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ABSTRACT Despite the importance of AR aggregation in Alzheimer's disease etiology, our under-
standing of the sequence determinants of aggregation is sparse and largely derived from in vitro
studies. For example, in vitro proline and alanine scanning mutagenesis of AB4o proposed core regions
important for aggregation. However, we lack even this limited mutagenesis data for the more disease-
relevant AB4z. Thus, to better understand the molecular determinants of AB4, aggregation in a cell-
based system, we combined a yeast DHFR aggregation assay with deep mutational scanning. We
measured the effect of 791 of the 798 possible single amino acid substitutions on the aggregation
propensity of ABs2. We found that ~75% of substitutions, largely to hydrophobic residues, maintained
or increased aggregation. We identified 11 positions at which substitutions, particularly to hydrophilic
and charged amino acids, disrupted AR aggregation. These critical positions were similar but not
identical to critical positions identified in previous AR mutagenesis studies. Finally, we analyzed our
large-scale mutagenesis data in the context of different AR aggregate structural models, finding that
the mutagenesis data agreed best with models derived from fibrils seeded using brain-derived AR
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aggregates.

Protein aggregation affects all known organisms from bacteria to
humans and is implicated in a number of human diseases. Decades
of genetic, biochemical and epidemiological work suggests that aggre-
gation of the amyloid B (AB) peptide is related to the incurable neuro-
degeneration associated with Alzheimer’s disease (Hardy and Selkoe
2002; Lesné et al. 2008; Bertram and Tanzi 2008; Shankar et al. 2009;
Masters and Selkoe 2012; Hardy 2017). AR peptide is generated by
post-translational cleavage of the transmembrane amyloid 8 precursor
protein at variable positions to produce peptides that range from
38 to 43 amino acids in length. The most aggregation-prone form of
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AP is 42 amino acids long (AB4,), though ARy is present at higher
concentrations in human cerebrospinal fluid (Jarrett et al. 1993;
Iwatsubo et al. 1994; Dahlgren et al. 2002). The aggregation of A
begins with a shift in equilibrium from soluble monomers to oligomers,
and these oligomers may nucleate amyloidogenesis (Matsumura et al.
2011; Barz et al. 2018). In Alzheimer’s disease, AR fibrils accumulate
in the extracellular space forming the major component of amyloid
plaques, a defining feature of the disease.

Despite the importance of AP aggregation in Alzheimer’s disease
etiology, our understanding of the sequence determinants of aggrega-
tion is sparse and largely derived from in vitro studies. In the past
decade, several assays based on the budding yeast S. cerevisiae have
been used to study protein aggregation (Bagriantsev and Liebman 2006;
Haar et al. 2007; Caine et al. 2007; Morell et al. 2011; D’Angelo et al.
2013). Notably, a growth-based assay that separates toxicity from ag-
gregation offers a way to investigate how changes in AR sequence
impact aggregation propensity (Morell et al. 2011) (Figure 1A). In this
assay, AP is cytoplasmically localized to eliminate its aggregation-
associated toxicity (Treusch et al. 2011; D’Angelo et al. 2013). To link
AP aggregation to yeast growth, AR is fused to an essential protein,
dihydrofolate reductase (DHFR) via a short peptide linker. The result
is that DHFR activity depends on the solubility of AB. Thus, upon
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treatment with the competitive DHFR inhibitor methotrexate, yeast
expressing soluble A variants grow rapidly, whereas yeast expressing
aggregating AP variants grow slowly.

Mutagenesis can elucidate the role of individual residues in protein
aggregation. For example, in vitro proline (Williams et al. 2004) and
alanine (Williams, Shivaprasad, and Wetzel 2006) scanning mutagen-
esis of AP, revealed core regions important for aggregation. However,
we lack even this limited mutagenesis data for the more disease-relevant
ABy4, and, so far, the majority of mutagenesis studies have been per-
formed in vitro.

