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Abstract: Basic applications of the information entropy concept to chemical objects are reviewed.
These applications deal with quantifying chemical and electronic structures of molecules, signal pro-
cessing, structural studies on crystals, and molecular ensembles. Recent advances in the mentioned
areas make information entropy a central concept in interdisciplinary studies on digitalizing chemical
reactions, chemico-information synthesis, crystal engineering, as well as digitally rethinking basic
notions of structural chemistry in terms of informatics.

Keywords: information entropy; chemical structure; electronic structure; molecular complexity;
molecular ensemble

1. Introduction

Information entropy (Shannon entropy) originates from the first quantitative theory
of the communication and transmission of information [1,2]. It initially related to the
complexity of a transmitted message [1] but now it has been adapted in diverse sciences [3].
In addition to the parent field, it is currently used to describe the objects of mathematics
(e.g., graphs and sets), natural sciences (dissipative structures in physics, electron density,
complexity of chemical and biological systems, etc.), engineering (urban infrastructure,
analysis of images, etc.), and liberal arts (texts, etc.) [3,4]. This list is not complete and is
permanently extending as information entropy is efficient for assessing the complexity of
various objects.

‘Pure’ chemical applications of information entropy are wide and could be separated
over the two major areas: (a) analysis of molecular graphs and (b) analysis of electron
density of molecules. As follows from the names of the points, information entropy is
mainly applied to the molecular species described with the finite mathematical models. The
first group of the applications deals with the information entropy of molecular graphs that
is very seminal for introducing various entropy-based topological descriptors for physical
organic chemistry, digital chemistry, and QSAR/QSPR studies (quantitative structure–
activity and structure–property relationships). These applications have been systematically
reviewed in previous works [5–9]. The second group deals with the quantum-chemical
analysis of the electron density distribution in the molecules and redistribution upon
their chemical transformations (e.g., see [10–13]). We also mention in brief other chemical
applications such as signal processing when molecules act as signal carriers (e.g., in the
molecular switches based on the transits between the isomeric species) [14].

Despite the comprehensive reviews on chemical applications of information entropy,
some recent advances deserve separate mentioning, especially in the context of existing
theories and hypotheses, which are not familiar for broad chemical community. Addi-
tionally, some issues of information entropy permanently accompany relevant chemical
studies, e.g., a comparison of information and thermodynamic entropies. Hence, it would
be insightful to review the following points under one title:
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(a) the peculiarities of the calculations of information entropies of isolated molecules,
molecular ensembles, and solids;

(b) the relation of information entropies to chemical and physicochemical processes;
(c) the relation of information entropy to the digital recognition of chemical structures.

We consider that the solution of the interrelating problems from the above fields relate
to deeper use of the concept of information entropy in chemistry, especially in the field of
digital description of chemical processes.

2. Basic Definitions

The original Shannon’s approach to evaluating the information of a message treats it
as the set of symbols: x1, x2, . . . , xn. The frequencies of their appearance are equivalent to
the probabilities to find them in the message, p1, p2, . . . , pn. The information entropy (h) is
introduced as [2]:

h = −
n

∑
i=1

pi log2 piv (1)

pi =
Ni
N

(2)

n

∑
i=1

Ni = N (3)

n

∑
i=1

pi (4)

where Ni are the numbers of symbols xi in the message, and N is its total length. The
base of the logarithm in Equation (1) is arbitrary and usually it equals 2 or e, providing h
estimates in bits or nats, respectively [15].

Shannon’s approach has been criticized due to its one-sided treatment of information.
Indeed, it quantifies the messages in the context of the symbol’s appearance but ignores
the sense of the message, i.e., the semantic aspects of information (in other words, the same
set of the symbols is able to produce different messages) [16,17]. This feature prescribes the
limits of the applications, including chemical ones, but does not make its use narrow.

The above formulation is also called the discrete information entropy approach and
there is a continual analogue, as follows:

h = −
∫

p(r) ln p(r)dr (5)

corresponding to the following continual probability distribution with random variable
r [12]: ∫

p(r)dr = 1 (6)

The proximity of Equations (1) and (5) providing h values to thermodynamic entropy
(S) explains the use of the term ‘entropy’ for it. Thermodynamic entropy is introduced as:

S = kB ln W (7)

where kB is Boltzmann’s constant. The S value describes a particular macrostate that is
yielded from W number of microstates (various combinations of particles in various energy
states). Herewith, the microstates are equally likely, so that the probability of a given
microstate is pi = 1/W. Thus, it is not surprising that the information and thermodynamic
entropies are usually compared with focus on their similarity and linking theories and
experiments are developed (e.g., Szilard engines and Landauer’s principle [18–22]). The
interaction of information theory with thermodynamics and quantum theory has led
to the generalization of the information entropy concept (cf.: Rényi and von Neumann
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entropies) [15,23,24]. However, mainly the quantities introduced with Equations (1) and (5)
have taken root in chemical studies.

The way of using the discrete and continual information entropy approaches depends
on the level of detailing chemical structure. This is due to the multilayered nature of chem-
ical reality (term after G. Bachelard’s philosophizing on chemical sciences [25]). Indeed,
there are many modes to describe molecular structures that take into account empirical
formulas, molecular graphs, geometry, or conformational dynamics [26–29]. The required
level of detailing structure is completely attributed to the aim of the chemical study. We
discuss below three chemical applications, from most used to the least, with a focus on the
molecular topology.

3. Information Entropy for Describing Chemical Structures
3.1. Discrete Information Entropy Approach: Quantifying Molecules as a Set

The common approach to rationalizing and quantifying molecular compounds deals
with molecular topology [30,31]. This level of structural chemistry does not focus on
electronic structure of atoms. A molecule is represented as a molecular graph G, which is a
non-oriented colored graph (the coloring is necessary when the molecule is made up with
the atoms of different chemical elements to designate the corresponding difference of the
vertices of the molecular graph). The application of information entropy to analyzing the
features of molecular graphs has a long story perfectly described in previous works [31,32].
We highlight below the conceptual aspects and some actual applications.

In general, this type of application deals with selecting and accounting inequivalent
structural primitives (atoms, bonds, or molecular fragments) [5]. For this purpose, one
should choose the equivalence criterion (α) and apply it to the set of the graph’s elements
X. This produces a partitioning with respect to X into n subsets whose cardinalities are
denoted by |Xi|. The structural information content of a molecular graph is estimated
similar to Equations (1)–(4) [32]:

I(G,α) = −
n

∑
i=1

|Xi|
|X| log2

|Xi|
|X| (8)

Elements X classified with criterion α may be different. The development of the
above approach went through the consideration of only empirical formula, empirical
formula and atomic valences, diversity of the edges (chemical bonds) in the graph, its
automorphic transformations, and the adjacency matrix (see review [31]). However, the
use of Equation (8) most understandable by chemists is based on counting inequivalent
graph vertices and graph edges corresponding to quintessential chemical concepts, atoms,
and chemical bonds. Herewith, the application of Equation (8) to the vertices seems stricter
as the atoms in the molecules are uniquely identified [33]. In contrast, a chemical bond
is a vague concept because its strict criteria are absent [33], and when selecting chemical
bonds in the molecule, chemists are guided by intuition (in most cases, such an ‘intuitive
approach ’ works well but there are debatable examples, especially related to coordination
compounds, endohedral complexes, molecules with multicenter chemical bonds [33–36]).
Note that Bader’s theory Atoms-in-Molecules, whereby the concept of chemical bond
is replaced with ‘chemical bonding’, efficiently resolves some structural problems [37].
However, it also leads to disputable results for ‘no-doubts’ molecular systems (e.g., it
indicates H . . . H bonding in phenanthrene bays of polycyclic aromatic hydrocarbons,
hardly interpretable by classical chemical theory [38,39]). Nevertheless, in simple molecules
with undoubted structural formulas (e.g., fullerenes or hydrocarbons), the edge-based
approach works reliably.

Equation (8) applied to graph vertices was widely used by Bonchev’s [40,41], Basak’s [42,43],
and our [44,45] groups. In these works, the following values,

Ĩ = −
n

∑
i=1

Ni
N

log2
Ni
N

= log2 N −
n

∑
i=1

Ni
N

log2 Ni = h (9)
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and

I = NĨ = N log2 N −
n

∑
i=1

Ni log2 Ni (10)

are called information content (and designated as IC or h) and the total information
content of the molecules, respectively. The units of these quantities are bits/atom and
bits, respectively. The mentioned works exploit several modes of partitioning the vertices:
(i) chromatic-number coloring of G where two vertices of the same color are considered
equivalent; (ii) determination of the orbits of the automorphism group of G whereafter
vertices belonging to the same orbit are considered equivalent. To provide reliable results,
sortation of the atoms have to reflect their chemical inequivalence regardless of the used
mathematical protocol. It means that atoms of different elements are attributed to different
atom types (herewith, atoms of different elements equally contribute into the information
entropy of the molecule); atoms of the same element belong to different atom types (subsets)
if they occupy different positions in the graph. The inequivalence of the vertices depends
on the connectivity, which, however, is not explicitly considered, i.e., the types of the
bonds (single, double, triple, or coordination bond) do not matter [46]. The approach is
exemplified with the case of two isomeric hydrocarbons C5H12 (Figure 1; conventional
designation to describe the partition of the molecule: [number of atom types] × [number
of atoms within them] is used hereinafter). The calculated h values of all possible N-atomic
molecules with N = 2–4 (Table 1) and more complex species (Table 2) are presented.
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Figure 1. Explanatory scheme of calculating the information entropies of two C5H12 isomers, pentane
(left) and neopentane (right). Taken from [47]. The molecules (a) are digitalized as graphs (b) whereby
the inequivalent vertices are selected. Then, the counting the atom types and their populations (c) are
performed and information entropies are calculated via Equation (9) (d) © 2020 Elsevier.



Entropy 2021, 23, 1240 5 of 28

Table 1. Information entropies of N-atomic species. Taken from [47] © 2020 Elsevier.

