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ABSTRACT: In this study, we have developed a comprehensive machine
learning (ML) framework for long-term groundwater contamination
monitoring as the Python package PyLEnM (Python for Long-term
Environmental Monitoring). PyLEnM aims to establish the seamless data-
to-ML pipeline with various utility functions, such as quality assurance and
quality control (QA/QC), coincident/colocated data identification, the
automated ingestion and processing of publicly available spatial data layers,
and novel data summarization/visualization. The key ML innovations include
(1) time series/multianalyte clustering to find the well groups that have
similar groundwater dynamics and to inform spatial interpolation and well
optimization, (2) the automated model selection and parameter tuning,
comparing multiple regression models for spatial interpolation, (3) the proxy-based spatial interpolation method by including spatial
data layers or in situ measurable variables as predictors for contaminant concentrations and groundwater levels, and (4) the new well
optimization algorithm to identify the most effective subset of wells for maintaining the spatial interpolation ability for long-term
monitoring. We demonstrate our methodology using the monitoring data at the Savannah River Site F-Area. Through this open-
source PyLEnM package, we aim to improve the transparency of data analytics at contaminated sites, empowering concerned citizens
as well as improving public relations.

KEYWORDS: open-source package, machine learning, spatial estimation, sensor placement optimization, Gaussian process model,
unsupervised learning, groundwater contamination

■ INTRODCTION

Long-term monitoring is increasingly important for contami-
nated soil and groundwater sites.1 It has been more than 40
years since the Comprehensive Environmental Response,
Compensation, and Liability Act (CERCLA) was passed to
establish the Superfund sites in the US in 1980. Among the
1344 sites listed on the National Priorities List, cleanup has
been completed at only 447 of them as of January 2022.2

There is a growing recognition that current remediation
technologies have limited effectiveness and that residual
contaminantsat low levels but still above regulatory
limitsare difficult to completely clean up. In response to
this problem, sustainable remediation has emerged as a key
concept to address such sites over the past decade.3

Sustainable remediation considers net environmental impacts,
including such side effects as waste production, noise/traffic/
air pollution associated with heavy machinery and dump
trucks, ecological disturbance, energy use, and greenhouse gas
emission. It promotes the transition from intense soil removal
and treatments to more sustainable, passive remediation
approaches, as well as monitored natural attenuation

(MNA). Longer institutional control and monitoring is often
required, possibly for decades.
The objectives of long-term monitoringdifferent from

initial characterization and remediation stagesare (1) to
confirm the system stability and continuing reduction of
contaminant and hazard levels, (2) to provide assurance to the
public and prevent dissemination of false or misleading
information, and (3) to detect changes or anomalies in
contaminant mobility (if they occur) or discover any
unexpected processes or events. In fact, there have been
several examples in which long-term monitoring found that the
contaminant concentrations were not decreasing as rapidly as
originally predicted by models and led to improved conceptual
models.4 In contrast to emergency responses or site character-
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ization, long-term monitoring has to be carefully planned,
considering cost, spatial coverage, and the priorities of the
stakeholders. Historical data sets accumulated at the sites over
years can greatly facilitate development of long-term
monitoring strategies.
A variety of statistical and machine learning (ML) methods

have been developed to discover hidden patterns and key
factors in vast data sets and to improve groundwater
monitoring or environmental contamination monitoring. The
most common uses have been supervised learning to estimate
the spatiotemporal distributions of contaminant concentrations
or groundwater levels.5,6 In addition, unsupervised learning
approaches have been used to identify the correlations among
different contaminant concentrations and/or in situ meas-
urable parameters,5 as well as to find the groups of wells that
have similar groundwater dynamics.7 At the same time, ML
can augment or support decision making processes by
compressing vast amounts of data into digestible information.
One of the critical decision making steps for long-term
monitoring is to determine the number of sufficient wells and
their locations. There have been monitoring optimization
algorithms based on spatial interpolation8 as well as principal
component analysis.9,10