Thus, to fully understand the molecular determinants of ARy, ag-
gregation in a cell-based system, we combined the yeast growth-based
aggregation assay with deep mutational scanning (Araya and Fowler
2011; Fowler and Fields 2014; Fowler et al. 2014) to measure the effect of
791 of the possible 798 single amino acid substitution on the aggregation
propensity of AB4,. We used high-throughput DNA sequencing to track
the frequency of each AP, variant during the selection, enabling us to
assign a solubility score to every variant. We present the first large-scale,
cell-based mutational analysis of AB, illuminating the physicochemical
properties of amino acids that abrogate, promote or do not affect AP
aggregation. Of 791 single amino acid AR variants we evaluated, ~75%
maintained or increased aggregation. In addition, we identified 11 posi-
tions at which substitutions, particularly to hydrophilic and charged
amino acids, disrupted AP aggregation. These critical positions were
similar but not identical to critical positions identified in previous A
mutagenesis studies. Finally, we analyzed our large-scale mutagenesis
data in the context of different AP aggregate structural models, finding
that some structures were plausible whereas others were not.

METHODS

Library construction

The library was cloned using in vivo assembly (Garcia-Nafrfa et al. 2016).
First, a forward primer containing a 5" homology region, an NNK co-
don, and a 3’ extension region was designed for each codon in AR,
(Table S1). The homology and extension regions were at least 15 nucle-
otides in length and had melting temperatures greater than 55C. Reverse
primers were the reverse complement of the 5" homology region.

A separate PCR reaction was performed for each codon. These
reactions contained 40 ng template (p416GAL1-AB-DHFR) and 10 uM
forward and reverse primers (IDT, custom oligos) in a total reaction
volume of 30 pL. The following cycling conditions were used: 95C
3min, 8x [ 98C 20 sec, 60C 15 sec, 72C 9 min], 72C 9 min. After
PCR, 7.5 pL of each product was run on a 1.5% agarose gel for
30 min at 100V to check for a single product. The remaining
22.5 pL aliquots of product were each digested for an hour at 37C with
0.6 L of Dpnl (NEB, R0176S). After digestion, 4 wL of each linear
product was transformed into a 50 L of TOP10F Chemically Com-
petent E. coli (ThermoFisher, C303003) according to manufacturer’s
instructions, with the following modifications: the protocol was done in
a 96 well plate, and cells were recovered in a total volume of 200 L
SOC. After recovery, cells were transferred to a deep well plate with
1.6-1.8 mL of ampicillin LB and shaken overnight. To estimate colony
count, 50 pL of culture was plated on an LB + ampicillin agar plate.
Deep well plates and agar plates were incubated at 37C overnight. After
incubation, all 42 deep well plate cultures were combined and subject
to Midiprep (Sigma, NA0200).

4.3.2 Plasmids, yeast strains and growth conditions

To create a galactose-regulated AB-DHFR expression system, we
directionally cloned DHFR into p416 (URA3, GALl promoter,
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CEN) using Blp and Spel and then cloned the human AR, coding
sequence into the Spel and HindIII of the same vector. AB-GFP
variants were cloned using the same scheme. All AP variants were
cloned into p416 and transformed in W303 strain (MATa/MATa
{leu2-3,112 trp1-1 canl- 100 ura3-1 ade2-1 his3-11,15} [phi+]). Cells
were grown at 30C in synthetic complete (SC) media lacking uracil
and supplemented with 2% glucose.

Methotrexate selection assay

Transformed yeast were inoculated into 5 mL (low-throughput) or
300 mL (co-culture and deep mutational scan) of C-Ura, 2% glucose
media, grown in a rotating/shaking, 30C incubator overnight and then
transferred to 5 mL or 300 mL 2% raffinose media to remove the glucose
repression acting on the gall promoter. After two hours in 2% raffinose,
yeast were back-diluted to an OD of 0.01 into 5 mL or 300 mL 2%
galactose to induce AB,,-DHFR expression in the presence or absence
of 80 wM methotrexate (TCI America, M-1664) and 1 mM sulfanil-
amide (Sigma, S-9251). In 5 mL experiments, yeast growth was mea-
sured over 48h using a spectrophotometer that detects 660 nm
wavelengths. The following equation was used to calculate doubling
times from two time points: (Log;o(OD1,/ODr1)/ Log;(2))/ AT, where
OD represents the optical density at 600nm at a time point (T). For
co-culture experiments, yeast with aggregating and nonaggregating
variants were inoculated at equal densities in 300 mL. Ten OD units
of yeast were collected from 300 mL cultures every 12h, spun down,
concentrated and stored in -80C. At the end of the experiment, frozen
yeast were thawed and then their plasmids were extracted usinga DNA
Clean and Concentrator kit (Zymo Research, D4013). Extracted plas-
mids were prepped and sequenced using Sanger sequencing. For the
deep mutational scan, 300 mL cultures were sampled at the following
timepoints: input, 28h (OD ~ 1.0), 31.5h (OD = 2.0), 35h (OD = 3.0),
38h (OD = 4.5), and 40h (OD = 6.0). Cultures were spun down,
concentrated and stored in -80C. Plasmids were extracted from
yeast with Yeast Plasmid Miniprep 1 kit (Zymo Research, D-2001).
Library fragments were amplified in 17 PCR cycles using primers
specific to DNA sequences that flank AB-DHEFR in p416, and se-
quenced by an Illumina NextSeq sequencer using paired-end reads
(Table S1).

