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Abstract
Objectives The purpose of this article is to describe the key cardiac magnetic resonance imaging (MRI) features to differentiate
hypertrophic cardiomyopathy (HCM) phenotypes from other causes of myocardial thickening that may mimic them.
Conclusions Many causes of myocardial thickeningmaymimic different HCM phenotypes. The unique ability of cardiacMRI to
facilitate tissue characterisation may help to establish the aetiology of myocardial thickening, which is essential to differentiate it
from HCM phenotypes and for appropriate management.
Teaching points
• Many causes of myocardial thickening may mimic different HCM phenotypes.
• Differential diagnosis between myocardial thickening aetiology and HCM phenotypes may be challenging.
• Cardiac MRI is essential to differentiate the aetiology of myocardial thickening from HCM phenotypes.
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Cardiomyopathies

Introduction

Hypertrophic cardiomyopathy (HCM) is the most common
genetic cardiovascular disorder worldwide, with a prevalence
of 1 in 500 in the general population [1]. It is characterised by
an unexplained left ventricular (LV) hypertrophy in the ab-
sence of other disease entities that may lead to inappropriate
myocardial wall thickening caused by pressure/volume over-
load, infiltrative disorders, athlete’s heart or neoplastic infil-
tration [2–5]. For HCM diagnosis, international guidelines
advocate using a wall thickness cut-off of 15 mm in one or

more myocardial segments, measured by any imaging tech-
nique [6, 7].

Echocardiography is the most commonly used imaging
modality in the evaluation of HCM. When the HCM pheno-
type is fully expressed, echocardiography generally allows a
reliable and unequivocal diagnosis. Occasionally, however,
the differential diagnosis among the broad range of phenotyp-
ic expressions of HCM and other causes of myocardial thick-
ening may be challenging. Tissue characterisation, which is
limited with echocardiography, could provide additional diag-
nostic information [5].

Cardiac magnetic resonance imaging (MRI) has evolved
into a multiparametric imaging modality allowing a truly
comprehensive picture of HCM, providing information re-
garding various phenotypes, their functional and haemo-
dynamic consequences, presence and extent of microvas-
cular dysfunction and myocardial fibrosis [4]. The tissue
characterisation capabilities of cardiac MRI may help to
differentiate HCM from other causes of myocardial thick-
ening and to determine an appropriate treatment strategy
[4, 5, 8, 9].

The aim of this article is to illustrate and review the contri-
butions of cardiac MRI to the differential diagnosis among
HCM phenotypes and other causes of myocardial thickening.
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Differential diagnosis

There is a broad range of phenotypic expressions of HCM.
Asymmetric involvement of the interventricular septum is the
most common pattern (60–70%), followed by symmetric or
concentric myocardial hypertrophy (up to 40%) and the less
common apical variant [4, 8].

From a practical point of view, it is useful to classify the
thickening of the myocardium as concentric or symmetric,
asymmetric and apical. Table 1 summarises the most common
differential diagnosis of HCM phenotypes and the useful car-
diac MRI clues suggesting HCM.

Concentric LV thickening

HCM with concentric LV hypertrophy should be differentiat-
ed from other causes of symmetrical myocardial hypertrophy,
including mild (athlete’s heart) and mild or moderate (hyper-
tensive heart disease and aortic stenosis) and from other
causes of myocardial thickening (cardiac amyloidosis).

Athlete’s heart

The term ‘athlete’s heart’ refers to a clinical picture
characterised by two distinct and specific cardiac effects in-
duced by a sustained and regular physical training pro-
gramme, namely, slow heart rate and enlargement of the heart.
Increased of LV size and LV hypertrophy are generated in
order to normalise LV wall stress. The need for reliable
methods to differentiate physiological from pathological LV
hypertrophy are brought into focus by the rare but prominent
cases of sudden death in elite athletes and the young [10].