The implementation of these methods to real-world
applications is, however, still quite limited. MNA requires
regular groundwater sampling at the wells, with regular
frequency prescribed by regulators. However, such monitoring
is often conducted mostly for compliance purposes; data are
often simply archived without any analytics. The well locations
are determined primarily based on expert judgments, including
regulators’ opinions. The challenge has been a lack of general
pipelines from monitoring data to ML. Although there is
commercial software available for groundwater monitoring and
data visualization/analysis, their data analysis methods and
their extensibility are often limited, without connection to
recent advances in open-source ML libraries such as python
scikit-learn.11

In this study, we aim to develop a framework to support
long-term groundwater monitoring at the contaminated sites.
Specifically, we seek to develop a python package, PyLEnM
(Python for Long-term Environmental Monitoring), which
defines the ML pipeline and workflow from data to ML
through a collection of commonly used functions for
monitoring data analysis. A particular focus is to extract
critical information from historical data sets since MNA builds
upon a large quantity of historical monitoring and character-
ization data. The novel aspects of our framework include (a)
the new summarization/visualizations of spatiotemporal
groundwater data, (b) flexible ways to find coincident and/
or colocated data for developing a data-driven relationship, (c)
the seamless integration of publicly available data such as
surface elevation for creating predictors in ML, (d) the
automated comparison/selection of multiple ML algorithms
for spatial interpolation, (e) proxy-based spatiotemporal
interpolation to integrate data-driven relationships for
estimating groundwater table (WT) and contaminant concen-
trations, and (f) a new well-placement optimization algorithm.
The open-source package is based on the Jupyter iPython

notebook, which can document the workflow from raw data to
data analytics and visualization. Through this package, we aim
to accelerate the process for developing new ML algorithms
and functions for the monitoring community. We demonstrate
this framework at the Savannah River Site (SRS) F-Area, where

the historical data sets have been well-curated and archived.
We make all the codes and data sets available for the
community (Text S2). In addition, such public data can serve
as benchmark data sets to develop and test different ML
algorithms, ensuring the FAIR principle (findability, accessi-
bility, interoperability, and reusability). The transparency of
the monitoring data analytics workflow is particularly
important for the contaminated sites with respect to public
acceptance and assurance.

■ METHODOLOGY
Study Site and Demonstration Data Sets. In the SRS F-

Area (Aiken, SC, USA), low-level radioactive waste from
nuclear fuel reprocessing was discharged into three unlined
seepage basins between 1955 and 1988.5,12,13 Currently, an
acidic plume, containing tritium (H-3), iodine-129 (I-129),
uranium-238 (U-238), and nitrate, extends from the basins to
about 600 m downgradient toward the local creek, Fourmile
Branch. The main plume is located in the unconfined aquifer
above a thin clay-rich layer. A pump-and-treat system was
installed in 1997 and then replaced by passive remediation in
2004 using a hybrid funnel-and-gate system to inject alkaline
solutions at the gates for neutralizing the acidic groundwater
and enhancing the sequestration of cationic contaminants such
as U-238.
The original data set used in this study was curated by the

SRS containing over 400 analytes (including heavy metals,
organic contaminants, and major cation/anion concentrations)
from 1990 to 2015 (Tables S1 and S2). The groundwater
sample collection and analysis were defined in the Resource
Conservation and Recovery Act (RCRA) Permit at this site.14

We demonstrate the PyLEnM capabilities with a subset of the
F-Area data, including groundwater table levels, pH, specific
conductance (SC), and tritium and uranium concentrations.
Tritium is the contaminant that has been the main contributor
to the radiological dose calculation,1 while uranium has the
largest mass among all the radionuclides.12 The water table is a
critical parameter, defining the hydrological boundary
conditions and controlling plume migration. pH and SC are
the in situ measurable parameters that can be measured
continuously based on in situ sensors.5

PyLEnM Framework. The main components of the
PyLEnM15 workflow are designed to (1) facilitate data
exploration through various data summarization and visual-
ization processes, (2) identify the spatiotemporal patterns of
covaried contaminant concentrations and groundwater table
dynamics as well as identify groups of wells that behave
similarly through unsupervised learning, (3) estimate the
contaminant concentrations and groundwater table through
supervised learning, and (4) optimize the selection of long-
term monitoring wells among existing ones (Figures 1 and S1).
PyLEnM takes advantage of existing python packages