Variant effect analysis

Enrich2 was used to calculate solubility scores for each AR variant from
sequencing fastq files (Rubin et al. 2017). The Enrich2 pipeline calcu-
lates a variant’s score in three steps. First, a variant’s normalized fre-
quency ratios are tabulated for each timepoint by dividing the
frequency of a variant’s sequencing reads by all mapped reads and
normalizing by the wild-type frequency ratio. Sequencing reads were
stringently filtered for quality; we require each base have a Phred score
greater than 20 and no uncalled bases. Second, a weighted linear least
squares regression line is fit to the normalized frequency ratios across
time points. Third, the slope of the regression line is calculated, aver-
aged across the three replicates and log, transformed. This averaged
log, slope reflects a variant’s aggregation propensity. Solubility scores
below 0 denote variants that are more aggregation-prone than wild-
type, whereas scores above 0 indicate that a variant has increased
solubility compared to wild-type.

Classifying AP variants using synonymous mutations

Variant classifications (i.e., WT-like, more aggregation-prone, more
soluble) were assigned using the distribution of 39 synonymous muta-
tions from the deep mutational scan. We define WT-like as any variant
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Figure 1 A-D. A yeast-based aggregation assay distinguishes between soluble and aggregation-prone variants of AB. A schematic of the assay
shows plasmid-based expression of AB-DHFR and a nonaggregating variant of AB fused to DHFR, which lead to slow and fast yeast growth in the
presence of methotrexate, respectively (A). A stacked bar graph shows the percentage of AB-DHFR and ABL3-DHFR in co-culture (y-axis) every
12 hrfor 48 hr (x-axis; B). Fluorescence light microscopy shows the aggregation patterns of AB-GFP (WT) and ABL3-GFP (17FD) 16h after induction
of expression (C). A bar graph shows the percentage of yeast cells with punctae (y-axis) in five fluorescence microscopy images of AB-DHFR (WT)

or ABL3-DHFR (Y9FD; x-axis; D).

with a score within = 2 SD of the synonymous variant mean
[-0.26,0.39]. A variant is more-aggregation prone than wildtype if its
score is greater than 0.39 or more soluble if its score is lower than -0.26.

Data and code availability

Raw sequencing data is available in the NCBI GEO database (accession
number GSE139122). Code and variant scores are available at https://
github.com/FowlerLab/amyloidBeta2019. Supplemental material avail-
able at FigShare: https://doi.org/10.6084/m9.figshare.8330297.

RESULTS

First, we verified that the DHFR-based yeast aggregation assay
could differentiate between aggregating wild type AR (ABwr) and a
nonaggregating (ABED) variant (Morell et al. 2011). As expected, in a
mixed culture treated with methotrexate, ABLp, outcompeted ABwr
(Figure 1B). We used fluorescence microscopy of AB-GFP fusions to
confirm that ~30-70% of yeast expressing ABy1-GFP had cytoplas-
mic punctae compared to ~0-20% of cells expressing AR})-GFP
across five fields of view (Figure 1C-D). Thus, we concluded the assay
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could be used in a deep mutational scan to measure the aggregation
propensity of variants of AR.

