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Abstract

In medical image classification tasks, it is common to find that the number of normal sam-

ples far exceeds the number of abnormal samples. In such class-imbalanced situations, reli-

able training of deep neural networks continues to be a major challenge, therefore biasing

the predicted class probabilities toward the majority class. Calibration has been proposed to

alleviate some of these effects. However, there is insufficient analysis explaining whether

and when calibrating a model would be beneficial. In this study, we perform a systematic

analysis of the effect of model calibration on its performance on two medical image modali-

ties, namely, chest X-rays and fundus images, using various deep learning classifier back-

bones. For this, we study the following variations: (i) the degree of imbalances in the dataset

used for training; (ii) calibration methods; and (iii) two classification thresholds, namely,

default threshold of 0.5, and optimal threshold from precision-recall (PR) curves. Our results

indicate that at the default classification threshold of 0.5, the performance achieved through

calibration is significantly superior (p < 0.05) to using uncalibrated probabilities. However, at

the PR-guided threshold, these gains are not significantly different (p > 0.05). This observa-

tion holds for both image modalities and at varying degrees of imbalance. The code is avail-

able at https://github.com/sivaramakrishnan-rajaraman/Model_calibration.

Introduction

Deep learning (DL) methods have demonstrated incredible gains in the performance of com-

puter vision processes such as object detection, segmentation, and classification, which has led

to significant advances in innovative applications [1]. DL-based computer-aided diagnostic

systems have been used for analyzing medical images as they provide valuable information

about the disease pathology. Some examples include chest X-rays (CXRs) [2], computed

tomography (CT), magnetic resonance (MR), fundus images [3], cervix images [4], and ultra-

sound echocardiography [5], among others. Such analyses help in identifying and classifying

disease patterns, localizing and measuring disease manifestations, and recommending thera-

pies based on the predicted stage of the disease.
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The success of DL models is due to not only the network architecture but significantly due

to the availability of large amounts of data for training the algorithms. In medical applications,

we commonly observe that there is a high imbalance between normal (no disease finding) and

abnormal data. Such imbalance is undesirable for training DL models. The bias introduced by

class-imbalanced training is commonly addressed by tuning the class weights [6]. This step

attempts to compensate for the imbalance by penalizing the majority class. However, this does

not eliminate bias. Improvements in the accuracy of the minority class achieved through

changes in class weights occur at the cost of reducing the performance of the majority class.

Data augmentation [7] and random under-sampling [8] are other widely followed techniques

for handling class imbalance that has demonstrated performance improvement in several stud-

ies. However, in scenarios where augmentation may adversely distort the data characteristics,

model calibration may be explored for compensating for the imbalance.

Model calibration refers to the process of rescaling the predicted probabilities to make

them faithfully represent the true likelihood of occurrences of classes present in the training

data [9]. In healthcare applications, the models are expected to be accurate and reliable. Con-

trolling classifier confidence helps in establishing decision trustworthiness [10]. Several cali-

bration methods have been proposed in the literature including Platt scaling, isotonic

regression, beta calibration, spline calibration, among others [11–13]. A recent study used cali-

bration methods to rescale the predicted probabilities toward text and image processing tasks

[9]. The authors observed that the DL models trained with batch normalization layers demon-

strated higher miscalibration. It was also observed that the calibration was negatively impacted

while training with reduced weight decay. Another study [14] experimented with ImageNet,

MNIST, Fashion MNIST, and other natural image datasets to analyze calibration performance

through the use of adaptive probability binning strategies. They demonstrated that calibrated

probabilities may or may not improve performance and it depends on the performance metric

used to assess predictions. The authors of [15] used AlexNet [16], ResNet-50 [17], DenseNet-

121 [18], and SqueezeNet [19] models as feature extractors to extract and classify features from

four medical image datasets. The predicted probabilities were rescaled and mapped to their

true likelihood of occurrence using a single-parameter version of Platt scaling. It was observed

that the expected calibration error (ECE) decreased by 65.72% compared to that obtained with

their uncalibrated counterparts while maintaining classification accuracy. In another study

[20], the authors used the single-parameter version of Platt scaling to calibrate the prediction

probabilities toward a multi-class polyp classification task. It was observed that the ECE and

maximum calibration error (MCE) were reduced using calibrated probabilities and resulted in

improved model interpretability. The authors of [21] used the single-parameter version of

Platt scaling to calibrate probabilities obtained toward an immunofluorescence classification

task using renal biopsy images. It was observed that the ECE values reduced after calibration,

however, it resulted in reduced accuracy, compared to their uncalibrated counterparts. These

studies establish that calibration reduces errors due to the mismatch between the predicted

probabilities and the true likelihood of occurrence of the events. However, the literature lacks

a detailed analysis of the relationship between the degree of data imbalance, the calibration

methods, and the effect of the classification threshold on model performance before and after

calibration.