Partition h (Bits) Examples

Diatomic species

1 × 2 0 All homonuclear diatomic species A2 (e.g., H2, H2
+,

and O2)

2×1 1 All heteronuclear diatomic species AB (e.g., HF, HD,
and HO•)

Triatomic species

1 × 3 0 Cyclic species A3 (e.g., hypothetical cyclic ozone O3)

1 × 2 + 1 × 1 0.918 Linear/angular species AAA (e.g., open ozone O3, N3
–,

and I3
–) and angular ABA (e.g., H2O, H2S, and: CH2)

3 × 1 1.585 ABC (e.g., HCN, HNC, and HOD) and AAB
(e.g., HOO•)

Tetraatomic species

1 × 4 0 Tetrahedral A4 species (e.g., P4)

1 × 3 + 1 × 1 0.811 AB3 (e.g., •CH3, NH3, PCl3, NO3
–, and CO3

2–)

2 × 2 1 ABBA (e.g., HC≡CH)

1 × 2 + 2 × 1 1.5 A2BC (e.g., H2C=O and H2C=S)

4 × 1 2 ABBC, ABCD, and ABBB (e.g., HC≡CCl, HCNO, and:
C=C=C=O, respectively)

Table 2. Information entropies of typical molecules. Taken from [46] © 2018 Elsevier.

Molecule Partition h (Bits)

CH4 1 × 4 + 1 × 1 0.722

CH3Cl 1 × 3 + 2 × 1 1.371

C2H6 1 × 6 + 1 × 2 0.811

C2H4 1 × 4 + 1 × 2 0.918

C2H2 2 × 2 1.000

CH3OH 1 × 3 + 3 × 1 1.792

CH3CH2OH 1 × 3 + 1 × 2 + 4 × 1 2.419

CH3OCH3 1 × 6 + 1 × 2 + 1 × 1 1.224

CH3COOH 1 × 3 + 5 × 1 2.406

C6H6 2 × 6 1.000

C60 (Ih) 1 × 60 0

C70 (D5h) 3 × 10 + 2 × 20 2.236

The application of Equation (9) to various molecules and hypothetical molecular
graphs showed that information entropy characterizes the structural (topological) complex-
ity of the molecule and depends on its elemental diversity, the number of the constituting
atoms (factors increasing h), and the symmetry (reduces resulting h). These factors can be
clearly exemplified with the rigid molecules, e.g., fullerenes. For example, in the set of
the isomeric C60 molecules with different symmetries (Figure 2a), the h values decrease
with the rotational symmetry number σ. However, different symmetries lead to the same
h values if they relate to the same partitions (e.g., the molecules consisting of N atoms
and having Ci and C2 symmetries have the same partitions, (N/2) × 2, and the same h
values, equal to − log2

2
N ). In the case of the fixed symmetry, the information entropy

regularly increases with the molecular size (Figure 2b) [44]. Information entropy reflects
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the symmetry alternations in homological series. For example, the symmetry oscillates in
the series of zigzag oligomers (C60)n, being C2h for all even and CS for all odd homologues.
Accordingly, the dependence of h on n has a saw-like view (Figure 3). In contrast, all linear
structures (C60)n have D2h symmetry, and function h = f (n) monotonously increases [48,49].
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Figure 2. Relations of the information entropy of fullerenes to the molecular structure and molecular
size: (a) information entropy vs. rotational symmetry number plot for the C60 isomers; and (b)
dependence of information entropy on the number of atoms of the molecules of icosahedral fullerenes
from two Goldberg series. Taken from [44] © 2015 American Chemical Society.
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Figure 3. Relations of the information entropy (a) and rotational symmetry number (b) for fullerene
oligomers. Taken from [49].

The limit values of function h = f (N), where N is the number of atoms in the molecule,
are worth mentioning. Symmetric molecules with uniform structures, i.e., with partitions
1 × N, have zero information entropy. These are all homonuclear diatomic molecules
and rare symmetric species with larger molecular size (Figure 4). Their antipodes with
partitions N × 1 are non-symmetric and have the maximal h value for a given N:

hmax = log2 N (11)
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This approach allows sorting fullerenes [44], endofullerenes [51], oxygen allotropes [45],
and interstellar molecules [52] to reveal more and less abundant structures. We performed
studies [44,45,51] hypothesizing that a lower possibility of the formation of a chemical
structure corresponds to the higher information in the “message” about its formation. The
equivalence of the atom types implies the possibility of the formation of stable structures.
We assumed that the more complex the structure, the lesser the probability of its forma-
tion. Such probabilistic nature of forming chemical structures regardless of the stability
corresponds to the non-equilibrium and extreme conditions [53].

The approach provides additional opportunities for classifying chemical structures.
It could be done with the use of h-based estimates in combination with other parameters
relevant to chemical properties of the substances [54–57]. For example, Zhdanov proposed
the classification of natural compounds in the space of two coordinates: h/N and the
mean oxidation state of the carbon atoms in the molecule (Figure 5) [57]. The h values
were efficient for the rationalization of the formation processes of singly and doubly
filled endofullerenes [51]. However, this approach itself was not helpful for understanding
addition reactions to fullerenes [58] and ‘energy–topology’ correlations in isomeric fullerene
series [59]. Hence, the idea of the use of h in its original form has limited applicability to
assessing the reactivity and stability of the molecules.
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Another classification opportunity following from the discrete information entropy
approach exploits the concept of isentropicity. Two molecules A and B are isentropic if
their information entropies are equal (NA and NB are the total numbers of atoms in the
molecules) [50]:

nA

∑
j=1

NAj

NA
log2

NAj

NA
=

nB

∑
i=1

NBi
NB

log2
NBj

NB
(12)

There is no overall solution of Equation (12), as parameters Ni, Nj, NA, NB, n, and
m may be varied. Additionally, the partition of each molecule and the corresponding
cardinalities of the subsets (Ni or Nj) are generally interdependent. However, particular
cases of the above parameters when fulfilling the condition of isentropicity have been
considered. We proposed the h-based classification tree of the molecules (Figure 6) that
includes isotomic (having the same partition and size or similar partition and different sizes)
and allotomic (differently partitioned) [50]. Using the tree, we remember a disadvantage of
the Shannon approach dealing with neglecting the semantic properties, and it must be taken
into account when using such classifications. Hence, the question how to distinguish cases
when isentropicity has structural/physical meaning and when it has not remains open.
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Basak et al. introduced several related indices. Structural information content (SIC)
and complimentary information content (CIC) are the most important among them:

SIC =
h

hmax
(13)

CIC = hmax − h (14)

The structural information content obtains the values from 0 to 1 (or from 0 to 100%)
and shows the degree of the realized complexity relative to the maximal complexity
achievable for the same number of atoms N. The use of SIC values allows for comparing
the complexities of the molecules with different sizes. The molecules with the maximal h
values are characterized with SIC = 1. We have used this descriptor for analyzing the set of
interstellar molecules and found that the most hydrogen-poor unsaturated molecules have
rigid structures and SIC = 1. In contrast, the hydrogen-rich interstellar molecules have
SIC < 1 [52].

Chemical bonds of the molecules (or edges of the corresponding molecular graphs)
can also be used as structural primitives when calculating with Equation (8) [60]. For
example, Basak et al. introduce bond information content similar to the SIC value [5,43].
Different entropy measures relating to the topological distances in the fullerene [61–64]
and dendrimer graphs [65] also demonstrate usefulness.
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Efficient logarithmic measures of molecular complexity uniting atom and bond ap-
proaches are also known [66–69]. For example, Böttcher has developed index Cm, which
digitalizes molecular complexity in more details as compared with original Shannon’s
formula [68], as follows:

Cm = ∑
i

dieisi log2 Vibi −
1
2 ∑

j
djejsj log2 Vjbj (15)

where log2 Vibi represents the basal terms of the equation deduced for i-th atom from the
number of valence electrons (Vi) and the number of bonds connecting this atoms with
its neighbors (bi); di is the number of inequivalent bonds to neighboring non-hydrogen
atoms (having Vibi > 1); ei is the heteroatom diversity parameter; and si is the number of
isomeric possibilities at the i-th position. In Equation (15), to account for the symmetries
of a molecule, the corresponding atom positions of chemically equivalent sets of atoms
for each symmetric position j are subtracted. This approach provides efficient assessing
the complexity of chemical structures (Figure 7). However, grown from the information
theory, index Cm mathematically seems to partly lose the probabilistic nature of the original
Shannon entropy.
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It is noteworthy that there is no universal conception of chemical complexity [70], so
that the information entropy estimates is just an approach among the others. In benchmark-
ing work [6], Bonchev has compared three approaches to assessing chemical complexity,
algorithmic, information-theoretic, and topological, and demonstrated that they can lead
to qualitatively different estimates. For example, highly symmetric molecules obtain low
h values, i.e., they have a uniform distribution of atoms over atom types, and we con-
sider them simple within the information-theoretic approach. The situation is completely
different when the algorithmic complexity is used. In this case, the symmetry elements
intrinsic to a symmetric molecule are described with a digital protocol. The higher the
symmetry point group, the larger the protocol and the higher the molecular complexity.
Hence, symmetric molecules are complex in terms of the algorithmic approach.

We briefly note at the end of this section that the concept of information entropy has
been generalized, giving birth to numerous entropy-based descriptors [23,24,32].
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3.2. Continual Information Entropy Approach: Quantifying Electronic Density of Atoms
and Molecules

In quantum chemistry, the Hartree–Fock and Kohn–Sham [71] methods claim a simple
relation for one electron between its wave function ψ and electron density ρ:

ρi(r) = |ψi(r)|2 (16)

The electron density is the measure of the probability of an electron being present at an
infinitesimal element of space surrounding any given point. As it has a probabilistic origin,
it could be substituted into Equation (5), representing infinite cases of the information
entropy. Guiding these considerations, the N-electron system has the information entropy
equal to [4]:

Sρ = −
∫

ρ(r) ln ρ(r)dr (17)∫
ρ(r)dr = N (18)

Another quantity Sσ is also used within this approach. It is obtained when using in
Equation (17) a normalized function σ(r) = ρ(r)/N called the shape factor [4,72,73]:

Sσ = −
∫

σ(r) ln σ(r)dr (19)

∫
σ(r)dr = 1 (20)

Equations (17) and (19) have been applied to analyze the electron density of atoms,
molecules, and their parts (chemical bonds or fragments). The physical sense of the Sρ and
Sσ values relates to the degree of delocalization of electron density [72,74,75].