(NumPy16 and SciPy17) for scientific computing, Pandas18

for data analysis and manipulation, scikit-learn19 for ML,
pyProj20 for spatial projection, Matplotlib21 and Seaborn22 for
statistical visualization, and ipyleaflet23 for map visualization
(Text S3). PyLEnM assumes a SQL or relational database with
two tables: an analyte table for spatiotemporal data, storing
monitoring data at different wells and times (including well
names, date/time, concentrations, units, error range, and
analyte names) (Table S1), and a well table for well
information (such as their coordinates, surface elevations,
screen depths, aquifer, and construction/decommission dates)
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(Table S2). The well name acts as the SQL key (i.e., the
unique identifier) between the two tables.
Exploratory Data Analysis. The basic PyLEnM functions

include data summarization capabilities that provide the users
with a swift overview of the spatiotemporal data and well
information defined above, such as compiling the list of (1)
wells available for each or selected analyte (get_analyte_de-
tails) and (2) analytes available for each well (get_well_ana-
lytes). These summary tables are also accompanied by the
number of data points, the start and end dates, and the average
and percentile values. In addition, filtering can be performed by
the well name, date range, aquifer, and others in the same
manner as that of the Pandas framework. In parallel, we have
implemented several automated quality assurance and quality
control (QA/QC) functions for time series data, including
curve fitting (plot_data) and removal of outliers (remov-
e_outliers). In the outlier removal, we can assign different
fitting functions (e.g., Friedman’s super smoother) and
threshold values to identify outliers. PyLEnM also includes
multiple visualization functions: time series plots with linear/
nonlinear interpolation and the identification of outliers (Text
S1 and Figure S2). In addition, there is a time range
visualization functionality in which the start and end dates
are plotted vertically by a unique well so as to identify the
common sampling ranges and concentration changes.
Environmental data analytics begins by identifying the

coincident/colocated data setsthat is, the different analytes
at the same times and same wellsso that we can establish a
data-driven relationship. Groundwater concentrations may not
change so rapidly, so the data sets collected within a few days
or longer may be considered coincident. In addition to
standard gap filling and linear interpolation, we have created a
function, getJointData, to identify coincident data with flexible
time lags. The function takes the user-specified time lag (e.g., 1
week or 1 month) as a parameter and identifies the data points
(from the different analytes and wells) that fall into each time
period. This is important since a groundwater sampling
campaign could take at least a few days or weeks. This process
maximizes the integrity of the data prior to ML as well as
avoids artifacts often created by gap filling.
Unsupervised Learning. Unsupervised learning generally

consists of correlation analyses, dimensionality reduction (such
as principal component analysis; PCA), and clustering. We
have implemented the correlation analyses and PCA that were
demonstrated in Schmidt et al. (2018) to identify the
covariability among different analytes. PyLEnM quantifies the
correlation between two time series with linear (Pearson) or
nonlinear (Spearman or Kendall) correlation coefficients. The
individual scatter plots embedded in the correlation plot can

assist the user in determining which coefficient is the most
appropriate. PCA compresses the correlations among multi-
dimensional analytes into several principal components and
facilitates the visualization of covaried analytes (Figure S4).
PyLEnM’s unsupervised learning begins with the coincident

data points (among different wells or different analytes)
identified by the getJointData function or the colocated data
points at the same well identified by querying well names.
Clustering is then applied for identifying several groups of
wells that have similar groundwater dynamics (Hastie et al.,
2001). PyLEnM includes the k-means and hierarchical
clustering methods and or distance measures or criteria
(such as the Ward and complete linkage criteria in hierarchical
clustering) that have been commonly used in environmental
data analytics.24,25 In addition to the PCA developed by
Schmidt et al. (2018) to identify covaried multiple analytes at
each well, we implemented the time series clustering,26 which
groups the wells according to the temporal dynamics of one
analyte. The group of wells can then be mapped back in space
to evaluate their spatial arrangement.