Our novel contribution is a study of class-imbalanced medical image classification tasks

that investigates: (i) selection of calibration methods for superior performance; (ii) finding an

optimal “calibration-guided” threshold for varying degrees of data imbalances, and (iii) statis-

tical significance of performance gains through the use of a threshold derived from calibrated

probabilities over default classification threshold of 0.5. Accordingly, we evaluate the model

performance before and after calibration using two medical image modalities, namely, CXRs
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and fundus images. We used the Shenzhen TB CXRs [22] dataset and the fundus images made

available by the Asia Pacific Tele-Ophthalmology Society (APTOS) to detect diabetic retinopa-

thy (DR). Next, we artificially vary the degrees of data imbalance in the training dataset such

that the abnormal samples are 20%, 40%, 60%, 80%, and 100% proportions of normal samples.

We investigate the performance of several DL models, namely, VGG-16 [23], Densenet-121

[18], Inception-V3 [24], and EfficientNet-B0 [25], which have been shown to deliver superior

performance in medical computer vision tasks. We evaluated the impact on the performance

using three calibration methods, namely, Platt scaling, beta calibration, and spline calibration.

Each calibration method is evaluated using the ECE metric. Finally, we studied the effect of

two classification thresholds. One is the default classification threshold of 0.5, and the other is

the optimal threshold derived from the precision-recall (PR) curves. The performance with

calibrated probabilities is compared to that obtained using the uncalibrated probabilities for

both the default classification threshold (0.5) and PR-guided optimal classification threshold.

Materials and methods

Dataset characteristics

The following datasets are used in this retrospective study:

i. APTOS’19 fundus: A large-scale collection of fundus images obtained through fundus pho-

tography are made publicly available by the Asia Pacific Tele-Ophthalmology Society

(APTOS) for the APTOS’19 Blindness Detection challenge (https://www.kaggle.com/c/

aptos2019-blindness-detection/overview). The goal of the challenge is to classify them as

showing normal retina or signs of diabetic retinopathy (DR). Those showing signs of DR

are further categorized on a scale of 0 (no DR) to 4 (proliferative DR) based on disease sever-

ity. Variability is introduced into the data by gathering them from multiple sites at varying

periods using different types of cameras. In our study, we took 1200 fundus images showing

normal retina and a collection of 1200 images showing a range of disease severity, i.e., 300

images each from each severity level 1–4.

ii. Shenzhen TB CXR: A set of 326 CXRs showing normal lungs and 336 CXRs showing other

Tuberculosis (TB)-related manifestations were collected from the patients at the No.3 hos-

pital in Shenzhen, China. The dataset was de-identified, exempted from IRB review

(OHSRP#5357), and released by the National Library of Medicine (NLM). An equal num-

ber of 326 CXRs showing normal lungs and TB-related manifestations are used in this

study. All images are (i) resized to 256×256 spatial resolution, (ii) contrast-enhanced using

Contrast Limited Adaptive Histogram Equalization (CLAHE) algorithm, and (iii) rescaled

to the range [0 1] to improve model stability and performance.

Simulating imbalance in the training dataset

The datasets are further divided into multiple sets with varying degrees of imbalance of the

positive disease samples. The sets are labeled as Set-N, where N is one of {20, 40, 60, 80, 100}

and represents the proportion of disease-positive samples to disease-negative samples. There-

fore, Set-100 has an equal number of disease-positive and disease-negative samples. For rea-

sons of brevity, and because the results demonstrate a similar trend, in the remainder of this

manuscript, we present results from only Set-20, Set-60, and Set-100. For completeness, we

provide results from Set-40 and Set-80 as supplementary materials. The number of images in

the train and test set for each of these datasets is shown in Table 1.
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Classification models

We used four popular and high-performing DL models in this study, namely, VGG-16, Dense-

Net-121, Inception-V3, and EfficientNet-B0. These models have demonstrated superior per-

formance in medical computer vision tasks [1]. These models are (i) instantiated with their

ImageNet-pretrained weights, (ii) truncated at their deepest convolutional layer, and (iii)

appended with a global average pooling (GAP) layer, a final dense layer with two output nodes

and Softmax activation to output class predictions.