An interesting approach based on Equation (17) was introduced to quantify the
aromaticity of organic compounds [75]. The logic of the approach is based on Bader’s
theory of Atoms-in-Molecules [37], and the starting parameters are the electron densities in
the bond critical points (BCPs) that correspond to intramolecular interactions, including
chemical bonds. To assess the aromaticity of the ring, the local information entropies in
each BCP of the aromatic cycle are calculated as follows:

Si = −pi ln pi (21)

pi =
ρBCP,i

∑N
i=1 ρBCP,i

(22)

The total information entropy of the system of chemical bonds comes from the sum-
mation over all BCPs:

Sρ,tot =
N

∑
i=1

SBCP,i (23)

All BCPs are the same in the idealized aromatic system with total delocalization, so
that pi = 1/N and the total information aromaticity equals:

Sρ,max = ln N (24)

Deviation of the information entropy of a studied system from this maximal value could
be used as a measure of aromaticity, and the authors of [75] call it Shannon aromaticity (SA):

SA = Sρ,max − Sρ,tot (25)

The approach seems informative, and SA values correctly describe known aromatic
systems. For example, SA ≈ 0 in the case of benzene, the golden standard of aromaticity.
The values obtained for bi- and tricyclic aromatic hydrocarbons are shown in Table 3.
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Table 3. Shannon aromaticity indices of typical aromatic hydrocarbons. The calculations with the
density functional theory method B3LYP/6-31+G** performed in [75].

Molecule Structural Formula Shannon Aromaticity,
SA × 10–6

Benzene
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As for the application of the continual information entropy approach to chemical
reactions, we pay attention to two works [73,76]. The work of Ho et al. [76] used Sρ and
some related quantities to check their changes upon simplest SN2 displacement reactions.
Although function Sρ = f (ξ) (ξ is the reaction coordinate) still shows the redistribution of
electron density upon the reactions, the authors have not found any specific behavior of the
function in the stationary points lying on the reaction path (minima of reactants/products
and saddle point of a transition state).

Geerlings and Borgoo [73] were more successful. They did not use information entropy
itself but the derived quantity, viz., the Kullback–Leiber information deficiency along the
reaction coordinate relative to the reference value corresponding to the transition state (TS):

∆SKL =
∫

σξ(r) ln
σξ(r)
σTS(r)

dr (26)

Using Equation (26), the authors of [77] found that the minimum of ∆SKL corresponds
to the activation barrier and TS of the studied chemical reactions (proton transfer and SN2
reaction) (Figure 8).

A deep systematic study was performed by Nalewajski [10,11] combined in his studies
the above mathematical apparatus with basic definitions of the density functional and
Atoms-in-Molecules theories. One of the advances of these works deals with the application
of the continual information entropy approach to communicating (interacting) molecules,
i.e., molecules in a pre-reactionary ensemble [10,11,78,79].

There are a lot of works on chemical applications of the continual information entropy
approach. However, its discrete counterpart seems more efficient and more widespread
in chemistry. Indeed, the information-entropy-based electronic structure parameters are
deduced from wave functions, which are the base for calculating numerous other quantities
and quantum-chemical descriptors [71]. These quantum-chemically calculated values
(energies of frontier molecular orbitals, dipole moments, polarizabilities, hardness, etc.)
easily replace information-entropy-based ones. Herewith, in most cases, the traditional
indices of electronic structure and reactivity are more justified. Another issue deals with
the used quantum-chemical approximations to calculating the parameters presented in this
section as they strongly depend on the quality of a quantum-chemical method.

Note that there are minor examples of chemical applications of the continual approach,
which do not deal with electron density. As an example, we mention here a methodology
for assessing configurational entropy of macromolecules [80].
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3.3. Chemical Applications of Information Entropy Relating to Signal Processing

As is known, molecules act as information carriers and could be involved in the
information processes [81–83]. They are able to be the source of a signal as well as the
convertors. In the first case, a whole molecule or its distinguishable parts (monomer units
of biopolymers, e.g., amino acid or nucleotide residues). For information recording, the
molecular systems with two (or more) stable states are very significant if the stable have
different measurable spectroscopic parameters. Additionally, the transits between the
states should be only due to a specific impact, e.g., irradiation with light with a specific
wavelength. The uncertainty arises even in the simplest case of acting bistable system A
↔ B. In a kinetic aspect, when system moves from one state to another, states A anb B
coexist and their ratio is changed in time. The coexisting affects signal processing. In the
equilibrium thermodynamics, the population of i-th state (isomer) of such a system can be
found as:

qi =
exp

(
−∆Ei

RT

)
∑n

i=1 exp
(
−∆Ei

RT

) (27)

where ∆Ei = Ei − E0 are the stabilities of the states (isomers) relative to the most stable one
E0. Obviously, the qi values can be interpreted as probabilities, and they meet criterion
∑n

i=1 qi = 1. Therefore, they could be used as the probabilities for Equation (1) and input
parameters of the information entropy approach. Notably, these values are close to physical
interpretation of the measurements of the systems existing as mixtures. For example,
anisotropy of polarizability [84] and refractivity index of such systems of mixed states [85]
have been estimated as below, and we think this mode is applicable to any scalar physical
quantity x:

xsystem =
n

∑
i=1

qixi (28)

The above considerations were successfully applied to the analysis of dynamics of
multi-stable systems, such as the mixture of two photochemically interconverted iso-
mers [14] (Figure 9). It is also applicable to more complex processes involving enzymes [86].
Thus, the uncertainty of xsystem highlighted with information entropy h(qi) could be closer
to the measurable physicochemical parameters of the system.
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Information entropy is also used for rationalizing surface processes: e.g., in the analy-
sis of the scanning tunneling microscopy images of epitaxial fullerene nano-aggregates [87]
or tribological processes [88]. A recent machine learning study of digitalizing surface
processes [89] demonstrated that the surface is describable in terms of the set theory, for
which information theory is more than suitable.

4. Information Entropy of Complex Chemical Objects
4.1. Information Entropy of Solids

Representing an isolated molecule as a set is accompanied with no questions: the
representation is unambiguous even if arranging chemical bonds is unclear. Trying to con-
sider a crystalline solid, we must take into account the inequivalence of its layers (e.g., the
presence of internal and surface parts) and defects (vacancies or inclusions). Considering
the solid as a whole in the same manner as a molecule lead to the conclusion about the
inequivalence of all atom positions, so its information entropy is assessed with Equation
(11). Tatevsky declares that it is reasonable to consider the solid macroscopic if it contains
more than 104–108 atomic nuclei [90] that corresponds to h = 13.29–26.58 bits/atom. Thus,
the information entropy of the solids in line with these considerations depends only on
their size. These considerations seem precise but uninformative, as they do not allow
comparing the information entropies in the context of chemical structure. Thus, it should
be modified to be suitable for chemical studies. If we deal with a crystal, we should treat it
as infinite structure with no defects to escape the mentioned inequivalence.

Krivovichev systematically develops the information entropy approach applied to
crystals [91]. Accordingly, the measure of the information entropy of a crystal relates to
the information entropy of the reduced unit cell. All cells are considered identical. The
main quantities of the approach are structural information content and total information
content calculated with Equations (9) and (10) and expressed in bits/atom and bits/unit
cell, respectively. The inequivalence of the atom’s positions within the cell is considered
similar to the case of the isolated molecules. Additionally, parameter d referred to the
volume of the reduced cell (V) is efficient for crystal entropy studies:

din f =
I
V

(29)

It is called information density and expressed in bits/Å3. Krivovichev with collab-
orators and followers applied these quantities to study various minerals [91–101] and
found the relations between the crystallographic symmetries, size, and information entropy
estimates (Table 4) and proposed the classification of the minerals, which is based on their
complexity estimated with I values (Table 5). The latter means that the information entropy
is associated with the complexity of the minerals (though the authors make a reservation
that other approaches to assessing the complexity of the minerals can be used, such as
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exploiting the approximation of the crystal structures as the nets or invoking algorithmic
complexity paradigm [96]). As reported, the following ranges are observed in the case of
the five most complex minerals: Ĩ = 5.730 . . . 8.622 bits/atom, I = 6111 . . . .23,477 bits/cell,
and dinf = 0.488 . . . 0.791 bits/Å3 [93].

Table 4. Crystallographic point groups, abstract groups, and their complexity following from the
partition of group elements into equivalence classes with respect to automorphisms of the group.

Crystal Class
(Schoenflies

Symbols)
Order Partition of Group

Elements
h,

(Bits/Element)
htot,

(Bits/Group)

C1 1 {1} 0 0

C2, Ci, Cs 2 {1, 1} 1.000 2.000

C3 3 {1, 2} 0.918 2.755

C4, S4 4 {1, 1, 2} 1.500 6.000

C6, S6, C3h 6 {1, 1, 2, 2} 1.918 11.510

C2h, C2v, D2 4 {1, 3} 0.811 3.245

D2h 8 {1, 7} 0.544 4.349

C3v, D2 6 {1,2, 3} 1.459 8.755

C4h 8 {1, 1, 2, 4} 1.750 14.000

C4v, D4, D2d 8 {1, 1, 2, 4} 1.750 14.000

C6h 12 {1, 2, 3, 6} 1.730 20.755

C6v, D6, D3d, D3h 12 {1, 1, 2, 2, 6} 1.959 23.510

D4h 16 {1, 1, 2, 4, 8} 1.875 30.000

D6h 24 {1, 2, 3, 6, 12} 1.865 44.755

T 12 {1, 3, 8} 1.189 14.265

Th 24 {1, 1, 6, 8, 8} 1.939 46.529

Td, O 24 {1, 3, 6, 6, 8} 2.094 50.265

Oh 48 {1, 1, 3, 8, 8, 12, 15} 2.369 113.700

Table 5. Classification of minerals based on their complexity according to [91].

Category
Total Information

Content
(Bits/Unit Cell)

Approximate
Number of Mineral

Species
Examples

Very simple 0–20 600
diamond, copper, halite, galena, uraninite,
fluorite, quartz, corundum, ringwoodite,

calcite, dolomite, zircon, goethite

Simple 20–100 1100

alunite, jarosite, nepheline, kieserite,
szomolnokite, kaolinite, olivine-group
minerals, diopside, orthoclase, albite,

biotite 1M

Intermediate 100–500 1800

enstatite, epidote, biotite 2M1, leucite,
apatite, natrolite, tale 2M, pyrope,

grossular, beryl, muscovite 2M1, staurolite,
actinolite, holmquistite, coesite, tourmaline,

analcime, boracite

Complex 500–1000 300 eudialyte, steenstrupine, coquimbite,
sapphirine, alum, cymrite, aluminite

Very complex >1000 100 vesuvianite, paulingite, bouazzerite,
asheroftine-(Y), bementite, antigorite
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Introduced as above, the information entropy of minerals ( Ĩ) is relevant to the configu-
rational entropy of the solid Sconfig [95]:

Smax
con f ig − Scon f ig = kBNĨ ln 2 (30)

where N is the number of atoms in a crystal and ln 2 is hereinafter the conversion factor
between the natural and binary logarithms of the left and right parts of Equation (30). As
follows from the equation, configuration entropy reduces the structural complexity of a
crystal [95].