Supervised Learning. Supervised learning methods are
used to estimate contaminant concentrations and groundwater
elevation by interpolating between sparse wells. In contrast to
common interpolation methods such as inverse distance-
weighted interpolation, PyLEnM can accommodate known or
site-specific predictors such as elevation, topographic metrics,
and the distance to the source for further constraining the
estimation. In particular, the algorithm ingests the publicly
available surface elevation across the world (NASA SRTM
Digital Elevation 30 m) through an application programming
interface (API) and then computes topographic metrics [such
as the topographic wetness index (TWI) and slope].
For the spatial interpolation, PyLEnM first builds a

regression of sparse groundwater data as a function of these
predictors using scikit-learn. The residual is interpolated based
on the Gaussian process model (GPM), which captures the
spatial correlations based on a covariance model such as the
Matern covariance. PyLEnM also makes use of the Grid-
SearchCV function in scikit-learn to optimize the covariance
parameters. The regression performance is quantified based on
the mean squared error (MSE) and R2, both in the fitting
process and in the leave-one-out cross validation (LOOCV).
Compared to other cross-validation methods such as the k-fold
cross validation, LOOCV is known to be effective at evaluating
a model’s performance with a limited number of data points,
which is common in the environmental data sets.28 PyLEnM
automates this interpolation process, including parameter
tuning, as well as the comparison of multiple supervised
learning algorithms such as random forest (RF), Lasso
regression, and Ridge regression, in addition to traditional
linear regression methods.27 This allows us to compare
multiple algorithms and select the most appropriate one.
In addition, we developed an algorithm to estimate

contaminant concentrations based on proxy in situ meas-
urables (such as SC). This algorithm builds on the concept
proposed by Schmidt et al. (2018), who estimated
contaminant concentration time series based on in situ
measurable SC and pH as proxies. The algorithm begins by
building a regression of contaminant concentrations as a
function of proxy variables. Assuming that the correlations are
consistent over time and space, we use all the wells and time
points for a particular contaminant. This regression results in
the contaminant concentrations estimated at any given time

Figure 1. Flowchart of PyLEnM capabilities.
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and at all the wells where the proxy variables are available.
Finally, the same interpolation algorithm above is used to
estimate the spatial distribution of contaminant concentrations
over space.
Well Placement Optimization. The goal of well place-

ment optimization is to capture the spatial heterogeneity of the

plume or groundwater table with the fewest number of wells.
We assume that the regression described above provides a
reasonable spatiotemporal estimation as a reference or ground-
truth field based on historical monitoring data. The algorithm
builds on Sun et al. (2020), using a greedy approach29 such
that it selects one additional well at each iteration within the

Figure 2. Time series and concentration visualization for (a) WT and (b) tritium sorted by the increasing well distance (left to right) from the
center of the F-Area basin.

Figure 3. (a) Temporal correlation plot among analytes at FSB95DR between 02/09/1993 and 07/30/2013 log concentrations. (b) Spatial
correlation plot for all wells among analytes on 02/21/1993 with a lag of 12 days (02/09/1993 to 03/05/1993) log concentrations. The numbers
in the circles on the upper diagonal are the Pearson correlation coefficients, and the size of the bubble represents the strength of the correlation. In
addition, the red lines depict the pairwise data trend.

Environmental Science & Technology pubs.acs.org/est Article

https://doi.org/10.1021/acs.est.1c07440
Environ. Sci. Technol. 2022, 56, 5973−5983

5976

https://pubs.acs.org/doi/10.1021/acs.est.1c07440?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.1c07440?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.1c07440?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.1c07440?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.1c07440?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.1c07440?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.1c07440?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.1c07440?fig=fig3&ref=pdf
pubs.acs.org/est?ref=pdf
https://doi.org/10.1021/acs.est.1c07440?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


currently available monitoring wells. At each iteration, the
algorithm performs spatial interpolation with every potential
well location and selects the well that minimizes the MSE over
all the pixels compared to the reference map. This process is
repeated until the MSE converges or the MSE falls lower than
the required threshold.