First, we selected the DL model that delivered a superior performance with the Shenzhen

TB CXRs and the APTOS’19 fundus datasets. In this regard, the models are retrained on the

Set-100 dataset from the (i) Shenzhen TB CXR and (ii) APTOS’19 fundus datasets to predict

probabilities toward classifying them to their respective categories. Of the number of training

samples in the Set-100 dataset, 10% of the data is allocated to validation with a fixed seed. We

used a stochastic gradient descent optimizer with an initial learning rate of 1e-4 and a momen-

tum of 0.9. Callbacks are used to store model checkpoints. The learning rate is reduced when-

ever the validation loss plateaued. The weights that delivered a superior performance with the

validation set are further used for predicting the test set.

The best-performing model with the balanced Set-100 dataset is selected for further analy-

sis. We instantiated the best-performing model with their ImageNet-pretrained weights,

added the classification layers, and retrained it on the Set-20 and Set-60 datasets that are con-

structed individually from the (i) Shenzhen TB CXR and (ii) APTOS’19 fundus datasets to

record the performance. Fig 1 shows the general block diagram with various dataset inputs to

the DL models and their corresponding dataset-specific predictions.

Evaluation metrics

The following metrics are used to evaluate the models’ performance: (a) Accuracy, (b) area

under the precision-recall curve (AUPRC), (c) F-score, and (d) Matthews correlation coeffi-

cient (MCC). These measures are expressed as shown below:

Accuracy ¼
TP þ TN

TP þ TN þ FP þ FN
ð1Þ

Recall ¼
TP

TPþ FN
ð2Þ

Precision ¼
TP

TP þ FP
ð3Þ

Table 1. Class imbalance-simulated sets constructed from the datasets used in this study.

Data Shenzhen TB CXR APTOS’19 fundus

Train Test Train Test

No finding TB No finding TB No finding DR No finding DR

Set-100 226 226 100 100 1000 1000 300 300

Set-80 226 180 100 100 1000 800 300 300

Set-60 226 136 100 100 1000 600 300 300

Set-40 226 90 100 100 1000 400 300 300

Set-20 226 45 100 100 1000 200 300 300

https://doi.org/10.1371/journal.pone.0262838.t001
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F � score ¼ 2�
Precision� Recall
Precisionþ Recall

ð4Þ

MCC ¼
TP � TN � FP � FN

ððTP þ FPÞðTP þ FNÞðTN þ FPÞðTN þ FNÞÞ1=2
ð5Þ

Here, TP, TN, FP, and FN denote the true positive, true negative, false positive, and false

negative values, respectively. We used Tensorflow Keras version 2.4 and CUDA dependencies

to train and evaluate the models in a Windows1 computer with Intel Xeon processor and

NVIDIA GeForce GTX 1070 GPU.

Threshold selection

The evaluation is first carried out using the default classification threshold of 0.5, i.e., predic-

tions> = 0.5 will be categorized as abnormal (disease-class) and those that are < 0.5 will be

categorized as samples showing no findings. However, using a theoretical classification thresh-

old of 0.5 may adversely impact classification particularly in an imbalanced training scenario

[26]. The study in [27] reveals that it would be misleading to resort to data resampling tech-

niques without trying to find the optimal classification threshold for the task. There are several

approaches to finding the optimal threshold for the classification task. These are broadly classi-

fied into (i) ROC curve-based methods [28, 29] and (ii) Precision-recall (PR) curve-based

methods [30]. In ROC curve-based approach, different values of thresholds are used to

Fig 1. Block diagram showing the various dataset inputs to the DL models and their corresponding dataset-specific predictions.

https://doi.org/10.1371/journal.pone.0262838.g001
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interpret the false-positive rate (FPR) and true-positive rate (TPR). The area under the ROC

curve (AUROC) summarizes the model performance. A higher value for the AUROC (close to

1.0) signifies superior performance. Metrics such as geometric means (G-means) and Youden

statistic (J) are evaluated to identify this optimal threshold from ROC curves. The optimal

threshold results in a superior balance of precision and recall and can be measured using the PR

curve. The value of the F-score is computed for each threshold and its largest value and the cor-

responding threshold are recorded. This threshold is then used to predict test samples and con-

vert the class probabilities to crisp image-level labels. Unlike ROC curves, the PR curves focus

on model performance for the positive disease class that is the high-impact event in a classifica-

tion task. Hence, they are more informative than the ROC curves, particularly in an imbalanced

classification task [30]. Thus, we selected the optimal threshold from the PR curves.