Analysis of a large data on crystalline structure minerals using the above approach
allowed revealing some general correlations typical for the mineral world, e.g., the correla-
tion between I and Ĩ (Figure 10). For selected classes of minerals, both Ĩ and I values reflect
structural complexity and correlate with chemical complexities estimated as the informa-
tion entropies of chemical composition (when the contents of the unit cell or empirical
formula are used as the input data for Equations (9) and (10)) [94,99].
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atom. The plot is based on data from the works of Krivovichev group [91,96].

The information entropy values digitalize the fact that the structures of the molecules
in the isolated state may not correspond to their structures in the crystals [100]. Their
original symmetries are reduced upon forming molecular crystals due to the influence of
the neighbors of a crystal lattice (Table 6). Note that additional factors in addition to the
structural complexity (e.g., layer stacking or complexity of hydrogen network) can be taken
into account within the approach described above [97].

Table 6. Molecular complexity of selected molecular crystals Ĩ (bits/atom) and I (bits/molecule).
Taken from [100].

Compound
Ideal Symmetry of a Molecule Real Symmetry of a Molecule

~
I I

~
I I

I2 0 0 0 0

S6 0 0 0 0

α-S8 0 0 2.000 16.000

α-N2 0 0 0 0

β-P4 0 0 3.585 14.340

C60 0 0 1.522 91.320

Ice Ih 0.918 2.754 2.252 6.756

Benzene 1.000 12.000 2.585 31.020

Naphthalene 2.281 41.058 3.170 57.060
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As the structural complexity of the minerals is relevant to their physicochemical
properties, the correlations between the information entropy and energy parameters of the
minerals are being discovered. For example, the structural complexity of lead-containing
minerals may have an impact on mineral reactions when the system does not have the
energy sufficient for overcoming the energy barrier separating metastable simple structures
from stable complex ones [91]. The correlation between the total information content of the
Cu2(OH)3Cl polymorphs and their Gibbs formation energies have been reported [101].

Dendritic structures (fractals) were presented as the graphs, whose vertices correspond
to elementary units (the inner structure of the units was not considered) [102]. As found,
the information entropy approaches to the threshold values with the increasing generation
number and these limited information entropies depend on the branching parameter of
the structure.

Describing the information entropy of condensed matter relates to copying the poly-
atomic systems. Herewith, it is not a problem to create a copy of the molecule. However, the
production of exact copies of chemical structures with number of atoms M >> 104 by means
of traditional physical and chemical techniques is a challenge. For example, glasses with
the same chemical composition produced with identical synthetic protocols have almost
the same macroscopic properties, but they are not the copies [103]. This inconsistency is
not decisive for most macroscopic solids but becomes crucial for nanostructures because
the variations of their structures even in a narrow range could induce drastic changes in
the properties. This challenge links to the physical task of defining maximal information
I (in bits), which could be recorded and stored for a long time tmax with the system of M
atoms. This question was systematically studied by Bal’makov [103–107], who proposed
the following inequality for this purpose:

0 ≤ I ≤ Mβ(tmax; n)
ln 2

(31)

where β (in nats) is the specific information capacity depending on tmax and vector n of
relative concentrations of atoms attributing to different types. Note that I designates the
information in a macroscopic sense and could vary with recording and storage techniques,
whereas β is independent of the latter features and is defined by microscopic parame-
ters. The exact estimate of I is vague but should be relevant to the number Γ of possible
‘recordable’ macro-states of the system (i.e., the sets of the atomic nuclei). This is due to the
interpretation of recording information as the embodiment of one of Γ states. Thus, the
upper bound of I should be ln Γ/ ln 2 [103]. Notably, Γ could be greater than the number
of minima of the Gibbs energy of the considered polyatomic ensemble, which means the
possibility of implementing the information into a metastable state.

Configuration entropy in terms of the above approach characterizes the scatter of the
experimental results on determining the coordinates of the atomic nuclei of the system
rather than the degree of disorder of a particular structure [104]. Anyway, the information
entropy insights are one of the steps toward rationalizing the replication processes of
artificial chemical structures and could be useful for developing approaches to ‘chemico-
information synthesis’ [104,105,108–110].

The concept of chemico-information synthesis has been introduced by Aleskovsky only
in a very general manner [108,111]. He starts hypothesizing with the absence of the solids
and high-molecular organic compounds with reproducible chemical structure (vide supra),
except of biopolymers. The latter ones exist due to other laws regulating their formation,
which is based on the high complementarity of the reactants, their responses to weak
impacts from the environment, etc. Aleskovsky unites all these factors under the concept
of information and states that the structuring is the process of embodiment of information
into matter, so that structure and matter are considered almost as synonyms. Biosynthesis
involves the molecules with high information content. Therefore, the synthesis of their
artificial inorganic analogs should be based on this feature and use the reactants with
propensities for self-assembly or selective reaction under weak impacts. Metaphorically, the
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information is printed in the chemical structure. Its chemical transformation is associated
with reading the information implemented in the structure of the reactants. Chemico-
information synthesis must operate with the building blocks with high information contents
instead of low-information ones (mainly atoms).

Talanov and Ivanov develop this idea refining the type of the structuring processes:
iteration, dissymmetrization, modularization, and hierarchization [109]. Works [108,109,111]
have proposed information entropy for assessing the information contents of the reactants,
but their use has not been exemplified. As assumed in [109], the lower the probability of
the formation of a certain structure under a stochastic process, the greater the information
in the ‘message’ of its formation (i.e., the information entropy). Currently, these ideas are
exteriorized in the studies on chemical reactions under weak physical fields (when the impact
is less than kT) and the self-governing synthesis of nanomaterials (which implies the absence
of any external impact on the synthesis since reaching the technological regime). Our group
uses information entropy values for sorting most probable structures formed under non-
equilibrium conditions [44,51,52] and ultrasonication [58].

4.2. Information Entropy of Molecular Ensembles

The discrete information entropy approach is promising for the description of collec-
tives of molecules. To develop the corresponding computational technique, the concept of
the molecular ensemble [112] of m molecules with information entropies hi was used and it
was found [46,47] that

hME = HΩ +
m

∑
i=1

ωihi (32)

where ωi are the fractions of the molecules in the ensemble:

ωi =
Ni

∑m
i=1 Ni

(33)

and the first term HΩ is called cooperative entropy:

HΩ = −
m

∑
i=1

ωi log2 ωi (34)

As follows from Equation (31), the resulting information entropy hME of the ensemble
is not a sum of the constituting molecules hi. This statement was mathematically derived
and justified with the examples demonstrating the consistence of Equation (32) with
chemical intuition [46,47].

We focus on the specific additive rules of information entropy of molecular ensembles
because simple summation of h values of the molecules leads to counterintuitive results.
For example, their simple summation means that in the case of the ensemble of m identical
molecules, the information entropy reflecting the complexity of the ensemble increases
linearly with m. This contradicts general chemical notions and thinking nuclear magnetic
resonance experiments [46]. Equation (32) resolves the contradiction and the information
entropy of the ensemble made up with the same molecules does not depend on their
number (hME = h). The second illustrative example deals with the ensemble consisting
of two molecules with h1 = 0 and h2 6= 0: the simple summation underestimates the
information entropy, ignoring the increase in the ensemble’s complexity associated with
zero-h molecule. This ‘missed’ contribution is accounted for with the HΩ term.

The hME values for some typical dimorphic molecule ensembles (i.e., made up with
the molecules of two types) and a general view of functions (32) are shown in Table 7 and
Figure 11. Cooperative entropy HΩ depends only on the distribution of atoms over the
molecules of the ensemble. It does not relate to their structure and emerges because of
mixing. The case of molecular ensembles is important for obtaining correct estimates of
information entropy changes in chemical processes.
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Table 7. Information entropies of typical dimorphic ensembles. Taken from [47] © 2020 Elsevier.

Ensemble aA + bB Partition hA (Bits) hB (Bits) ωmax(A) hmax
ME (Bits)

aNH3 + bN2 1 × a + 1 × 3a + 1 × 2b 0.811 0 0.637 1.462

aC60 + bO2 1 × 60a + 1 × 2b 0 0 0.5 1

aC60 + bO3 1 × 60a + 1 × b + 1 × 2b 0 0.918 0.346 1.531

aC70 + bO3
2 × 20a + 3 × 10a + 1 × b +

1 × 2b 2.236 0.918 0.714 2.723

aC6H6 + bO3 2 × 6a + 1 × b + 1 × 2b 1 0.918 0.514 1.960

aC60 + bC2H2 1 × 60a + 1 × 2b 0 1 0.333 1.585

aC70 + bC2H2 2 × 20a + 3 × 10a + + 1 × 2b 2.236 1 0.702 2.747

aC6H6 + bC2H2 2 × 6a + 2 × 2b 1 1 0.5 2
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We have found ‘magic’ molecular ensembles with featured information entropy [47].
The ensemble of this type consists of m isentropic molecules (with entropies equal to h)
and has the structure resembling the structure of the constituting molecules. Resembling
means that the distribution of the atoms over the molecules in the ensemble is proportional
to the distribution of the atoms over the atom types in the molecules. Such ensembles have
the following:

HΩ = h, and hME = 2h (35)

It means that the information entropy of such ensembles is independent of the number
of constituting molecules and is defined only by their information entropies.