■ RESULTS

The data summary functions (get_data_summary and
get_analyte_details) create the tables to concisely visualize
the data availability (i.e., start/end dates and the number of
samples) and summary statistics (mean and standard
deviation) for the specified analytes at all the wells (Table
S3) or each well (Table S4). Figure 2 demonstrates the new
visualization tools, compressing the concentration time series
at multiple wells as well as the data availability range. The wells
are arranged according to the distance to the basin in this case,
although the order of the wells can be specified by the users.
This visualization facilitates identifying the disparity between

the collected data where half of the wells started sampling in
the mid-1990s, and the other half started in the mid-2000s. In
addition, we can observe that the water table elevation is
consistently higher in the upgradient wells near the source
zone (Figure 2a), while the tritium concentration changes in
time and space and is associated with a plume migration as a
function of distances from the source (Figure 2b).
The correlation plots identify the covariability among the

analytes spatially and temporally, particularly between the in
situ variables (pH and SC) and contaminant concentrations
(Figure 3). The correlations are generally consistent between
the temporal variability at one well (Figures 3a and S3) and the
spatial variability on a selected date (Figure 3b); the
correlations are high among SC, tritium, and uranium
concentrations, with the Pearson coefficients reaching as high
as 0.96. In addition, the scatter plots show the nonlinear
relationship between pH and the contaminant concentrations.
At the same time, the water table depth is negatively correlated

Figure 4. Time series clustering of (a,b) water table levels and (c,d) tritium concentrations. (a,c) show the time series and (b,d) show the well
locations on the map according to their assigned cluster colors.
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with the contaminant concentrations temporally (Figure 3a),
while the spatial correlation is not significant (Figure 3b).
In parallel, time series clustering based on the k-means

clustering method (Figure 4) identifies the group of wells that
have similar dynamics in the water table elevation and tritium
concentration data. We identified the appropriate number of
clusters as five using the elbow method (Figure S5). The water
table is more variable spatially than temporally, with different
wells having parallel lines (Figure 4a). There are five groups
mapped to the actual locations, showing the correspondence to

the topographic gradient (Figure 4b). The tritium concen-
trations have four clusters, mainly according to the
concentration levels (Figure 4c). In the spatial map, the
clusters are mapped as a function of the distance from the
basin as well as the groundwater gradient, with one low-
concentration group in the upgradient and periphery of the site
and another high-concentration group near the basin (Figure
4d).
We then demonstrate supervised learning and spatial

interpolation, using the water table elevation and tritium

Figure 5. Supervised learning result: the spatiotemporal interpolation: (a) SRTM elevation heatmap across the F-Area, (b) water table elevation
(the average 2015 values) estimated using the Lasso regression method, (c) tritium concentration map (the average 2015 values) using the Lasso
regression method, and (d) tritium concentration map (the average 2015 values) using the Linear regression method.

Table 1. Top Results for the Spatial Estimation of Groundwater Table and Tritium Concentrations

Fitting process results LOOCV results

model features MSE R2 model features MSE R2

water
table

RF +
GP

easting, northing 2.30 × 10−7 0.9983 RF + GP easting, northing, elevation 1.80 × 10−5 0.8663

lasso +
GP

easting, northing, elevation, slope 2.67 × 10−7 0.9981 RF + GP easting, northing, elevation, slope,
flow accumulation

1.90 × 10−5 0.8646

ridge +
GP

easting, northing, elevation, slope 2.83 × 10−7 0.9980 RF + GP easting, northing, elevation, slope 1.90 × 10−5 0.8602

