2017)

↔↓ Keung and Aronson
(1981), Howlett et al. (2022)

↓ Payet et al. (1981),
Watanabe et al. (1983),
Wang and Fitts (2017)

(Continued on following page)
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TABLE 1 (Continued) Summary of studies in which QT interval, ERP and APD rate relation were evaluated in rats and mice.

Experiment

Parameter

Unanesthetized Anesthetized Ex-vivo/In-vitro

Pacing Pharmacologic Physiologic Pacing Pharmacologic Physiologic Pacing Pharmacologic Physiologic

M
ic
e

QT interval ↔Mulla et al.
(2018)

↔ Roussel et al. (2016) ↔ Roussel et al. (2016),
Schroder et al. (2021),
Warhol et al. (2021)

↔ Speerschneider
and Thomsen
(2013)

↑ Speerschneider and
Thomsen (2013)

↔ Joyce et al. (2021)

↓ Mitchell et al. (1998)
↑↔↓ Sudhir et al.
(2020)

↔ Warhol et al.
(2021)

Atrial ERP ↔ Etzion et al.
(2008)

↔ Syeda et al. (2016),
Obergassel et al. (2021)

↓ Berul et al.
(1996)

Ventricular ERP ↔Mulla et al.
(2018)

↓ Berul et al.
(1996)

↔ Waldeyer et al. (2009)

Atrial APD ↔ Syeda et al. (2016)

↓ Knollmann et al. (2007),
Obergassel et al. (2021)

Ventricular APD ↔↓ Nuyens et al.
(2001)

↔ Wagner et al. (2006),
Kulkarni et al. (2018), Joyce
et al. (2021)

↔ Sudhir et al. (2020),
Joyce et al. (2021)

↑ Francis Stuart
et al. (2018)

↓ Knollmann et al. (2007),
Sabir et al. (2008),
Waldeyer et al. (2009),
Mulla et al. (2018)

↓ Francis Stuart et al.
(2018)

Typical rate adaptation ↓ Flat rate adaptation ↔ Atypical rate adaptation ↑
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stimulation. Indeed, there is some evidence that IKs mediates

repolarization in rat cardiomyocytes under β-adrenergic
stimulation (Xu et al., 2016). In addition, among mice, the

most phosphorylated protein upon β1-adrenergic receptor

activation of the heart is Kv7.1 (Lundby et al., 2013).

Nevertheless, the in-vivo effect of IKs on the QT of mice is

questionable considering the notable QT prolongation

observed in response to β-adrenergic stimulation

(Speerschneider and Thomsen, 2013). Adrenergic stimulation

also resulted in phosphorylation of INa (Nav1.5), an additional

potential mechanism by which changes in autonomic balance

may affect repolarization duration (Lundby et al., 2013). Thus, the

mechanisms governing APD in the unanesthetized rodent seem

to be far more complex than Ito/IKur -dependent repolarization.

Rate-adaptation studies of ADP and
QT interval in rodents

As mentioned above the basic electrophysiological

components governing ADP in the rodent myocardium are

relatively well known. Still, in-vivo rate-dependence of the APD

and QT are rather poorly defined in these species. As already

mentioned, one possible explanation for this is the technical

challenge in performing advanced EP studies in unanesthetized

rodents. In addition, results may vary substantially depending on

the used methodology (i.e., type of anesthesia, type of perfused

solution) and indeed, data regarding the electrophysiological

properties of rodents show marked variations in the literature

(Kaese and Verheule, 2012). Although the determinants of the

rate-dependence of APD differ between small rodents and

humans (as described above) there are various publications

supporting the notion that typical rate-adaptation still exists in

rodents (Table 1). However, various publications have

demonstrated no rate-adaptation or even atypical rate-

adaptation (i.e., increased APD at shorter CL). This variability

raise the question whether discrepancies between studies might be

secondary to differences in techniques (e.g., techniques that

interfere with endogenous autonomic modulation such as

anesthetics, large doses of exogenous catecholamines,

overcontrolling for circadian rhythm). In any case, these

discrepancies stresses the importance of obtaining data from

unanesthetized rodents under physiological conditions in order

to arrive at reliable conclusions. Another major challenge and

source of uncertainty in evaluations of the relationship between

HR and repolarization of rodent and particularly mice is

identification of the end of the T wave. Because of the high

HRs, motion artifact, and other sources of signal noise with

telemetry devices, obtaining clean ECG signals in conscious

rodents can be particularly challenging. As well, the end of the

negative murine T wave is more subtle and therefore elusive to

automated software detection than in humans and other

mammals with more overt, positive T waves.