5. Information Entropy of Chemical Reactions

It is well known that the changes in thermodynamic functions are calculated as the
differences between final and initial values. Applied to chemical reactions, it means that
the change in function ∆ΥR is the difference between the sums of the Υ values, products,
and reactants:

∆YR = ∑
prod

Yi −∑
reat

Yj (36)

Guided by this analogy, Karreman [113] introduced the change in topological content
at the chemical reaction estimated with h values of participants. Currently, the change
calculated in line with [113] is called the structure-dependent reorganization entropy of
chemical reaction:

Hstr
reorg =

prod

∑
i

hi −
react

∑
j

hj (37)
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The sense of Equation (37) is discussed below, and here we note that Hstr
reorg is in-

sufficient to describe the information entropy change in chemical reaction (or simply
information entropy of chemical reaction). According to the previous section, this change
must be introduced as the difference between the information entropies of the ensembles
of products and reactants:

∆hR = hprod
ME − hreact

ME (38)

The combination of Equations (32) and (38) after some regrouping allows the following
equation for ∆hR [47]:

∆hR = Hsize
redisrt + Hstr

reorg + Hstr+size
reorg (39)

where the first term is the entropy of redistribution of the atoms over the molecules upon
chemical reaction. It comes from the difference between the cooperative entropies of the
molecular ensembles:

Hsize
redisrt = Hprod

Ω − Hreact
Ω (40)

The second term is the information entropy change as introduced by Karreman [113].
It depends only on the structures of the molecules, formed and destroyed, and does not
depend on their sizes. As the value defined with Equation (37) is associated with the
intrinsic molecular changes, we called it a part of the reorganization entropy. Its other part,
the third term of sum in Equation (39), depends on both molecular structure and size:

Hstr+size
reorg =

react

∑
j

(
1−ωj

)
hj −

prod

∑
i
(1−ωi)hi (41)

Whole reorganization entropy equals:

Hreorg =
prod

∑
i

ωihi −
react

∑
j

ωjhj (42)

These considerations allow treating a chemical reaction as a process of changes in the
molecular structure and molecular size and quantifying the corresponding contributions
(Figure 12) [47]. Note that the redistribution term depends only on ωi values as the
reorganization terms depend on bothωi and hi values.
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The information entropy of a chemical reaction can be also found without the consid-
eration of the h values of the participants. As deduced in [46], it is completely attributed to
appearing and disappearing atom types:

∆hR = −
np

∑
j=1

pj log2 pj −
nr

∑
j=1

rj log2 rj (43)

where p and r designate values corresponding to products and reactants.
This approach has been tested on the limited number of chemical reactions but some

general regularities have been obtained (Table 8). It provides the results consistent with
common chemical notions. Additionally, it allows for digitally discriminating the subclasses
of reactions depending on the type of reacting species. This is clearly demonstrated with the
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etherification reaction. The sign of the ∆hR effect and plots h vs. the length of alkyl chains in
ROH molecules differ depending on whether identical or different alcohol molecules react
(Figure 13). In both cases (R = R’ and R 6= R’), the absolute values of ∆hR asymptotically
approach to zero with the increase in the length of the carbon chain. It means that the same
reaction in larger molecular ensembles induces smaller changes in the information entropy.

Table 8. Information entropy parameters of typical chemical reactions. Taken from [47] ©
2020 Elsevier.

Reaction Formal
Equation hprod

ME hreact
ME Hreorg Hredistr

Dissociation D→ A + B +
. . . + C

∑ ωihi +

Hprod
Ω

hD ∑ ωihi − hD Hprod
Ω

Addition A + B + . . . +
C→ D hD

∑ ωihi +
Hreact

Ω
hD −∑ ωihi −Hreact

Ω

Atomization
AaBb . . . cC
→ aA + bB +

. . . + cC
Hprod

Ω
h(AaBb . . .

cC)
–h(AaBb . . .

cC) Hprod
Ω

Isomerization A→ B hB hA hB − hA 0

Entropy 2021, 23, x FOR PEER REVIEW 20 of 28 
 

 

chains in ROH molecules differ depending on whether identical or different alcohol mol-

ecules react (Figure 13). In both cases (R = R’ and R ≠ R’), the absolute values of ΔhR as-

ymptotically approach to zero with the increase in the length of the carbon chain. It means 

that the same reaction in larger molecular ensembles induces smaller changes in the in-

formation entropy. 

Table 8. Information entropy parameters of typical chemical reactions. Taken from [47] ©  2020 Else-

vier. 

Reaction Formal Equation 𝒉𝐌𝐄
𝒑𝒓𝒐𝒅

 𝒉𝐌𝐄
𝒓𝒆𝒂𝒄𝒕 Hreorg Hredistr 

Dissocia-

tion 
D → A + B + … + C ∑ 𝜔𝑖ℎ𝑖 + 𝐻Ω

𝑝𝑟𝑜𝑑  hD ∑ 𝜔𝑖ℎ𝑖 − ℎD  𝐻Ω
𝑝𝑟𝑜𝑑 

Addition A + B + … + C → D hD 
∑ 𝜔𝑖ℎ𝑖

+ 𝐻Ω
𝑟𝑒𝑎𝑐𝑡 

ℎD − ∑ 𝜔𝑖ℎ𝑖 −𝐻Ω
𝑟𝑒𝑎𝑐𝑡 

Atomiza-

tion 

AaBb…cC → aA + bB 

+ … + cC 
𝐻Ω

𝑝𝑟𝑜𝑑 h(AaBb…cC) –h(AaBb…cC) 𝐻Ω
𝑝𝑟𝑜𝑑 

Isomeriza-

tion 
A → B hB hA hB − hA 0 

 

Figure 13. Information entropy of etherification. The points of symmetrical ethers ROR falling out 

from the dependencies for the formation of ROR’ are shown by dashes. They form their own trends 

shown with blue solid circles. Taken from [46] ©  2018 Elsevier. 

6. Discrete Information Entropy Approach and Some Aspects of Physical and Digital 

Chemistry 

6.1. Everlasting Comparison of Information and Thermodynamic Entropies 

Information and entropy are vague concepts of physics, and its vagueness has been 

inherited in chemistry. These are close concepts, as both of them are based on probability, 

and the relations between them have been considered almost since the birth of the quan-

titative information theory: e.g., in thinking experiments such as Szilard’s engine and 

Maxwell’s demon [114]. These theoretical models strongly justify the link between en-

tropy and information and some scientists assumed that they are two antagonistic phe-

nomena of one quantity (so-called the concept of entropy–information dualism). In addi-

tion to the closeness, we must mention the differences between information and entropy. 

For example, Kadomtsev stresses that their sameness based only on their probabilistic na-

ture is just formal [115]. Trying to find the regularities, we should remember that the in-

formation entropy of the molecule characterizes its structural complexity, whereas the 

thermodynamic entropy is the function of matter approximated as the sum of transla-

tional, rotational, and vibrational contributions: 

𝑆 = 𝑆𝑡𝑟𝑎𝑛𝑠 + 𝑆𝑟𝑜𝑡 + 𝑆𝑣𝑖𝑏 (44) 

Figure 13. Information entropy of etherification. The points of symmetrical ethers ROR falling out
from the dependencies for the formation of ROR’ are shown by dashes. They form their own trends
shown with blue solid circles. Taken from [46] © 2018 Elsevier.

6. Discrete Information Entropy Approach and Some Aspects of Physical and
Digital Chemistry
6.1. Everlasting Comparison of Information and Thermodynamic Entropies

Information and entropy are vague concepts of physics, and its vagueness has been
inherited in chemistry. These are close concepts, as both of them are based on probabil-
ity, and the relations between them have been considered almost since the birth of the
quantitative information theory: e.g., in thinking experiments such as Szilard’s engine and
Maxwell’s demon [114]. These theoretical models strongly justify the link between entropy
and information and some scientists assumed that they are two antagonistic phenomena of
one quantity (so-called the concept of entropy–information dualism). In addition to the
closeness, we must mention the differences between information and entropy. For example,
Kadomtsev stresses that their sameness based only on their probabilistic nature is just
formal [115]. Trying to find the regularities, we should remember that the information en-
tropy of the molecule characterizes its structural complexity, whereas the thermodynamic
entropy is the function of matter approximated as the sum of translational, rotational, and
vibrational contributions:

S = Strans + Srot + Svib (44)
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It means that h originates from one source, as the contributions to S are more diver-
sified. Despite this, theoretical chemists try to find the correlations between information
and thermodynamic entropies. For example, as found in [44], the information and ther-
modynamic entropies of some isomeric C60 fullerenes are symbatic. We think this is due
to the structure of fullerenes: regular, rigid, and the same molecular size. Therefore, most
fullerene isomers have almost equal Strans and Svib values and differ in Srot ~ 1/σ. In
Section 3.1, we indicated rotational symmetry number σ as the factor reducing the informa-
tion entropy, hence we can roughly assume h ~ 1/σ. In extended fullerene series (e.g., the
C84 isomers [59]), there is no overall S vs. h correlation. The correlations between the en-
tropies of atomization and information entropies of saturated hydrocarbons reported in [46]
are not of a great importance because both quantities strongly depend on molecular size.

Interesting results have been obtained for information entropy of mixing molecules,
which form a molecular ensemble [46,47]:

∆hmix = hME −
m

∑
i=1

hi = HΩ −
m

∑
i=1

(1−ωi)hi (45)

It can be negative (e.g., when mixing molecules are the same), positive (when mixing
zero-h and nonzero-h molecules), or zero. According to Equation (44), there are two
antagonizing factors that define mixing: HΩ increases ∆hmix whereas Σ(1 − ωi)hi decreases.
The latter value becomes zero if hi = 0, which may be both when mixed molecules are the
same (then HΩ = 0 and ∆hmix = 0) or not (∆hmix = HΩ). Otherwise, the sign of ∆hmix is a
result of the balance between HΩ and Σ(1 − ωi)hi.

We interpret [47] the information of mixing molecules in the aspect of the resources
necessary to code the structures of initial molecules and resulting ensemble. For example,
when m identical molecules separated, we need h bits per each molecule to describe the
structures or mh in total. Their ensemble has hME = h (Equation (31)) that accounts the
sameness of the molecules and reducing information resources to code. This is reflected by
negative value ∆hmix = (1 – m)h.

In addition to mixing identical zero-h molecules, there is another case when ∆hmix = 0.
For magic ensembles mentioned in Section 4.2:

∆hmix = (2− n)h (46)

Hence, ∆hmix = 0 if the magic ensemble is bimolecular (n = 2). The examples of
such ensembles are shown in Table 9. Thus, in contrast to thermodynamic entropy, the
information entropy of mixing may obtain zero value when different species are mixed and,
vice versa, the mixing of identical molecules having h 6= 0 is characterized with ∆hmix 6= 0.



Entropy 2021, 23, 1240 22 of 28

Table 9. Information entropy parameters of ‘magic’ molecular ensembles characterized with zero information entropy of
mixing. Taken from [47].