Cardiac MRI can help to differentiate HCM from the ath-
lete’s heart. In the athlete’s heart, LV wall hypertrophy is con-
centric, usually mild (≤ 15mm inmale and ≤ 13mm in female
athletes) and is paralleled by a proportional increase in volume
of both ventricles (Fig. 1) [10, 11]. Myocardial thickness
values greater than 15 mm should be considered definitely
abnormal and the diagnosis of HCM should be considered
[12]. Patients with athlete’s heart commonly have atrial or
ventricular enlargement (LV end-diastolic diameter 55 mm),
they respond to temporary discontinuation of exercise train-
ing, and they have preservation of the ratio between wall
thickness and end-diastolic diameter due to physiological in-
crease in LV volume. Typical values of LV cavity size in
athletes with LV hypertrophy range between 55 and 65 mm
(Fig. 1b), although up to 10% of athletes with LV hypertrophy
exhibit normal LV cavity size [10, 13]. A cut-off for the LV
end-diastolic wall thickness (LVEDWT) related to LV end-
diastolic volume (LVEDV) of less than 0.15 (LVEDWT/
LVEDV < 0.15) [11] and an LV end-diastolic volume related
to LV end-diastolic mass (LVEDM) of more than 2.25

(LVEDV/LVEDM > 2.25) in athlete’s heart can help distin-
guish physiological hypertrophy in athletes from HCM [14].

Patients with HCM have LV hypertrophy with diastolic dys-
function from increased muscle stiffness leading to impaired
myocardial relaxation; the ventricular volumes are frequently
reduced and the hyperkinetic appearance of systolic contraction
translates into a normal or supernormal ejection fraction until
the end stage of the disease [1, 4, 15]. Unlike HCM, LV dia-
stolic function is normal in athlete’s heart [10, 11].

Late gadolinium enhancement (LGE) is typically absent
(Fig. 1c). Although studies have described small spots of
LGE in the septum at the right ventricle (RV) insertion site
in athlete’s heart [16, 17], attributed to repetitive myocardial
microtrauma, pulmonary artery pressure overload with dilated
RV, genetic predisposition and silent myocarditis [17]. On the
contrary, the presence of LGE would be suggestive of HCM
rather than athletic adaptation [18].

Recent studies have shown that native T1 values and myo-
cardial extracellular volume (ECV) by T1 mapping can be
used in the differential diagnosis between HCM and athlete’s
heart. While the ECV fraction increases with increasing LV
hypertrophy in HCM (due to extracellular matrix expansion
and myocardial disarray), the ECV fraction reduces in athletes
with an increasing wall thickness (due to an increase in the
healthy myocardium by cellular hypertrophy) [19].

The diagnosis of HCM in young competitive athletes may
be challenging when the extent of LV hypertrophy is mild and
LV wall thickness is in the range of 13–15 mm (12–13 mm in
women), which identifies the ‘grey-zone’ of overlap between
the physiological adaptations to training and mild phenotypic
expression of the disease [10–12]. When the differential diag-
nosis remains still unresolved, useful information may come
from serial echocardiography or cardiac MRI after exercise
detraining (3 months) that may show regression of LV hyper-
trophy and reduction in LVend-diastolic volume in most ath-
letes [10].

Practical recommendations: As a general rule, the devel-
opment of physiological LV hypertrophy in the context of
athlete’s heart is consistently associated with an LV cav-
ity—a difference from HCM. When the differential diag-
nosis remains still unresolved, serial echocardiography
or cardiac MRI after exercise detraining (3 months) may
show regression of LV hypertrophy and reduction in LV
end-diastolic volume in most athletes.

Hypertensive heart disease

Arterial hypertension is the most common cause of cardiovas-
cular death. It may lead to hypertensive heart disease and it isthe
most common cause of increased afterload that leads to heart
failure, ischaemic heart disease and LV hypertrophy [20].
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Cardiac MR provides a comprehensive non-invasive eval-
uation of hypertensive heart disease, including accurate and
reproducible assessment of global and regional biventricular
function, valvular disease and myocardial fibrosis [21, 22].

In hypertensive heart disease, compensatory LV hypertro-
phy in response to increased afterload is usually concentric
and mild (≤ 13 mm) with an increased indexed LV mass, in-
creased chamber volumes and normal or reduced ejection
fraction [5, 21, 23]. Diastolic dysfunction and/or heart failure
with preserved ejection fraction due to remodelling of the
extracellular matrix and increase in LV filling pressures are
common in concentric LV hypertrophy [21, 24]. Myocardial
fibrosis plays an important role in the development of diastolic

dysfunction. Mid-wall LGE has been documented in patients
with hypertensive heart disease, although its prevalence is
lower than in HCM patients [21].