Calibration: Definition

The goal of calibration is to find a function that fits the relationship between the predicted

probability and the true likelihood of occurrence of the event of interest. Let the output of a

DL model D be denoted by h(D) = (X’, P’), where X’ is the class label obtained from the pre-

dicted probability P’ that needs to be calibrated. If the outputs of the model are perfectly cali-

brated then,

PðX0 ¼ XjP0 ¼ pÞ ¼ p; 8p 2 ½0; 1� ð6Þ

Qualitative evaluation of calibration—reliability diagram

The reliability diagram, also called the calibration curve, provides a qualitative description of

calibration. It is plotted by dividing the predicted probabilities into a fixed number of bins Z,

each of size 1/Z, and having equal width, along the x-axis. Let Cz denote the set of sample indi-

ces whose predicted probabilities fall into the interval Iz ¼ z� 1

Z ; z
Z

� �
, for z 2 {1, 2, . . ., Z}. The

accuracy of the bin Cz is given by,

Accuracy ðCzÞ ¼ 1=jCzj
X

i2Cz

1ðyi
0 ¼ yiÞ ð7Þ

The average probability in the bin Cz is given by:

Average Probability ðCzÞ ¼ 1=jCzj
X

i2Cz

pi
0 ð8Þ

Here, pi
0 is the predicted probability for the sample i. With improving calibration, the points

will lie closer to the main diagonal that extends from the bottom left to the top right of the reli-

ability diagram. Fig 2 shows a sample sketch of the reliability diagram. The points below the

diagonal indicate that the model is overconfident, and the predicted probabilities are too large.

Those above the diagonal indicate that the model is underconfident, and the predicted proba-

bilities are too small.

Quantitative evaluation of calibration: Expected calibration error (ECE)

The ECE metric provides a quantitative measure of miscalibration. It is given by the expecta-

tion difference between the predicted probabilities and accuracy as shown below:

ECE ¼
XZ

z¼1

jCzj

m
jaccuracy ðCzÞ � probability ðCzÞj ð9Þ
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ECE ¼ Ep0½absððX
0 ¼ XjP0 ¼ pÞ � pÞ� ð10Þ

In practice, the ECE metric is computed as the weighted average of the difference between

the predicted probabilities and accuracy in each bin.

Here, m is the total number of samples across all the probability bins. The value of ECE = 0

denotes the model is perfectly calibrated since accuracy (Cz) = probability (Cz) for all bins z.

Calibration methods

The following calibration methods are used in this study: (i) Platt scaling, (ii) beta calibration,

and (iii) spline calibration.

Platt scaling. Platt scaling [31] assumes a logistic relationship between the predicted prob-

abilities (z) and true probability (p). It fits two parameters α and β and is given by,

p ¼ 1=ð1þ exp ð� ðaþ bzÞÞÞ ð11Þ

The parameters α and β are real-valued. The principal benefit of Platt scaling is that it needs

very little data since it fits only two parameters. However, the limitation is there is a very

restricted set of possible functions. That is, this method will deliver superior calibrated proba-

bilities only if there exists a logistic relationship between z and p.

Beta calibration. Literature studies reveal that Platt scaling-based calibration delivers sub-

optimal calibrated probabilities even compared to the original uncalibrated scores under cir-

cumstances when the classifiers produce heavily skewed score distributions. Under such cir-

cumstances, beta calibration [12] methods are shown to deliver superior calibration

Fig 2. A sample sketch of the reliability diagram shows perfectly calibrated, overconfident, underconfident, uniformly overconfident, and uniformly

underconfident predictions.

https://doi.org/10.1371/journal.pone.0262838.g002
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performance as compared to Platt scaling. Beta calibration is given by,

p ¼ 1þ
1

expðcÞ za

ð1� zÞb

 !� 1

ð12Þ

The approach is similar to Platt scaling but with a couple of important improvements. It is a

three-parameter family of curves (a, b, and c) compared to the 2-parameters used in Platt scal-

ing. Beta calibration permits the diagonal y = x as one of the possible functions, so it would not

affect an already calibrated classifier.