Number of Molecules
in Molecular
Ensemble (n)

h = HΩ (Bits) hME (Bits) ∆hmix (bits) Examples

2 0.918 1.836 0 O3 + C2H4; :CH2 + C2H4; H2O + C2H4

2 0.811 1.622 0 intermetallic phases AB3 + A3B9

2 1 2 0
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6.2. Information Entropy and Physicochemical Processes

Information entropy estimates were used for the analysis of physical thermodynamic
processes in early works reviewed in [114]. Numerous thinking experiments have been
used to obtain the relations between information entropy and thermodynamic functions.
We discuss one such approach, which has not been known to a wide audience. It is based
on works [116,117] of Kobozev, who introduced a mechanistic thermodynamic model of
the information process (Figure 14). It is a system of cylinders filled with ideal gas, with
particles evenly distributed over them. When the connecting tubes are closed, the system
is characterized with the set of probabilities pi 6= 0 to find the portion of the gas in a certain
cylinder. According to Equation (1), the information entropy of the system is non-zero.
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in the text. Adapted from [116].

Moving the pistons after the connecting tubes open, we collect all particles in one
cylinder, hence pi = 0 except the filled one with p = 1. Zero information entropy corresponds
to the system in the second state. Reducing information entropy creates the information,
and this process requires the work applied to the system, which is called the work of
information [116]. We clothe Kobozev’s formulations with the modern designations:

A = γ(h2 − h1) (47)
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where h2 and h1 are the information entropies of the system in the final and initial states
and γ is the conversion coefficient between bits and energy units. Note that in [116], the
information entropy is considered as the uncertainty and even the state with h = 0 relates
not to the actual fact but to its possibility.

Though the formulations of [116,117] are quite rough, the idea to connect the informa-
tion and energy parameters is very attractive in the aspect of structural chemistry. Indeed, if
we assume that the h values of Equation (47) relate to the descriptors of chemical structure
instead of thermodynamic probabilities, we will be able to assess the energy (the work)
required for converting structure with h1 to structure with h2. These relations have never
been explored but seem useful for chemical algebra approaches and reaction informat-
ics [118], which aimed to find out the synthetic paths to a target compound with optimal
energy cost and resources. This is also important in the aspect of the information entropy
of chemical reactions as it may open opportunities to attribute energy changes to the
contributions to the information entropy of reaction (and separately estimate redistribution
and reorganization entropies).

6.3. Information Entropy and Digital Chemistry

The use of information as a structural parameter is also interpreted in terms of infor-
mation processing. Information entropy h of the molecule calculated with Equation (9)
provides the lower bound of the resources required for coding the structure of the molecule.
This minimum implies distinguishing the inequivalent atoms in the chemical system.

The h values could be seen from the other side. They establish the upper bound of the
information, which can be coded by the considered molecule. The latter means that all its
atoms participate in recording. Of course, we neglect the questions about the stability of
such information, its reading, and advisability in this interpretation.

Additional advances are expected from the information estimates of imperfect struc-
tures. In dendrimer series, we have found that the stable compounds with closed shells
have lower information entropies than the intermediate structures with incompletely filled
external shells [102]. Therefore, we assume that the information capacity must be temporar-
ily increased to move the system from one informationally stable state to another. This
assumption is reminiscent to the concept of the transition state of chemical reaction: its en-
ergy is higher than the energies of the reactants and products, and the reaction is associated
with overcoming this activation barrier. In our case, there is a similar ‘information–entropy
barrier’ required for switching the system between the informationally stable states.

At the end of this chapter, we pay attention to the fact that Equation (31) obtained
for information entropy of molecular ensemble [47] is similar to the definition of the von
Neumann entropy of several mixed states [15] used in quantum information processing.
This suggests that there may be other similarities between ‘pure’ chemical objects and
quantum information.

7. Applying Information Entropy to Nucleic Acids

At the end of the review, we briefly note that one of the first molecules analyzed in
terms of the title approach were nucleic acids, biopolymers that code genomic information.
However, the application of information entropy and related quantities to DNA and
RNA molecules is a separate story [119–121]. We do not discuss it in the review because
this case is far from chemical structure issues and closer to biological information. Of
course, the functioning of natural information-bearing biomolecules is based on their
chemical properties, but there is a hypothetical possibility of replacing them with other
chemical substances (similar or not). In this sense, biochemical and biological information
is macroscopic rather than microscopic. This makes applications of information entropy
to DNA/RNA very similar to its applications to the text analysis: nucleotides play the
role of letters, which compose the words—sentences. Consequently, the tasks solved
with the information entropy differ from typical chemical ones: assessing the role of
mutations [122], comparing random and regular sequences [123], discriminating DNAs of



Entropy 2021, 23, 1240 24 of 28

different types [124], evaluating the efficiency of natural genome codification [125], etc. Of
course, there are works with chemical relevance (e.g., comparing thermodynamic stability
and coding efficiency of DNA [126]), but they are currently scarce.

8. Conclusions

Information entropy is one of the concepts deeply rooted in modern chemistry. It is
applied to estimate the complexity of molecules and molecular ensembles, the electronic
structure of the molecules, signal processing, physicochemical processes, etc. Information
entropy linked with chemical structure, thermodynamic entropy, energy, and computer
sciences can take an important place between these fields and give a start for novel inter-
disciplinary studies.

There is a disadvantage of the information entropy approach due to its ignoring
of the semantic aspects of information. It could be overcome in chemistry through the
following modes:

a. in terms of novel theories of semantic information;
b. using information entropy in combination with other structural properties (molecular

size, oxidation state, etc.);
c. limiting the considered semantic field (for example, applying information entropy

only to the limited isomeric or homologue series, reactions of one type, etc.).
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41. Bonchev, D.; Trinajstić, N. Chemical information theory: Structural aspects. Int. J. Quantum Chem. 1982, 22, 463–480. [CrossRef]
42. Basak, S.; Harriss, D.; Magnuson, V. Comparative study of lipophilicity versus topological molecular descriptors in biological

correlations. J. Pharm. Sci. 1984, 73, 429–437. [CrossRef]
43. Basak, S.C.; Gute, B.D.; Grunwald, G.D. Use of topostructural, topochemical, and geometric parameters in the prediction of vapor

pressure: A hierarchical QSAR approach. J. Chem. Inf. Comput. Sci. 1997, 37, 651–655. [CrossRef]
44. Sabirov, D.S.; Osawa, E. Information entropy of fullerenes. J. Chem. Inf. Model. 2015, 55, 1576–1584. [CrossRef]
45. Sabirov, D.; Shepelevich, I. Information entropy of oxygen allotropes. A still open discussion about the closed form of ozone.

Comput. Theor. Chem. 2015, 1073, 61–66. [CrossRef]
46. Sabirov, D. Information entropy changes in chemical reactions. Comput. Theor. Chem. 2018, 1123, 169–179. [CrossRef]

http://doi.org/10.1016/j.chemphys.2009.04.016
http://doi.org/10.1039/D0CP03808C
http://www.ncbi.nlm.nih.gov/pubmed/32959037
http://doi.org/10.1039/c0pp00248h
http://doi.org/10.1017/cbo9780511976667
http://doi.org/10.1007/978-3-642-84017-3_3
http://doi.org/10.1098/rsfs.2018.0041
http://doi.org/10.1016/S1355-2198(03)00039-X
http://doi.org/10.1038/nature10872
http://www.ncbi.nlm.nih.gov/pubmed/22398556
http://doi.org/10.1038/nphys1821
http://doi.org/10.3390/e22030294
http://doi.org/10.1073/pnas.1406966111
http://www.ncbi.nlm.nih.gov/pubmed/25201966
http://doi.org/10.3390/e20110813
http://www.ncbi.nlm.nih.gov/pubmed/33266537
http://doi.org/10.1002/cplx.20379
http://doi.org/10.2477/jccj.3.85
http://doi.org/10.1063/1.4771764
http://doi.org/10.3762/bjoc.16.137
http://doi.org/10.1002/anie.199100013
http://doi.org/10.1070/RCR5012
http://doi.org/10.1070/RC1973v042n06ABEH002636
http://doi.org/10.3390/e14030559
http://doi.org/10.1007/s11172-012-0174-7
http://doi.org/10.1039/b804083d
http://www.ncbi.nlm.nih.gov/pubmed/18728862
http://doi.org/10.1070/RC2002v071n11ABEH000729
http://doi.org/10.1021/jp0122629
http://doi.org/10.1134/S0022476613030013
http://doi.org/10.1016/j.comptc.2014.01.001
http://doi.org/10.1016/S0092-8240(76)80029-8
http://doi.org/10.1002/qua.560220845
http://doi.org/10.1002/jps.2600730403
http://doi.org/10.1021/ci960176d
http://doi.org/10.1021/acs.jcim.5b00334
http://doi.org/10.1016/j.comptc.2015.09.016
http://doi.org/10.1016/j.comptc.2017.11.022


Entropy 2021, 23, 1240 26 of 28

47. Sabirov, D.S. Information entropy of mixing molecules and its application to molecular ensembles and chemical reactions.
Comput. Theor. Chem. 2020, 1187, 112933. [CrossRef]

48. Sabirov, D.S. Information entropy change in [2 + 2]-oligomerization of the C60 fullerene. Int. J. Chem. Model. 2017, 9, 203–213.
49. Sabirov, D.S.; Ori, O.; Tukhbatllina, A.A.; Shepelevich, I.S. Covalently bonded fullerene nano-aggregates (C60)n: Digitalizing their

energy–topology–symmetry. Symmetry 2021. submitted.
50. Sabirov, D.; Koledina, K. Classification of isentropic molecules in terms of Shannon entropy. EPJ Web 2020, 244, 01016. [CrossRef]
51. Sabirov, D.S.; Sokolov, V.I.; Terentyev, O.A. Activation energies and information entropies of helium penetration through the

fullerene walls. Insights into the formation of endofullerenes nX@C60/70 (n = 1 and 2) from the information entropy approach.
RSC Adv. 2016, 6, 72230–72237. [CrossRef]

52. Sabirov, D.S. Information entropy of interstellar and circumstellar carbon-containing molecules: Molecular size against structural
complexity. Comput. Theor. Chem. 2016, 1097, 83–91. [CrossRef]

53. Osawa, E. Formation mechanism of C60 under nonequilibrium and irreversible conditions—An Annotation. Fuller. Nanotub.
Carbon Nanostruct. 2012, 20, 299–309. [CrossRef]

54. Castellano, G.; González-Santander, J.L.; Lara, A.; Torrens, F. Classification of flavonoid compounds by using entropy of
information theory. Phytochemistry 2013, 93, 182–191. [CrossRef]

55. Castellano, G.; Lara, A.; Torrens, F. Classification of stilbenoid compounds by entropy of artificial intelligence. Phytochemistry
2014, 97, 62–69. [CrossRef]

56. Castellano, G.; Torrens, F. Information entropy-based classification of triterpenoids and steroids from Ganoderma. Phytochemistry
2015, 116, 305–313. [CrossRef]

57. Zhdanov, Y.A. Information Entropy in Organic Chemistry; Rostov University: Rostov, Russia, 1979; pp. 1–56.
58. Sabirov, D.S.; Garipova, R.R.; Kinzyabaeva, Z.S. Fullerene–1,4-dioxane adducts: A DFT study of the structural features and

molecular properties. Fuller. Nanotub. Carbon Nanostruct. 2019, 28, 154–159. [CrossRef]
59. Sabirov, D.S.; Ori, O.; László, I. Isomers of the C84 fullerene: A theoretical consideration within energetic, structural, and

topological approaches. Fuller. Nanotub. Carbon Nanostruct. 2018, 26, 100–110. [CrossRef]
60. Ghorbani, M.; Dehmer, M.; Zangi, S. Graph operations based on using distance-based graph entropies. Appl. Math. Comput. 2018,

333, 547–555. [CrossRef]
61. Ghorbani, M.; Rajabi-Parsa, M.; Majidi, R.; Mirzaie, R.A. Novel results on entropy-based measures of fullerenes. Fuller. Nanotub.