The absence of LGE does not equate to the absence of
myocardial fibrosis because this LGE identifies focal replace-
ment fibrosis but fails to demonstrate diffuse fibrosis. T1 map-
ping techniques provide quantification of the myocardial intra
and extracellular compartments, and native T1 has demon-
strated increased diffuse myocardial interstitial fibrosis at an
early stage in hypertensive heart disease patients who do not
yet exhibit LGE abnormalities. These abnormalities are asso-
ciated with decreased LV global function and LV remodelling
[25, 26].

Table 1 Summary of most common differential diagnosis of HCM phenotypes

Myocardial
thickening

Differential
diagnosis

Characteristics MRI clues suggesting HCM

Concentric Athlete’s heart Mild wall hypertrophy
Increased ventricular volume
Normal diastolic function
Absence of LGE
Detraining can regress the hypertrophy

and ventricular volume

Asymmetric wall hypertrophy
Small/normal ventricular size
Diastolic LV dysfunction
LGE can be present

HHS Mild wall hypertrophy
Elevated indexed LV mass
Increased ventricular volume
Uncommon mid-wall LGE
Regression of LV hypertrophy after

systolic blood pressure control

Asymmetric wall hypertrophy
Normal indexed LV mass
Small/normal ventricular size
Patchy LGE most common

Aortic stenosis Mild/moderate wall hypertrophy
Turbulent flow jet across aortic valve
Diffuse subendocardial or mid-wall LGE

Normal aortic root and valve
Subaortic turbulent flow jet in obstructive HCM
Patchy and extensive LGE most common

Cardiac
amyloidosis

Marked wall thickness
Dilatation of both atria
Thickening of atrial free wall, interatrial

septum and valves
Difficult to find the optimal inversion

time for nulling the normal myocardium
Diffuse, subendocardial or transmural LGE

Asymmetric wall thickness
Left atrial dilatation
Spared atrial wall, interatrial septum and valves
Endocardial LGE is rare

Asymmetric Cardiac
sarcoidosis

Basal septal thinning
Aneurysms and ventricular dysfunction
Myocardial oedema at T2-w
T2 mapping: early detection and follow-up during

treatment
Basal septal and lateral epicardial LGE

Myocardial oedema at T2-w is uncommon
Patchy mid-wall or RV insertion points of

ventricular septum LGE

Apical Mural thrombus Delayed-enhancement image: very dark thrombus
Subendocardial LGE

Delayed-enhancement image: greyish myocardium
Patchy mid-wall or RV insertion points of

ventricular septum LGE

LV
non-compaction

Apical and mid-wall trabeculations with spared of
interventricular septum

Non-compacted end-diastolic thickness > 2.3
compacted thickness

Cine SSFP images: high signal intensity
of intertrabecular recess

Apical myocardial thickening
Cine SSFP images: endocardial smooth surface

Endomyocardial
disease

Obliteration of the apical cavity
Mural thrombus
Subendocardial and triple-layered LGE

Apical myocardial thickening
Patchy mid-wall LGE

LV left ventricle, LGE late gadolinium enhancement, HHS hypertensive heart disease, SSFP steady-state free precession, T2-w T2-weighted imaging
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When myocardial hypertrophy is ≥15 mm or is asymmet-
ric, distinguishing hypertensive heart disease from HCM can
be difficult [23]. Asymmetric basal septal hypertrophy can be
seen in up to 10% of cardiac patients without HCM, being
more prevalent in the elderly and hypertensives. In these
cases, elevated indexed LVmass, increased chamber volumes,
normal or reduced ejection fraction and the absence of LGE
suggest hypertensive heart disease rather than HCM (Fig. 2).
Cardiac MR can also be helpful in detecting changes in serial
measurements of LV wall thickness after treatment with anti-
hypertensives, in which regression of hypertrophy supports
the diagnosis of hypertensive heart disease [21, 23].

Practical recommendations: Independent predictors of
hypertensive heart disease rather than HCM are elevated
indexed LV mass, absence of myocardial LGE or less
pronounced patchy myocardial LGE in hypertensive
heart disease than seen in HCM.

Aortic stenosis

Aortic stenosis causes a LV pressure overload leading to struc-
tural, functional and molecular changes in the process of myo-
cardial hypertrophy. Untreated hypertrophy leads over a lon-
ger period of time to ventricular dysfunction that is irreversible
and is associated with advanced remodelling [27].