Spline calibration. Spline calibration [13] is proposed to be a robust, non-parametric cali-

bration method that uses cubic smoothing splines to map the uncalibrated scores to true prob-

abilities. Smoothing splines strike a balance between fitting the points well and having a

smooth function. It uses a smoothed logistic function, so, the fit to the data is measured by

likelihood and the smoothness refers to the integrated second derivative before the logistic

transformation. A nuisance parameter trades-off smoothness for fit. It runs a lot of logistic

regressions and picks the one with the best nuisance parameter. It transforms the data to pro-

vide appropriate scaling for over-confident models.

Statistical analysis

Statistical analyses are performed to investigate if the performance differences between the

models are statistically significant. We used a 95% confidence interval (CI) as the Wilson score

interval for the MCC metric to compare the performance of the models trained and evaluated

with datasets of varying imbalances. The CI values are also used to observe if there exists a sta-

tistically significant difference in the ECE metric before and after calibration. The Python

StatsModels module is used to perform these evaluations.

Results

Classification performance achieved with Set-100 dataset

Recall that VGG-16, DenseNet-121, Inception-V3, and EfficientNet-B0 models are instanti-

ated with their ImageNet-pretrained weights, truncated at their deepest convolutional layers,

appended with the classification layers, and retrained on the Set-100 dataset constructed indi-

vidually from (i)APTOS’19 fundus and (ii) Shenzhen TB CXR datasets, to classify them to

their respective categories. This approach is followed to select the best-performing model that

would subsequently be used to be retrained on the class-imbalance simulated (Set-20 and Set-

60) datasets constructed from each of these data collections. The models are trained using a

stochastic gradient descent optimizer with an initial learning rate of 1e-4 and momentum of

0.9. The learning rate is reduced whenever the validation loss plateaued. The best-performing

model that delivered the least validation loss is used for class predictions. Table 2 summarizes

the performance achieved by these models in this regard. S1 Fig shows the confusion matrix

and AUPRC curves obtained using the DenseNet-121 and VGG-16 models, respectively, and

S2 Fig shows the polar coordinates plot that summarizes the models’ performance.

It is evident from the polar coordinates plot shown in S2 Fig that the models, in common,

demonstrated higher values for AURPC and smaller values for the MCC for the reason how

these measures are defined. The observation holds for both APTOS’19 fundus and Shenzhen

TB CXR datasets. It is observed from Table 2 that, when retrained on the Set-100 dataset con-

structed from the APTOS’19 fundus dataset, the DenseNet-121 model demonstrated superior

performance in terms of accuracy, F-score, and MCC metrics. The 95% CI for the MCC metric

achieved by the DenseNet-121 model demonstrated a tighter error margin, hence, better
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precision, and is observed to be significantly superior (p< 0.05) compared to that achieved

with the VGG-16, Inception-V3, and EfficientNet-B0 models. Since the MCC metric provides

a balanced measure of precision and recall, the DenseNet-121 model is selected as it demon-

strated the best MCC metric, to be retrained and evaluated on the class-imbalance simulated

(Set-20 and Set-60) datasets constructed from the APTOS’19 fundus dataset.

Considering the Shenzhen TB CXR dataset, the VGG-16 model demonstrated superior per-

formance for accuracy, AUPRC, F-score, and a significantly superior value for the MCC metric

(p< 0.05) compared to other models. Hence, the VGG-16 model is selected to be retrained

and evaluated on the class-imbalance simulated datasets constructed from the Shenzhen TB

CXR dataset.

Calibration and classification performance measurements

Next, the best-performing DenseNet-121 and VGG-16 models are instantiated with their Ima-

geNet-pretrained weights and retrained on the class-imbalance simulated (Set-20 and Set-60)

datasets constructed from the APTOS’19 fundus and Shenzhen TB CXR datasets, respectively.