Using this assay, we conducted a deep mutational scan of AP that
yielded solubility scores for 791 single amino acid variants, representing
99.1% of the possible single variants. Solubility scores were calculated
by taking the weighted least squares slope of each variant’s frequency
ratios across six time points. (see Methods). The slopes from each
replicate were well correlated (Pearson’s R 0.78 to 0.92; Figure 2A,
Figure S1A). Replicate slopes were averaged and log, transformed to
produce final solubility scores such that wild-type had a solubility score
of zero (Table S2). Positive solubility scores indicated less aggregation
and negative scores indicated increased aggregation.

Solubility scores ranged from -2.38 (most aggregating) to 1.45 (most
soluble). The mean (median) solubility score for all variants was 0.09
(0.08), which was similar to the solubility scores of the 39 synonymous
variants in our library (mean: 0.06; median: 0.08). Because we did not
expect synonymous variants to affect aggregation propensity, we used
their distribution of scores to identify WT-like variants (Figure 2B). In
total, we found that 344 (43.4%) of A variant scores were within two
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Figure 2 A-F. Solubility scores for 791 AB variants. Solubility scores reliably measure the effects of AB sequence on aggregation propensity. A
scatter plot shows the correlation between two of three biological replicates that were averaged to yield final solubility scores (A; Figure S1A).
The distribution of solubility scores (x-axis) of synonymous variants was used to determine cutoffs that define variants that are wild-type-like or
more/less aggregation-prone than wild-type. The density plot shows distributions of nonsynonymous (light gray) and synonymous (dark gray)
variants and the white lines show the lower (-0.26) and upper (0.39) bounds for wild-type-like variants (B). The scatterplot shows the correlation
between our solubility scores (y-axis) and a low-throughput yeast growth assay that measured yeast growth rate as a proxy for AB solubility (C;
Figure S1B). The heatmap shows the effect of 791 AB variants on solubility with AB positions on the x-axis and mutant amino acids on the y-axis. A
variant’s color denotes its solubility: red is most soluble, white is wild-type-like and, dark blue is most aggregated, whereas yellow variants are
missing from our variant library and dots denote the wild-type amino acid at a given position. The annotation tracks on the x- and y-axes display
the hydrophobicity of each wild-type and mutant amino acid, respectively. The heatmap's y-axis has been re-ordered using hierarchical clustering
on the solubility score vectors (D). For each position, the mean solubility score at each position is depicted using the same color scheme as the
main heatmap. Additionally, the mean solubility scores for all hydrophobic and polar substitutions are shown (E; Figure S2A). Heirarchical
clustering on the x-axis yielded 6 distinct clusters: 1 (red), 2 (orange), 3 (yellow), 4 (green), 5 (light blue), and 6 (dark blue; F; Figure S2B-C).

standard deviations of the synonymous score mean and thus had  variants maintained or increased the peptide’s propensity to aggregate
WT-like effects (WT-like range: [-0.26,0.39]). Additionally, we found  in yeast cells.

246 (31.1%) variants to be more aggregation-prone than ABwr and To verify that our deep mutational scan accurately measured variant
201 (25.4%) variants to be more soluble. Therefore, ~75% of AR effects on aggregation, we tested six AP variants, G38F, K16V, A42V, 1°
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Figure 3 Comparison of yeast cell-based solubility scores to in vitro aggregation measurements and AB structural models. The scatterplot shows
the correlation between our solubility scores (y-axis) and two single amino acid scans that measured the effect of proline (orange) or alanine (teal)
variants on the thermodynamic stability of aggregates, relative to wild type (AAG) (A; Figure S3). The first two tracks show unmeasured mutations
(dashed gray) and the AB buried B-strand positions (black) suggested by proline scanning alone, or by proline and alanine scanning together
(Williams et al. 2004; Williams, Shivaprasad, and Wetzel 2006). The third track shows positions with the greatest increase in solubility when
mutated in our large-scale mutagenesis study, found in cluster 1 (B). The next nine tracks show the secondary structure of nine models of AB

aggregate structure for each AB position (x-axis; C). The AB wild-type sequence is shown at the top.

FY, L17S and L34R, that spanned the solubility score range in a low-
throughput validation assay. The growth rate of methotrexate-treated
yeast expressing each AP variant was measured and compared to
the aggregation propensity scores (Figure 2C, S1B). We found that
low-throughput assay results strongly correlated with the solubility
scores derived from deep mutational scanning (R?> = 0.98). Thus,
our deep mutational scan reliably measured AP variant aggregation
propensity in the yeast assay.