Carbon Nanostruct. 2020, 29, 114–125. [CrossRef]
62. Ghorbani, M.; Dehmer, M.; Rajabi-Parsa, M.; Mowshowitz, A.; Emmert-Streib, F. On properties of distance-based entropies on

fullerene graphs. Entropy 2019, 21, 482. [CrossRef] [PubMed]
63. Ghorbani, M.; Dehmer, M.; Mowshowitz, A.; Tao, J.; Emmert-Streib, F. The Hosoya Entropy of graphs revisited. Symmetry 2019,

11, 1013. [CrossRef]
64. Ghorbani, M.; Dehmer, M.; Rajabi-Parsa, M.; Emmert-Streib, F.; Mowshowitz, A. Hosoya entropy of fullerene graphs.

Appl. Math. Comput. 2019, 352, 88–98. [CrossRef]
65. Chen, Z.; Dehmer, M.; Emmert-Streib, F.; Shi, Y. Entropy bounds for dendrimers. Appl. Math. Comput. 2014, 242, 462–472.

[CrossRef]
66. Bertz, S.H. The first general index of molecular complexity. J. Am. Chem. Soc. 1981, 103, 3599–3601. [CrossRef]
67. Bertz, S.H. Complexity of synthetic reactions. The use of complexity indices to evaluate reactions, transforms and. New J. Chem.

2003, 27, 860–869. [CrossRef]
68. Böttcher, T. An additive definition of molecular complexity. J. Chem. Inf. Model. 2016, 56, 462–470. [CrossRef]
69. Böttcher, T. From molecules to life: Quantifying the complexity of chemical and biological systems in the universe. J. Mol. Evol.

2017, 86, 1–10. [CrossRef] [PubMed]
70. Nagaraj, N.; Balasubramanian, K. Three perspectives on complexity: Entropy, compression, subsymmetry. Eur. Phys. J. Spec. Top.

2017, 226, 3251–3272. [CrossRef]
71. Helgaker, T.; Coriani, S.; Jørgensen, P.; Kristensen, K.; Olsen, J.; Ruud, K. Recent advances in wave function-based methods of

molecular-property calculations. Chem. Rev. 2012, 112, 543–631. [CrossRef] [PubMed]
72. Sen, K.; De Proft, F.; Borgoo, A.; Geerlings, P. N-derivative of Shannon entropy of shape function for atoms. Chem. Phys. Lett.

2005, 410, 70–76. [CrossRef]
73. Geerlings, P.; Borgoo, A. Information carriers and (reading them through) information theory in quantum chemistry. Phys. Chem.

Chem. Phys. 2010, 13, 911–922. [CrossRef]
74. Flores-Gallegos, N. On the calculations of Shannon’s entropy in atoms and molecules I: The continuous case in position and

momentum spaces. Chem. Phys. Lett. 2019, 720, 1–6. [CrossRef]
75. Noorizadeh, S.; Shakerzadeh, E. Shannon entropy as a new measure of aromaticity, Shannon aromaticity. Phys. Chem. Chem. Phys.

2010, 12, 4742–4749. [CrossRef]
76. Ho, M.; Schmider, H.L.; Weaver, D.F.; Smith, V.H., Jr.; Sagar, R.P.; Esquivel, R.O. Shannon entropy of chemical changes: SN2

displacement reactions. Int. J. Quantum Chem. 2000, 77, 376. [CrossRef]
77. Borgoo, A.; Jaque, P.; Toro-Labbé, A.; Van Alsenoy, C.; Geerlings, P. Analyzing Kullback–Leibler information profiles: An

indication of their chemical relevance. Phys. Chem. Chem. Phys. 2009, 11, 476–482. [CrossRef] [PubMed]

http://doi.org/10.1016/j.comptc.2020.112933
http://doi.org/10.1051/epjconf/202024401016
http://doi.org/10.1039/C6RA12228K
http://doi.org/10.1016/j.comptc.2016.10.014
http://doi.org/10.1080/1536383X.2012.655104
http://doi.org/10.1016/j.phytochem.2013.03.024
http://doi.org/10.1016/j.phytochem.2013.10.010
http://doi.org/10.1016/j.phytochem.2015.05.008
http://doi.org/10.1080/1536383X.2019.1680984
http://doi.org/10.1080/1536383X.2017.1405389
http://doi.org/10.1016/j.amc.2018.04.003
http://doi.org/10.1080/1536383X.2020.1816973
http://doi.org/10.3390/e21050482
http://www.ncbi.nlm.nih.gov/pubmed/33267196
http://doi.org/10.3390/sym11081013
http://doi.org/10.1016/j.amc.2019.01.024
http://doi.org/10.1016/j.amc.2014.05.105
http://doi.org/10.1021/ja00402a071
http://doi.org/10.1039/b210843g
http://doi.org/10.1021/acs.jcim.5b00723
http://doi.org/10.1007/s00239-017-9824-6
http://www.ncbi.nlm.nih.gov/pubmed/29260254
http://doi.org/10.1140/epjst/e2016-60347-2
http://doi.org/10.1021/cr2002239
http://www.ncbi.nlm.nih.gov/pubmed/22236047
http://doi.org/10.1016/j.cplett.2005.05.045
http://doi.org/10.1039/C0CP01046D
http://doi.org/10.1016/j.cplett.2019.01.049
http://doi.org/10.1039/b916509f
http://doi.org/10.1002/(SICI)1097-461X(2000)77:1&lt;376::AID-QUA37&gt;3.0.CO;2-3
http://doi.org/10.1039/B814533D
http://www.ncbi.nlm.nih.gov/pubmed/19283264


Entropy 2021, 23, 1240 27 of 28

78. Nalewajski, R.F. Information-theoretic descriptors of molecular states and electronic communications between reactants. Entropy
2020, 22, 749. [CrossRef] [PubMed]

79. Nalewajski, R. Resultant Information descriptors, equilibrium states and ensemble entropy. Entropy 2021, 23, 483. [CrossRef]
[PubMed]

80. Nguyen, P.H. Estimating configurational entropy of complex molecules: A novel variable transformation approach.
Chem. Phys. Lett. 2009, 468, 90–93. [CrossRef]

81. Schneider, T.D. A brief review of molecular information theory. Nano Commun. Netw. 2010, 1, 173–180. [CrossRef] [PubMed]
82. Gribov, L.A. Molecules as information receiver-converter systems. Vestnik Rossiyskoy Akademii Nauk. 2002, 72, 611–617.
83. Galimov, D.I.; Tuktarov, A.R.; Sabirov, D.; Khuzin, A.A.; Dzhemilev, U. Reversible luminescence switching of a photochromic

fullerene [60]-containing spiropyran. J. Photochem. Photobiol. A Chem. 2019, 375, 64–70. [CrossRef]
84. Sabirov, D.S. Anisotropy of Polarizability of fullerene higher adducts for assessing the efficiency of their use in organic solar cells.

J. Phys. Chem. C 2013, 117, 9148–9153. [CrossRef]
85. Hayakawa, D.; Gouda, H.; Hirono, S.; Ueda, K. DFT study of the influence of acetyl groups of cellulose acetate on its intrinsic

birefringence and wavelength dependence. Carbohydr. Polym. 2018, 207, 122–130. [CrossRef]
86. Garcia-Garibay, A.M. Chemical reactivity in organized media: Statistical entropy and information in crystals and enzymes.

Curr. Opin. Solid State Mater. Sci. 1998, 3, 399–406. [CrossRef]
87. Nemcsics, A.; Nagy, S.; Mojzes, I.; Schwedhelm, R.; Woedtke, S.; Adelung, R.; Kipp, L. Investigation of the surface morphology on

epitaxially grown fullerene structures. Vacuum 2009, 84, 152–154. [CrossRef]
88. Nosonovsky, M. Self-organization at the frictional interface for green tribology. Philos. Trans. R. Soc. 2010, 368, 4755–4774.