Typically, aortic stenosis presents with mild or moderate
concentric hypertrophy because of LV pressure overload with
normal LVejection fraction; however, recent studies have also
demonstrated the existence of asymmetrical patterns [28].
Progressive myocardial fibrosis drives the transition from hy-
pertrophy to heart failure in aortic stenosis. Myocardial fibro-
sis detected by LGE is common and is usually seen in the
basal segments, in a diffuse subendocardial or mid-wall dis-
tribution. It is irreversible following valve intervention in aor-
tic stenosis and is considered a direct marker of the LV de-
compensation [29].

CineMR imaging allows differentiation of LV hypertrophy
caused by aortic stenosis from that caused by obstructive
HCM. In aortic stenosis, the jet of turbulent flow is exactly
across the valve with associated decreases in aortic valve area
in systole (Fig. 3a). Patients with obstructive HCM have het-
erogeneous myocardial hypertrophy with thicker basal anteri-
or septal and mid-ventricular inferior septal walls and the jet of
turbulent flow is seen in the subaortic region (Fig. 3b) [8, 30].

Practical recommendations: Aortic stenosis is readily
evaluated on phase-contrast cardiac MRI, and evidence
of this finding should be sought when imaging patients
for suspected HCM.

Fig. 1 A 20-year-old competitive runner man with athlete’s heart. a
Short-axis and (b) three-chamber steady-state free precession (SSFP)
MR images at end-diastole. The left ventricle is enlarged and (end-dia-
stolic diameter = 58 mm) and basal septal thickness is 15 mm. c Post-
contrast T1-weighted inversion recovery gradient echo image shows nor-
mal myocardial signal intensity (asterisks)
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Cardiac amyloidosis

Cardiac amyloidosis is a rare but important phenocopy of
HCM characterised by extracellular deposition of monoclonal
light chain or transthyretin amyloid and symptoms of heart
failure with preserved ejection fraction. Cardiac involvement
in amyloidosis significantly worsens prognosis of the disease.
Endomyocardial biopsy is considered the Bgold standard^ in
the diagnosis of cardiac amyloidosis. However, the relatively
high risks and clinical complications may hinder its wide-
spread use in clinical settings [31].

Cardiac amyloidosis most commonly presents with mark-
edly symmetric LV thickening (Figs. 4 and 5), dilatation of
both atria, decreased LV volumes, diastolic dysfunction with
restrictive pattern and pericardial and pleural effusions [32,
33]. Asymmetric obstructive LV thickening has also been de-
scribed, mimicking HCM [32, 34]. Morphological changes of
a thickened right atrial free wall, interatrial septum and valves
are helpful in distinguishing cardiac amyloid from HCM
(Fig. 4b and c) [32].

Cardiac MRI with LGE provides unique information re-
garding myocardial tissue characterisation and it is extreme-
ly helpful in differentiating cardiac amyloidosis from HCM.
Due to interstitial expansion from amyloid deposition, LGE
is seen in 69–97% of all cardiac amyloidosis patients
[5, 32].

Alterations in gadolinium kinetics in the blood and myo-
cardium are common and can be useful in differentiating car-
diac amyloidosis from HCM [35]. The high tissue uptake and
faster washout of gadolinium from blood and myocardium
may result in perceived difficulties in selecting an appropriate
inversion time to null the myocardial signal on the delayed
enhancement imaging pulse sequence [32, 35]. At 4 min after
gadolinium administration, the inversion time of myocardium
affected by amyloid is shorter than normal and lengthened
with time. T1 values of subendocardium and subepicardium
are similar between 8 and 10 min after gadolinium adminis-
tration owing to altered contrast agent kinetics and therefore
imaging must be performed earlier than usual and completed
quickly [35] (Fig. 5).

In cardiac amyloid disease, the deposition of the abnormal
protein typically occurs in a circumferential manner starting
in the endocardium and then extending to the myocardium in
a transmural fashion. Characteristic patterns of myocardial en-
hancement include global, subendocardial and, less often, patchy
or diffuse LGEdistributionwithin the LV (Fig. 4d, e) [32, 33, 36,
37]. Recently, lower LGE in the apical myocardial segments
compared to the basal segments has been reported [38].

Higher ECV post-contrast T1 mapping correlates with
LGE, indexed LV mass and other clinical adverse prognostic
factors [5]. In early disease, native T1 and equilibrium contrast
enhancement MR imaging are elevated before LGE appears
and correlate with the severity of cardiac amyloid deposition
and withmarkers of systolic and diastolic dysfunction [36, 37].