To explore the effects of each amino acid substitution on AR ag-
gregation, we created an AP sequence-aggregation map (Figure 2D).
Substitutions to aspartic acid and proline were most associated with A
solubility, as evinced by their median scores of 0.64 and 0.56, respec-
tively (Figure S2A). Conversely, the most aggregation-associated sub-
stitutions were hydrophobic tryptophan and phenylalanine, with scores
of -0.60 and -0.51, respectively. Moreover, hierarchical clustering of all
791 solubility scores by amino acid revealed that hydrophobic substi-
tutions, except alanine, clustered together and were associated with
greater aggregation than other classes of substitutions.

Next, we characterized each position in AP based on its mutational
profile. Hierarchical clustering of variant solubility scores by position
identified six distinct clusters (Figures 2E-F; S2B-C). In cluster 1, com-
prising positions 17-20, 31-32, 34-36, 39 and 41, substitutions tended to
decrease AB aggregation compared to substitutions in other clusters
(cluster 1 mean solubility scores = 0.64, all other clusters = -0.28; Figure
S$2D). In cluster 1, even substitutions to hydrophobic amino acids
slightly decreased aggregation (mean solubility score = 0.17). The ef-
fects of substitutions in cluster 2 were similar to but less extreme than in
cluster 1. Both clusters 1 and 2 are largely comprised of hydrophobic
positions in the wild type AR sequence. Indeed, 80% of AP positions
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with hydrophobic wild type residues are in clusters 1 and 2. In stark
contrast, within clusters 4, 5 and 6, hydrophobic substitutions generally
increase protein aggregation (all mean: -0.15, -0.12 and -0.45; hydro-
phobic means: -0.29, -0.65, and -1.04). Cluster 3 contains only two
positions, 37 and 38. Here, every substitution except proline increased
aggregation (all mean: -0.99, hydrophobic mean: -1.56). Given that
cluster 1 is characterized by hydrophobic positions where hydrophilic
substitutions profoundly decreased aggregation, we suggest that this
cluster defined buried B-strands in the AP sequence.

Next, we compared our solubility scores to previous alanine and
proline scans which reported A, fibril thermodynamic stability
in vitro (AAG). AAG values were determined by measuring variant
AR monomer concentration remaining in solution after fibril forma-
tion reached equilibrium (Williams et al. 2004; Williams, Shivaprasad,
and Wetzel 2006). We found that the effects of proline substitution in
our assay were correlated with proline AAG values (R? = 0.40), while
the effects of alanine substitutions in our assay were less correlated with
alanine AAG values (R? = 0.17; Figure 3A). In our alanine and proline
comparisons, we found the greatest correlation at positions 17-20 and
31-32, where substitutions decreased aggregation in all studies (Figure
S$3). The most notable disagreement between studies was for alanine
substitutions at positions 37 and 38. In our assay, alanine substitutions
caused a profound increase in aggregation, whereas the in vitro alanine
scan showed the opposite effect.

We also compared our buried 3-stand positions from cluster 1 to
B-stands proposed based on the in vitro alanine and proline scans,
finding some concordance (Figure 3B). The single amino acid scans
identify three regions that disrupt fibril elongation thermodynam-
ics when mutated. The regions include positions 15-21, 24-28, and
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31-36 for the proline scan and positions 18-21, 25-26, and 32-33 for
the combined alanine and proline scans (Williams et al. 2004; Williams,
Shivaprasad, and Wetzel 2006). Given the generally highly disruptive
nature of proline substitutions (Gray et al. 2017), it is not surprising
that the proline scan would nominate many positions. Our deep mu-
tational scan, on the other hand, does not reveal a central 3-strand or
strong decrease in aggregation with alanine or proline substitution from
positions 24-28. We speculate that this difference is due either to the
distinct experimental approaches used or to the different AR species
(ABao vs. AB42).