Discussion

The dependence ofQT interval ofHR is debatable in rats andmice

(Hayes et al., 1994; Ohtani et al., 1997; Mitchell et al., 1998; Kmecova

and Klimas, 2010; Speerschneider and Thomsen, 2013; Roussel et al.,

2016; Mulla et al., 2018). For example, Mitchell et al. (Mitchell et al.,

1998) used the natural daily variation in HR in unanesthetized mice

FIGURE 1
Absence of QT interval dependence on HR in paced unanesthetized rodents. (A). Data from instrumented, unanesthetized male SD rats that
were subjected to atrial pacing at different CL (n = 10): Mean ± SE of measuredQT and calculated QTc (based on the formula of Kmecova and Klimas
(Kmecova and Klimas, 2010)), plotted as a function of CL. Linear regression data (slope, R2) are presented for both QT and calculated QTc. (B). Data
from instrumented, unanesthetized male C57BL/J mice that were subjected to atrial pacing at different CL (n = 9): Mean ± SE of measured QT
and calculated QTc [based on the formula of Mitchell et al. (1998)], plotted as a function of CL. Linear regression data (slope, R2) are presented for
both QT and calculated QTc. Experimental findings were adapted from Mulla et al. (2018).
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and found a strong correlation between theQT interval andHR,where

slower HRs were associated with longer QT intervals. In contrast,

Roussel et al. (Roussel et al., 2016) examined the same natural daily

variation in HR as well as changes induced by tachycardic agents

(norepinephrine or nitroprusside) and concluded that increased HR

was not associated with apparent shortening of the QT interval.

Nevertheless, at least for the circadian data it might be possible that

analysis of light and dark phases separately for QT-RR relationships

may over-control for endogenous changes in rate and repolarization

mediated by circadian fluctuations in rhythm and autonomic

modulation. Sudhir et al. (Sudhir et al., 2020) recently explored

adaptation of QT to physical stress in mice overexpressing SUR2A,

a regulatory subunit of sarcolemmal ATP-sensitive K + (KATP)

channels. Although the results show highly complex pattern of

changes over time in both transgenic and control mice, only

corrected QT intervals (using Mitchell’s formula) are presented in

the study, limiting ability to evaluate the effects of exercise on the native

QT interval. In rats, a QT interval correction formula suggested by

Kmecova andKlimas (Kmecova andKlimas, 2010)was validated using

pharmacological manipulations affecting HR. Interestingly, adrenergic

stimulationwith isoproterenol as well as selectivelymanipulation of the

HRby ivabradine, did not affect theQT interval in this study. Technical

challenges largely limited direct pacing experiments as a mean of

evaluating QT rate-dependence in rodents. However, Mulla et al.

(2018) managed to explore the QT interval of freely moving rats and

mice during atrial pacing at various CL values through a unique

chronically implanted device. The findings of this work indicated

absence of conventional rate-adaptation of the QT interval over a wide

range of physiologically relevant frequencies. Moreover, ventricular

ERP (a surrogate of ventricular APD) also demonstrated absence of

typical rate-dependence. Calculating the QTc interval according to the

formulae suggested by Kmecova and Klimas (Kmecova and Klimas,

2010) for rats and byMitchell et al. (1998) formice, resulted inmarked

difference between themeasuredQT interval and theQTc interval for a

wide range of atrial pacing rates in both species (Figure 1). At the

present, it is hard to concludewhat is the optimal way ofQT correction

in rodent and if correction is required at all. However, it appears that

the existing and widely use correction formulas can introduce marked

errors. This issue seems specifically relevant for Mitchell formula for

mice that appears to overcorrectQT, indicating a great need for a better

QTcorrection formula formice.Overall, we suggest that any correction

formula used should be validated in that species under baseline

conditions using comparable analytic methods and measurement

techniques as those applied during/after experimental treatments.

As well, we suggest that as a standard, corrected QT results

should be presented along with those for uncorrected QT.

Importantly, to the best of our knowledge direct data on the

relationship between QT and HR in the unanesthetized Guinea

pig are lacking in literature. Given the existence of Ikr and Iks in

the myocardium and their broad utility for QT prolongation

studies, we believe that understanding the precise HR-QT

relationship of this animal model in future studies will be of

high value as well.

In conclusion, conflicting data still exists regarding the

dependence between QT interval and HR in rodents.

Multiple physiological and technical complexities and

challenges prevents clear conclusions regarding this issue

based on the currently available data. However, large body of

evidence support the notion that the extensive use of existing

correction formulae may introduce significant errors and thus

further and more systematic exploration of this issue would be

of high value.
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