Practical recommendations: Late imaging with inversion
recovery should be performed at 4 min and completed
quickly to identify myocardial amyloid deposition.

Asymmetric LV thickening

Asymmetric LV hypertrophy is the most common phenotypic
expression of HCM, which typically involves the basal

Fig. 2 A 64-year-old woman with essential hypertension treated for
several years. a Three-chamber cine SSFP MR image at end-diastole
showing asymmetrical basal septal myocardial hypertrophy (asterisk). b
Four-chamber view of LGE image shows normal dark myocardial signal
intensity. Left atrial enlargement also can be seen
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ventricular septum. Infiltrative cardiomyopathies usually
cause symmetrical LV wall thickening; however, occasionally
cardiac sarcoidosis may manifest as asymmetric LV wall
thickening simulating HCM.

Cardiac sarcoidosis

Sarcoidosis is a multisystem disorder of unknown aetiology
that is characterised histopathologically by non-caseating
granulomatous infiltration. Cardiac involvement is common

(50%), but only 5% of patients are symptomatic and may
initially manifest with arrhythmias or even sudden cardiac
death [39].

Disease may involve either the left or right ventricle but
more commonly involves the LV, usually the basal septum;
nevertheless, involvement of RV free wall, atrium, pericardi-
um and endocardium can also be seen [39, 40].

Abnormalities of cardiac sarcoidosis tend to be non-
specific and variable; interventricular thinning (particular-
ly basal) is the most typical feature of cardiac sarcoidosis
[39]. There may be other abnormalities, such as aneu-
rysms, LV and/or RV diastolic and systolic dysfunction,
regional wall motion abnormalities, LGE and myocardial
oedema [39, 40].

The appearance of sarcoidosis at cardiac MRI largely de-
pends on the timing of imaging. In the acute phase of disease,
myocardial inflammation or oedema manifests as myocardial
thickening and patchy increased signal intensity on T2-
weighted images and T2mapping. Recent studies have shown
that T2 mapping seems to serve as a novel quantitative bio-
marker to detect myocardial inflammation in systemic sar-
coidosis and during the follow-up of the disease. T2 values
are higher in cardiac sarcoidosis than in patients without car-
diac involvement and decrease in response to anti-
inflammatory treatment. [41].

LGE MR images in patients with sarcoidosis typically
show a patchy mid-myocardial, subepicardial or epicardial
pattern that is not in a vascular distribution, most often
seen in basal segments (particularly of the septum and
lateral wall) and typically in the epicardium and mid myo-
cardium [39]. In chronic disease, nodular foci of LGE
indicative of fibrosis and scar formation without corre-
sponding T2-weighted signal intensity may be present
[39, 41, 42].

Diagnosis of cardiac sarcoidosis is sometimes challeng-
ing because sarcoidosis often involves small areas of the
myocardium without abnormally affecting LV function
and, less commonly, an increase in myocardial wall thick-
ness may also be seen, usually at the basal septum, simu-
lating asymmetric HCM (Fig. 6a and b) [43, 44]. In these
cases, T2-weighted MR imaging and LGE are useful to
suggest the diagnosis. Unlike cardiac sarcoidosis, which is
characterised by inflammation, HCM is not commonly seen
with oedema on T2-weighted MR imaging. Furthermore,
LGE in cardiac sarcoidosis is more likely to be epicardial
(Fig. 6c), while in HCM, LGE usually involves the anterior
and posterior junctions of the RV free wall and interventric-
ular septum [39].

Practical recommendations: T2 mapping can be useful
for early detection of cardiac involvement in systemic
sarcoidosis and for monitoring the activity of myocardial
inflammation during the follow-up of the disease.

Fig. 3 a Three-chamber view at end-systole of a 53-year-old man with
dyspnea at rest and aortic valve stenosis. b Three-chamber view at early
systole in a 45-year-old woman with obstructive hypertrophic
cardiomyopathy. Jet of turbulent flow is seen exactly across the aortic
valve in aortic valve stenosis (arrowheads) and in the subaortic region
(arrows) in obstructive hypertrophic cardiomyopathy with anterior
displacement (arrowhead) of an elongated anterior mitral leaflet
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Apical LV thickening

The differential diagnosis of apical HCM includes mural
thrombus, hypertrabeculation or non-compaction and
endomyocardial fibrosis. These entities may be diagnosed
on MRI using steady-state free precession (SSFP) imaging
techniques and LGE imaging.