[CrossRef] [PubMed]
89. Fischer, J.M.; Parker, A.J.; Barnard, A.S. Interfacial informatics. J. Phys. Mater. 2021, 4, 041001. [CrossRef]
90. Tatevsky, V.M. The Structure of the Molecules; Khimiya: Moscow, Russia, 1977; pp. 1–512.
91. Krivovichev, S. Structural complexity of minerals: Information storage and processing in the mineral world. Mineral. Mag. 2013,

77, 275–326. [CrossRef]
92. Aksenov, S.M.; Yamnova, N.A.; Borovikova, E.Y.; Stefanovich, S.Y.; Volkov, A.S.; Deineko, D.V.; Dimitrova, O.V.; Gurbanova, O.A.;

Hixon, A.E.; Krivovichev, S.V. Topological features of borophosphates with mixed frameworks: Synthesis, crystal structure of
first aluminum and lithium borophosphate Li3{Al2[BP4O16]}·2H2O and comparative crystal chemistry. J. Struct. Chem. 2020, 61,
1760–1785. [CrossRef]

93. Bindi, L.; Nespolo, M.; Krivovichev, S.V.; Chapuis, G.; Biagioni, C. Producing highly complicated materials. Nature does it better.
Rep. Prog. Phys. 2020, 83, 106501. [CrossRef] [PubMed]

94. Krivovichev, S.V.; Krivovichev, V.G.; Hazen, R.M. Structural and chemical complexity of minerals: Correlations and time evolution.
Eur. J. Miner. 2018, 30, 231–236. [CrossRef]

95. Krivovichev, S.V. Structural complexity and configurational entropy of crystals. Acta. Crystallogr. B Struct. Sci. Cryst. Eng. Mater.
2016, 72, 274–276. [CrossRef]

96. Krivovichev, S.V. Structure description, interpretation and classification in mineralogical crystallography. Crystallogr. Rev. 2016,
23, 2–71. [CrossRef]

97. Krivovichev, S.V. Polyoxometalate clusters in minerals: Review and complexity analysis. Acta Crystallogr. Sect. B Struct. Sci. Cryst.
Eng. Mater. 2020, 76, 618–629. [CrossRef]

98. Zolotarev, A.A.; Krivovichev, S.V.; Cámara, F.; Bindi, L.; Zhitova, E.S.; Hawthorne, F.; Sokolova, E. Extraordinary structural
complexity of ilmajokite: A multilevel hierarchical framework structure of natural origin. Int. Union Crystallogr. J. 2020, 7, 121–128.
[CrossRef] [PubMed]

99. Plášil, J. Uranyl-oxide hydroxy-hydrate minerals: Their structural complexity and evolution trends. Eur. J. Minerol. 2018, 30,
237–251. [CrossRef]

100. Banaru, A.; Aksenov, S.; Krivovichev, S. Complexity parameters for molecular solids. Symmetry 2021, 13, 1399. [CrossRef]
101. Krivovichev, S.V.; Hawthorne, F.; Williams, P.A. Structural complexity and crystallization: The Ostwald sequence of phases in the

Cu2(OH)3Cl system (botallackite–atacamite–clinoatacamite). Struct. Chem. 2016, 28, 153–159. [CrossRef]
102. Sabirov, D.; Tukhbatullina, A.; Shepelevich, I. Information entropy of regular dendrimer aggregates and irregular intermediate

structures. Liquids 2021, 1, 2. [CrossRef]
103. Bal’makov, M.D. Information capacity of condensed systems. Phys. Uspekhi 1999, 42, 1167–1173. [CrossRef]
104. Bal’makov, M.D. Virtual models of the synthesis of nanosystems. Glas. Phys. Chem. 2003, 29, 589–595. [CrossRef]
105. Bal’makov, M.D. Statistical aspect of the formation of nanosystems. Glass Phys. Chem. 2002, 28, 437–440. [CrossRef]
106. Bal’makov, M.D. Entropy and disorder. Glass Phys. Chem. 2001, 27, 287. [CrossRef]
107. Bal’makov, M.D. Information basis of nanochemistry. Russ. J. Gen. Chem. 2002, 72, 1023–1030. [CrossRef]
108. Aleskovskii, V.B. Chemical and information synthesis. In The Beginnings of the Theory, Methods, Tutorial, SPb; Publishing House of

St. Petersburg University: St. Petersburg, FL, USA, 1997; pp. 1–72.
109. Talanov, V.M.; Ivanov, V.V. Structure as the source of information on the chemical organization of substance. Russ. J. Gen. Chem.

2013, 83, 2225–2236. [CrossRef]
110. Aleskovskii, V.B. Quantum synthesis. Russ. J. Appl. Chem. 2007, 80, 1785–1792. [CrossRef]

http://doi.org/10.3390/e22070749
http://www.ncbi.nlm.nih.gov/pubmed/33286520
http://doi.org/10.3390/e23040483
http://www.ncbi.nlm.nih.gov/pubmed/33921766
http://doi.org/10.1016/j.cplett.2008.11.061
http://doi.org/10.1016/j.nancom.2010.09.002
http://www.ncbi.nlm.nih.gov/pubmed/22110566
http://doi.org/10.1016/j.jphotochem.2019.02.017
http://doi.org/10.1021/jp401944x
http://doi.org/10.1016/j.carbpol.2018.11.074
http://doi.org/10.1016/S1359-0286(98)80052-1
http://doi.org/10.1016/j.vacuum.2009.04.060
http://doi.org/10.1098/rsta.2010.0179
http://www.ncbi.nlm.nih.gov/pubmed/20855319
http://doi.org/10.1088/2515-7639/ac10a9
http://doi.org/10.1180/minmag.2013.077.3.05
http://doi.org/10.1134/S0022476620110104
http://doi.org/10.1088/1361-6633/abaa3a
http://www.ncbi.nlm.nih.gov/pubmed/32721933
http://doi.org/10.1127/ejm/2018/0030-2694
http://doi.org/10.1107/S205252061501906X
http://doi.org/10.1080/0889311X.2016.1220002
http://doi.org/10.1107/S2052520620007131
http://doi.org/10.1107/S2052252519016622
http://www.ncbi.nlm.nih.gov/pubmed/31949912
http://doi.org/10.1127/ejm/2017/0029-2690
http://doi.org/10.3390/sym13081399
http://doi.org/10.1007/s11224-016-0792-z
http://doi.org/10.3390/liquids1010002
http://doi.org/10.1070/PU1999v042n11ABEH000547
http://doi.org/10.1023/B:GPAC.0000007936.89357.e8
http://doi.org/10.1023/A:1021727219385
http://doi.org/10.1023/A:1011300624424
http://doi.org/10.1023/A:1020778027328
http://doi.org/10.1134/S1070363213120013
http://doi.org/10.1134/S1070427207110018


Entropy 2021, 23, 1240 28 of 28

111. Aleskovskii, V.B. Information as a factor of self-organization and organization of matter. Russ. J. Gen. Chem. 2002, 72, 569–574.
[CrossRef]

112. Ugi, I.; Gillespie, P. Representation of chemical systems and interconversions bybe matrices and their transformation properties.
Angew. Chem. 1971, 10, 914–915. [CrossRef]

113. Karreman, G. Topological information content and chemical reactions. Bull. Math. Biol. 1955, 17, 279–285. [CrossRef]
114. Chambadal, P. Evolution et Applications du Concept d’Entropie; Dunod: Paris, France, 1963; pp. 1–278.
115. Kadomtsev, B.B. Dynamics and information. Phys. Uspekhi 1994, 37, 425–499. [CrossRef]
116. Kobozev, N.I. Physicochemical simulation of information and thinking. Thermodynamics of the information process. Russ. J.

Phys. Chem. A 1966, 40, 281–294.
117. Kobozev, N.I. A Study on Thermodynamics of the Information and Thinking Processes; Moscow University Press: Moscow, Russia,

1971; pp. 1–196.
118. Corey, E.J.; Cheng, X.-M. The Logic of Chemical Synthesis; Wiley: Hoboken, NJ, USA, 1995; pp. 1–464.
119. Schmitt, A.; Herzel, H. Estimating the entropy of DNA sequences. J. Theor. Biol. 1997, 188, 369–377. [CrossRef]
120. Akhter, S.; Bailey, B.A.; Salamon, P.; Aziz, R.; Edwards, R.A. Applying Shannon‘s information theory to bacterial and phage

genomes and metagenomes. Sci. Rep. 2013, 3, 1033. [CrossRef] [PubMed]
121. Koonin, E.V. The meaning of biological information. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2016, 374, 20150065. [CrossRef]

[PubMed]
122. Vopson, M.M.; Robson, S.C. A new method to study genome mutations using the information entropy. Physics A 2021, 584, 126383.

[CrossRef]
123. Koslicki, D. Topological entropy of DNA sequences. Bioinformatics 2011, 27, 1061–1067. [CrossRef]
124. Thomas, D.; Finan, C.; Newport, M.; Jones, S. DNA entropy reveals a significant difference in complexity between housekeeping

and tissue specific gene promoters. Comput. Biol. Chem. 2015, 58, 19–24. [CrossRef] [PubMed]
125. Kuruoglu, E.E.; Arndt, P.F. The information capacity of the genetic code: Is the natural code optimal? J. Theor. Biol. 2017, 419,

227–237. [CrossRef] [PubMed]
126. Nigatu, D.; Henkel, W.; Sobetzko, P.; Muskhelishvili, G. Relationship between digital information and thermodynamic stability in

bacterial genomes. EURASIP J. Bioinform. Syst. Biol. 2016, 2016, 4555. [CrossRef] [PubMed]

http://doi.org/10.1023/A:1016392432568
http://doi.org/10.1002/anie.197109141
http://doi.org/10.1007/BF02477754
http://doi.org/10.1070/PU1994v037n05ABEH000109
http://doi.org/10.1006/jtbi.1997.0493
http://doi.org/10.1038/srep01033
http://www.ncbi.nlm.nih.gov/pubmed/23301154
http://doi.org/10.1098/rsta.2015.0065
http://www.ncbi.nlm.nih.gov/pubmed/26857678
http://doi.org/10.1016/j.physa.2021.126383
http://doi.org/10.1093/bioinformatics/btr077
http://doi.org/10.1016/j.compbiolchem.2015.05.001
http://www.ncbi.nlm.nih.gov/pubmed/25988219
http://doi.org/10.1016/j.jtbi.2017.01.046
http://www.ncbi.nlm.nih.gov/pubmed/28163008
http://doi.org/10.1186/s13637-016-0037-x
http://www.ncbi.nlm.nih.gov/pubmed/26877724

	Introduction 
	Basic Definitions 
	Information Entropy for Describing Chemical Structures 
	Discrete Information Entropy Approach: Quantifying Molecules as a Set 
	Continual Information Entropy Approach: Quantifying Electronic Density of Atoms and Molecules 
	Chemical Applications of Information Entropy Relating to Signal Processing 

	Information Entropy of Complex Chemical Objects 
	Information Entropy of Solids 
	Information Entropy of Molecular Ensembles 

	Information Entropy of Chemical Reactions 
	Discrete Information Entropy Approach and Some Aspects of Physical and Digital Chemistry 
	Everlasting Comparison of Information and Thermodynamic Entropies 
	Information Entropy and Physicochemical Processes 
	Information Entropy and Digital Chemistry 

	Applying Information Entropy to Nucleic Acids 
	Conclusions 
	References