GP 5.92 × 10−7 0.9957 GP 2.40 × 10−5 0.8272
tritium lasso +

GP
easting, northing, elevation, slope,
flow accumulation

3.01 × 10−3 0.9959 linear +
GP

easting, northing, elevation,
dist_to_basin

4.05 × 10−1 0.4456

lasso +
GP

easting, northing, elevation, slope 3.01 × 10−3 0.9959 ridge +
GP

easting, northing, elevation,
dist_to_basin

4.06 × 10−1 0.4444

ridge +
GP

easting, northing, elevation, slope 4.77 × 10−3 0.9935 linear +
GP

easting, northing, elevation, slope,
dist_to_basin

4.24 × 10−1 0.4190

GP 3.04 × 10−1 0.5839 GP 4.65 × 10−1 0.3628
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concentration averaged over 2015 (Figure 5). The estimated
water table elevation shows the terrain following patterns
(Figure 5b). Including the elevation (Figure 5a) and slope as
predictors improves the performance of both fitting and
LOOCV compared to the simple interpolation using the GPM
(Tables 1 and S5). Among the multiple regression methods,
RF shows the highest performance for the water table
estimation (Figure S6), with an R2 of 0.9983, although the
Lasso regression (the second highest R2) yielded the
smoothest and most realistic map. For the tritium concen-

tration, we included the distance to the source (i.e., the basin)
as a predictor based on the clustering result (Figure 4c,d).
Having the predictors is also effective for improving the
predictive performance (Tables 1 and S6); the Lasso
regression performed the best in fitting (Figure 5c) and the
linear regression the best in LOOCV.
The proxy-based spatial estimation was performed to predict

the tritium concentration map (the average within 2015) based
on their spatiotemporal correlations to SC (Figure 3). First,
the tritium concentrations at the wells over time were

Figure 6. Supervised learning result: the proxy-based spatial interpolation of tritium contaminant concentration, (a) measured vs predicted tritium
concentrations using the testing set, and (b) the estimated tritium concentration map with the well locations (the black circles). In (a), the red line
represents the predicted values.

Figure 7. Reduced well configurations along with the estimated groundwater elevation (the average in 2015). The five starting wells are colored in
red: “FSB 95DR”, “FSB130D”, “FSB 79”, “FSB 97D”, and “FSB126D”. The colored circles, green, yellow, and blue, are the wells that are identified
by the algorithm to best capture the water table spatial heterogeneity across the site. The bottom row shows the MSE as a function of the number
of monitoring wells through the optimization for up to the first 5, 22, and 30 wells, respectively.
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predicted using the Ridge regression as a function of SC,
excluding the 2015 data. Since the correlation was consistent in
time and space (Figure 3), we could use the data from multiple
wells and multiple time points. Different from the interpola-
tion, a large number of data points (5852 individual samples)
allowed us to reserve 20% as testing data. The regression
performance showed an R2 of 0.834 (Figure 6a) with the 20%
testing data. This regression model was then used to predict
the average tritium concentrations at the wells in 2015 with an
R2 of 0.799. Finally, we interpolated these tritium concen-
trations at the wells to create the plume map (Figure 6b). As
can be seen, the proxy-based estimation slightly overestimates
the center of the plume but accurately captures the plume
boundary. The SC-based tritium estimation map produced an
R2 of 0.786 compared to the true tritium estimation (Figure
5d).
The monitoring well optimization was demonstrated using

the annual averaged water table levels in 2015. The
interpolated water table map using the Lasso regression
method (Figure 5b) was used as the reference field. The five
starting wells were selected according to the time series
clustering results (Figure 4b). As the number of wells
increases, the error decreases significantly for the first five
wells (Figure 7a) that capture the multiple clusters associated
with the water table gradient (Figure 4b). Then, there is a
plateau between 6 and 13 wells (Figure 7b), which are located
at the periphery of the site. The error continues to decrease
slightly again from 14 to 22 wells, when wells are added mainly
within the wetland zone. The error is further reduced from 23
to 30 wells (Figure 7c) when wells are added in between the
wells already placed. The MSE converges between 20 and 30
wells, which appears to be sufficient to capture the spatial
variability of the WT.