Mural thrombus

The development of LVapical thrombus is an important com-
plication of myocardial infarction. Thrombus occurs on the
endocardial surfaces overlying the infarct secondary to

endocardial inflammation during the acute phase of myocardi-
al infarct. Although the underlying pathological mechanisms
are unknown, approximately 2% of patients with mid-
ventricular obstruction in HCM present with apical LV aneu-
rysms. The dyskinetic/akinetic apex can provide the
structural basis for intracavitary thrombus formation [45].
Echocardiographic distinction between LV apical thrombus
and apical HCM can be difficult. In these cases, cardiac MRI
using delayed-enhancement image with a long inversion time
(500–600 ms) can differentiate mural thrombus from myocar-
dial hypertrophy and other cardiac masses because the blood
pool and myocardium tend to become greyish while the throm-
bus remains dark [46].

Fig. 4 A 65-year-old man with
cardiac amyloidosis. a Short-axis,
(b) four-chamber and (c) three-
chamber cine SSFPMR images at
end-diastole show diffuse
asymmetric myocardial
thickening, of both, LV and RV,
thickening of left atrial wall
(arrows) and interatrial septum
(arrowheads) and pericardial
effusion (asterisks). d Short-axis
and (e) two-chamber LGE images
showing transmural atrial wall
enhancement (arrowheads) and
diffuse myocardial enhancement
sparing the mid-wall of
ventricular septum (arrow)
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Practical recommendations: Late imaging with inversion
recovery should be performed with a long inversion time
(500–600 ms). At this time, the signals of thrombi are
very dark.

LV non-compaction

Left ventricular non-compaction is a genetic cardiomyopathy
characterised by an excessively prominent trabecular mesh-
work and deep intertrabecular recesses that communicate with
the cavity but not with the coronary artery system [47]. Non-
compacted areas are commonly located at the LV apex and

Fig. 5 A 75-year-old man with cardiac amyloidosis. a Sequential
inversion recovery T1-weighted gradient echo images with a variable
inversion time trying to null normal myocardium show the difficult to
determine the optimal inversion time to null myocardium. The blood pool
and the myocardial nulling occurs earlier at 225 ms than the splenic
nulling (275 ms). b Short-axis T1-weighted inversion recovery gradient
echo images obtained at (b) 4 minutes and (c) 8 minutes after the injection
of contrast agent. The myocardium displays predominantly subendocar-
dial LGE at 4 minutes, but it is diffusely enhanced at 8 minutes

Fig. 5 (continued)
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mid-apical wall segments, typically sparing the interventricu-
lar septum (Fig. 7) [47–49].

Patients may have no symptoms or may present with heart
failure, atrial and ventricular arrhythmias, thromboembolic
events and sudden cardiac death [50].

Although a Bgold standard^ for the diagnosis of LV non-
compaction continues to be lacking, cardiac imaging criteria
provide the best tool currently available [47]. Imaging diag-
nostic criteria are based on the relationship between the thick-
nesses of the non-compacted and compacted layers. An end-
systolic ratio between non-compacted and compacted layers
greater than 2 in the short-axis view is considered diagnostic
on echocardiography [48].

Advances in cardiac MRI have resulted in superior image
quality and increased sensitivity in the detection of myocardial
trabeculations.Moreover, cardiacMR can also reveal the pres-
ence of LGE, a marker of myocardial fibrosis that represents
the substrate for potentially lethal arrhythmias [51]. Higher
prevalence of LGE is associated with disease severity and
LV systolic dysfunction [47].

On cardiac MRI, diagnosis of LV non-compaction is sup-
ported if the end-diastolic thickness of the non-compacted
layer is greater than 2.3 times that of the compacted one
[52]. This relationship should be measured in short-axis im-
ages when compacted and non-compacted myocardium is lo-
cated in the mid-cavity and basal segments. When myocardial
trabeculations are located at the apex, the four-chamber or
long-axis views are preferred [47, 49].

The diagnosis of LV non-compaction can be challenging
due to the lack of universally validated diagnostic criteria [47,
52]. Diagnosis is also complicated by the fact that there is a
complex genetic background responsible for isolated LV non-
compaction development that is in part shared with hypertro-
phic and dilative cardiomyopathy [47, 53].