DISCUSSION

We used deep mutational scanning to characterize 791 A variants in a
yeast-based aggregation assay. Proline and aspartic acid substitutions
were most disruptive of AP aggregation, while tryptophan and phenyl-
alanine increased aggregation most. Additionally, we used unsuper-
vised clustering to determine the regions of AR most important for
aggregation. We conclude that these regions are most likely to form
buried B-stands, which are necessary for aggregation and sensitive to
amino acid substitutions (Jahn et al. 2010; Abrusdn and Marsh 2016).
These include positions 17-20, 31-32, 34-35, 39 and 41. While other
positions could also form B-stands, the positions in cluster 1 are most
likely to form the buried cores of AP aggregates in our cell-based assay.

Due to the noncrystalline nature of AR fibrils, traditional techniques
such as X-ray crystallography and solution-state NMR cannot be used
to solve AR’s aggregate structure. Instead, structural models have been
developed by amassing constraints, such as the direction and register of
B-sheets. For example, solid-state nuclear magnetic resonance studies
suggest that AR fibrils are parallel, in register B-sheets (Benzinger et al.
1998; Gregory et al. 1998; Antzutkin et al. 2002; Tycko 2011). Many of
these structural models are problematic because they are generated
from constraints derived from in vitro experimental data, which may
not be representative of in vivo conditions.

Given that we collected large-scale mutagenesis data in a cell-based
system, we examined how our results compared to structural models of
AP fibrils. Some models such as 1IYT (Crescenzi et al. 2002) and
2NAO (Wilti et al. 2016), showed very little to no overlap with either
our proposed buried B-strands or those proposed by Williams et al.
(2004, 2006) (Figure 3C). Other models contained three (3-strand re-
gions reminiscent of those suggested by Williams et al. (2004, 2006):
2MXU (Xiao et al. 2015), 5KK3 (Colvin et al. 2016), and 50QV
(Gremer et al. 2017). Yet other models propose B-strand patterns more
similar to ours. These include 2BEG (Liihrs et al. 2005), 2LNQ (Gremer
et al. 2017), 2LMP and 2LMN (Lu et al. 2013). Since our B-strand
patterns were derived from data gathered in a cell-based assay, we
hypothesized that they would be most consistent with structural models
based on in vivo-derived fibrils. Indeed, the 2LMP and 2LMN models
were based on fibrils seeded from plaques isolated from the brains of
individuals afflicted by Alzheimer’s disease. Moreover, every model be-
sides 2LMP and 2LMN was constructed using NMR or cryo-EM data
from laboratory grown fibrils. These models are less concordant with
our cell-based mutational data, which suggests that there are important
structural differences between in vitro and in vivo derived fibrils.

Two major differences exist between the experimental conditions
used by Williams et al. (2004, 2006) and in our work, and may explain
the difference in B-strands proposed in our respective in vitro- and
in vivo-derived models. First, Williams et al. (2004, 2006) incubate AP
in the absence of any other proteins, while our yeast-based system
provides key players that affect protein aggregation, such as chaperone
proteins and molecular crowding. Second, Williams et al. (2004, 2006)
incubate AB peptides at 37C, whereas our yeast-based experiments
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required a lower temperature of 30C. This temperature difference
may yield differences in folding kinetics. Further experiments are re-
quired to determine the contribution of these experimental differences
to B-strand formation in Ap.

Deep mutational scanning data could contribute to the investigation
of A fibril structure beyond the analysis of existing models we present.
For example, others have used site-saturation mutagenesis and deep
mutational scanning data to evaluate proposed structural models (Bajaj
et al. 2008; Khare et al. 2019). Additionally, deep mutational scanning
data have now been used to generate distance constraints for the pre-
diction of tertiary protein structure (Schmiedel and Lehner 2018;
Rollins et al. 2018).

In summary, we used deep mutational scanning to elucidate the
effects of amino acid substitutions on AP aggregation in a cell-based
model. We used these large-scale mutagenesis data to propose positions
critical for AR aggregation. Our results conflict with some previous
in vitro reports of the effects of substitutions on AR aggregation and
with some models of AB fibril structure. This outcome highlights
the difficulties of studying protein aggregation and emphasizes the
potential utility of in vivo or cell-based models. We suggest that deep
mutational scanning of other aggregation-prone proteins such as
a-synuclein or transthyretin could help reveal the relationship be-
tween sequence, structure and aggregation.
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