■ DISCUSSION

In this study, we have demonstrated an ML framework for
supporting the long-term monitoring of groundwater con-
tamination. Specifically, we developed an open-source python
package to take advantage of the historical monitoring data sets
typically accumulated during site characterization and
remediation phases. Groundwater data are five-dimensional
(5-D): well locations and screen intervals (3D), time, and
multiple analytes. PyLEnM enables its users to explore this 5-D
data set in many ways, such as using multiple time series of
analyte concentrations at the same well over time or the same
analyte concentrations across multiple wells at the same time.
In particular, PyLEnM includes various preprocessing
functions before ML, such as (1) QA/QC, (2) flexible
coincident/colocated data identification to establish the data-
driven relationship among different analytes and/or different
wells, and (3) rapid data summarization and visualization to
understand available data sets and to filter through the data
sets. In addition, the key ML innovations in this package
include (1) time series clustering to find the well groups that
have similar groundwater dynamics and to inform spatial
interpolation and well optimization, (2) the automated model
selection and parameter tuning, comparing multiple regression
models for spatial estimation/interpolation, (3) the proxy-
based spatial interpolation method by including publicly
available spatial data layers or in situ measurable variables as
predictors for contaminant concentrations and groundwater
levels, and (4) the new well optimization algorithm to identify

the most effective subset of wells for maintaining the spatial
interpolation ability for long-term monitoring.
Unsupervised learning enables us to identify key patterns in

vast data sets such as the covariability among analytes in space
and time. We extended the approach by Schmidt et al. (2018)
that focused on the temporal correlations between in situ
measurable variables and contaminant concentrations at each
well. In this study, we found that the correlations between
contaminant concentrations and in situ variables are consistent
in time and space, although the correlation is linear with SC
but nonlinear with pH. The correlation with SC results from
the fact that total dissolved solids are dominated by nitrates,
which are cocontaminants with tritium and uranium.5 In
addition, we found the time series correlations between the
contaminant concentrations and groundwater table (depth to
the water) such that the increasing groundwater table over
time corresponds to lower concentrations. This is consistent
with a modeling study,1 showing that an increasing ground-
water table typically leads to higher dilution.
We demonstrated the use of time series clustering, which has

been increasingly used across various applications.26 Rinderer
et al. (2019) used hierarchical clustering to group wells with
similar groundwater dynamics in order to map groundwater
levels and their connectivity. Although the basic concept is the
same, we have extended the approach to contaminant
concentrations or any of the analytes in the data set. The
results are useful for identifying similarly behaving wells, for
identifying the dominant control on the spatial variability
(such as the elevation for groundwater levels and the distance
to the source for contaminant concentrations) and for selecting
the initial set of wells for well optimization.
We have implemented comprehensive spatial interpolation

algorithms for estimating groundwater table elevations and
contaminant concentrations. Traditionally, simple interpola-
tion (such as kriging or inverse-distance interpolation) has
been used for such estimation.6 PyLEnM allows us to find site-
specific covariates or predictors such as elevation and
topographic metrics, which provide additional constraints on
estimation, significantly improving the estimation accuracy.
Surface elevation has been known to be the main driver for
groundwater elevation.30,31 We have extended this approach by
including different topographic metrics or the distance from
the source for contaminant concentrations. Topographic
information can be downloaded directly from a public
database,32 which makes our approach widely applicable to
many surface aquifers.
In addition, we coupled standalone regression methods such

as RF and linear regressions with the GPM. Although the GPM
has been used before, the use of a grid search for covariance
parameters adds an additional layer of automation that returns
the most suitable covariance model for a given data set. In our
case, we found that the Lasso and linear regression with the
GPM yielded the best results when estimating both the water
table and the tritium plume based on LOOCV. Among
different ML methods, RF has become quite popular
recently,33,34 although Sekulic ́ et al. (2020) found that ordinary
kriging (OK, similar to the GPM) outperformed the other
algorithms in terms of the mean absolute error (MAE). This is
consistent with our results, in which the number of available
data points (wells) was limited. Our automation of comparing
multiple regression methods is powerful since the best models
could be site-specific.34
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Our results show that the estimation of contaminant
concentrations is more challenging with a lower R2 than the
one of the water table. This is because the topography is a
good predictor for the water table, which is aligned with the
hydrology principle, while the distance to the source or the
topography is not a sufficient predictor for the contaminant
concentrations. This lack of predictive power is the reason why
simpler regression methods (such as linear regressions rather
than RF) were selected for the tritium concentration
estimation (Table 1). Recent advances in physics-informed
ML35 could enable the integration of contaminant transport
simulations (e.g., Xu et al. 2022)36 to improve the contaminant
concentration estimations in the future.
Furthermore, we demonstrated the proxy-based spatial