Left ventricular non-compaction shares morphological fea-
tures with HCM that can mimic isolated LV non-compaction
[48]. A true overlap may exist, as reported in genotyped fam-
ilies expressing both HCM and LV non-compaction pheno-
types, and both diseases can occur in the same patient [47, 54].

Trabeculations of LV non-compaction at echocardiography
can simulate an apical HCM because myocardial trabeculations
can be difficult to visualise in the apical segments (Fig. 7a) [47,
55]. The high signal intensity of the blood pool achieved
by cine SSFP MR images allow reliable differentiation of

�Fig. 6 A 29-year-old man with pulmonary sarcoidosis who had recurrent
ventricular tachycardia and negative coronary angiography findings. a
Short-axis and (b) axial cine SSFP MR images at end-diastole show
basal septal myocardial thickening (asterisks). c Short-axis post contrast
T1-weighted inversion recovery gradient echo image shows subepicardial
LGE (arrows) in the inferoseptal and inferior walls of the left ventricle, as
well as subendocardial LGE (arrowheads) in the inferior wall of the right
ventricle. Functional assessment (not shown) demonstrated 35% left
ventricular ejection fraction
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compacted and non-compacted layers of the LV myocardium
corresponding to areas characterised by myocardial thickening
on echocardiography (Fig. 7b and c). Unlike LV non-compac-
tion, cine SSFPMR images easily demonstrate the apical myo-
cardial thickening and the smooth surface of the endocardium
without trabeculations characteristic of apical HCM [56].

Practical recommendations: The intertrabecular re-
cesses that communicate with the LV cavity and that are
characteristic of LV non-compaction are easily demon-
strated by the high signal intensity of the blood pool on
cine SSFP MR images.

Endomyocardial disease

Hypereosinophilic syndrome with cardiac involvement and
endomyocardial fibrosis is the most prevalent form of restric-
tive cardiomyopathy worldwide. This entity usually involves

�Fig. 7 A 45-year-old woman with reduced ejection fraction and isolated
LV non-compaction. a Echocardiographic findings were suggestive of
apical hypertrophic cardiomyopathy (asterisks). b Short-axis cine SSFP
MR image at end-diastole shows left ventricular apical trabeculated
myocardium and thin epicardial compacted layer. End-diastolic ratio
between non-compacted and compacted layers is greater than 2.3. c
End-diastolic long-axis view SSFP image demonstrates the myocardial
trabeculations (arrows) and clearly depicts their extension from apex to
lateral wall

Fig. 8 A 22-year-old woman with endomyocardial fibrosis. End-
diastolic four-chamber cine SSFP MR image shows right ventricular
apical thickening (arrow) and marked right atrial dilatation (asterisk)
with signal void attributed to turbulent blood flow
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the apex of one or both ventricles that may lead to both
endomyocardial fibrosis and obliteration of the LVapical cav-
ity (Figs. 8 and 9) [57].

Fibrosis at the cardiac apex frequently results in oblitera-
tion of the apical cavity, and can be confused with apical HCM
[58]. On cardiac MRI, a high T2 signal may be seen in the
apical endocardium. Diffuse subendocardial perfusion defects
and distortion of the mitral valve apparatus with resultant re-
gurgitation may be present [59, 60]. Superimposed mural
thrombus and endocardial calcification may also be seen in
advanced cases (Fig. 9b) [59, 61]. Subendocardial LGE is
common and a triple-layered pattern of enhancement is a char-
acteristic. This includes an inner dark layer due to non-
enhancing thrombus, a middle bright layer due to LGE from

fibrous tissue and an outer dark layer of normally nulled myo-
cardium [5, 59]. Patchy intramyocardial LGE and associated
wall motion abnormalities and dilated left atrium may also be
seen [5, 59, 60].

Practical recommendations: Mural thrombus and
subendocardial LGE in endomyocardial fibrosis are
most useful findings to differentiate this entity from
apical HCM.

Conclusions

In summary, familiarity with the spectrum of myocardial
thickening mimickers allows consideration of the differential
diagnosis of HCM. Understanding relevant clinical features,
the myocardial thickening location and distribution patterns of
late gadolinium enhancement facilitates the recognition of key
cardiac MRI features, which can allow identification of those
causes of myocardial thickening that may mimic the various
HCM phenotypes.
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