estimation to predict contaminant concentrations based on
in situ measurable parameters, by extending the temporal
estimation proposed by Schmidt et al. (2018). We found that
the spatiotemporal correlations between contaminant concen-
trations and SC are consistent in time and space at the SRS F-
Area, which allows us to use historical data to predict the
future concentrations. With in situ sensors and the internet of
things (IoT) technologies that measure and transfer proxy
variable data such as SC on a continuous basis, this would lead
to spatially temporally continuous monitoring of contaminant
concentrations, as well as detecting significant changes and
anomalies.
PyLEnM includes a new monitoring well optimization

algorithm to select the minimum and sufficient number of
wells (among the existing ones) for capturing the spatiotem-
poral variability of the groundwater table and different analytes.
Although there are other optimization methods available, they
are primarily focused on representing the temporal behavior,
using PCA.9,10 Our approach, on the other hand, focuses on
capturing spatial heterogeneity since the groundwater table and
its gradient is important for plume mobility and direction.
Compared to the algorithm in Sun et al. (2020), PyLEnM
includes a more sophisticated algorithm for including multiple
predictors, as well as for computing the overall estimation error
at each added well, rather than adding a well at the highest
error location. Although it might not be tractable to run the
regression at each possible pixel, this approach is suitable for
selecting a subset of existing wells, which is often the pressing
need for long-term monitoring. If there is a need to select
additional well locations, the original algorithm in Sun et al.
(2020) is appropriate since it can select the pixel that is likely
to have a large error locally rather than considering its effect on
the overall interpolation error over all the pixels.
There are still limitations and challenges in PyLEnM that

need to be resolved for broader applications. It assumes
digitized and organized data sets in a defined format (i.e., the
two tables). Data curation is an active area of research within
ML and artificial intelligence such as digitizing data from
existing papers or reports (e.g., Zavarin et al., 2022)37 and
managing an end-to-end data workflow from sensors/samples
to data analysis.38 These data curation and formatting
technologies need to be integrated into PyLEnM. In addition,
although PyLEnM offers the great flexibility to select different
functions or their parameters, their appropriate choice is up to
the users, and it may be site-specific. For example, a time-lag
parameter to define the coincident data could be dependent on
how fast groundwater conditions change at a particular site. To
tackle these issues, we may expand the automated model and
parameter selection performed for the spatial interpolation in

this study (Table 1) to select parameters in other functions. At
the same time, the correlations between contaminant
concentrations and proxy variables may be site-specific or
contaminant-specific. We plan to apply PyLEnM to other data
sets and grow its user base to accumulate experiences on how
to select appropriate models and parameters in different
conditions.
We envision that this open-source framework should serve

as a foundation that fosters ML development in the area of
groundwater contamination research. Traditionally, the ML
applications have been limited in groundwater contamination
data due to the lack of quality data, with many gaps and
anomalies embedded in the data. PyLEnM provides a variety of
functions and tools to address this issue, cleaning up and
formatting data sets so that they are ready for ML applications.
In particular, the preprocessing, summarization, and visual-
ization functions are powerful tools for not only understanding
the working data set but also developing predictive ML. In
addition, PyLEnM operates within the Google Colaboratory,
connecting all the data sets seamlessly together through cloud
computing. It also facilitates coupling of sparse groundwater
data and publicly available spatial data layers (such as land
cover types and remote sensing data) from python packages or
the Google Earth Engine39,40 in a seamless manner using an
API, which would be particularly useful for regional-scale
groundwater contamination41 and naturally occurring con-
taminants.42 At the same time, public trust and acceptance
have been a difficult problem at contaminated sites. Through
this open-source package and workflow from raw monitoring
data to data processing and analysis, we envision that PyLEnM
will play a critical role in improving the transparency of data
analytics, as well as in empowering concerned citizens by
enabling them to analyze data sets on their own.
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