The models are trained using a stochastic gradient descent optimizer with an initial learning

rate of 1e-4 and momentum of 0.9. The learning rate is reduced whenever the validation loss

plateaued. The best-performing model that delivered the least validation loss is used for pre-

diction. Table 3 and Fig 3 show the ECE metric achieved using various calibration methods.

Table 2. Test performance achieved by the models that are retrained on the Set-100 dataset, individually from the

APTOS’19 fundus (n = 600) and Shenzhen TB CXR (n = 200) data collections.

Metric Model APTOS’19 fundus Shenzhen TB CXR

Accuracy VGG-16 0.7983 0.7850

D-121 0.8367 0.7000

I-V3 0.8033 0.5700

E-B0 0.8102 0.5920

AUPRC VGG-16 0.9723 0.8869

D-121 0.9290 0.8000

I-V3 0.9118 0.6215

E-B0 0.9216 0.6413

F-score VGG-16 0.8269 0.8054

D-121 0.8372 0.6202

I-V3 0.8097 0.4416

E-B0 0.8137 0.4734

MCC VGG-16 0.6321 0.5830�

(0.5935, 0.6707) (0.5146, 0.6514)

D-121 0.6733� 0.4408

(0.6357, 0.7109) (0.3719, 0.5097)

I-V3 0.6080 0.1577

(0.5689, 0.6471) (0.1071, 0.2083)

E-B0 0.6258 0.1896

(0.5870, 0.6646) (0.1352, 0.2440)

The value n denotes the number of test samples. D-121, I-V3, and E-B0 represent the DenseNet-121, Inception-V3,

and EfficientNet-B0 models, respectively. Data in parenthesis are 95% CI as the Wilson score interval provided for

the MCC metric. The best performances are denoted by bold numerical values for each metric. The � denotes

statistical significance (p< 0.05) compared to other models.

https://doi.org/10.1371/journal.pone.0262838.t002
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From Table 3, we observe that no single calibration method delivered superior performance

across all the datasets. For the Set-20 and Set-60 datasets constructed from the APTOS’19 fun-

dus dataset, Platt calibration demonstrated the least ECE metric compared to other calibration

methods. For the Set-100 dataset, spline calibration demonstrated the least ECE metric. The

95% CIs for the ECE metric achieved using the Set-20, Set-60, and Set-100 datasets demon-

strated a tighter error margin and are observed to be significantly smaller (p< 0.05) compared

to those obtained with uncalibrated, baseline probabilities.

A similar performance is observed with the Shenzhen TB CXR dataset. We observed that

the spline, beta, and Platt calibration methods demonstrated the least ECE metric respectively

for the Set-20, Set-60, and Set-100 datasets. The difference in the ECE metric is not statistically

significant (p> 0.05) across the calibration methods. However, the 95% CIs for the ECE met-

ric achieved using the Set-20, Set-60, and Set-100 datasets are observed to be significantly

smaller (p< 0.05) compared to the uncalibrated, baseline model. This observation is evident

from the polar coordinates plot shown in Fig 3 where the ECE values obtained with calibrated

probabilities are smaller compared to those obtained with uncalibrated probabilities. The

observation holds for the class-imbalance simulated datasets constructed from both APTOS’19

fundus and Shenzhen TB CXR datasets.

Fig 4 shows the reliability diagrams obtained using the uncalibrated and calibrated proba-

bilities obtained using the Set-20 dataset constructed from (i) APTOS’19 fundus and (ii) Shen-

zhen TB CXR datasets. As observed from Fig 4A, the uncalibrated, baseline model is

underconfident about its predictions since all the points are observed to lie above the diagonal

line. Similar miscalibration issues are observed in Fig 4B for the Set-20 dataset constructed

from the Shenzhen TB CXR dataset. As observed from the reliability diagram, the average

probabilities of the fraction of disease-positive samples in the Shenzhen TB CXR Set-20 dataset

are concentrated in the range [0.5 0.21]. This infers that all abnormal samples are misclassified

as normal samples. However, the calibration methods attempted to rescale these uncalibrated

probabilities to match their true occurrence likelihood and bring the points closer to the

45-degree line. The reliability diagrams for the other class-imbalance simulated datasets are

given in S3 Fig.

Fig 5 and Table 4 summarize the performance achieved at the default classification thresh-

old of 0.5 using the calibrated and uncalibrated probabilities for the Set-20, Set-60, and Set-100

datasets, constructed from the APTOS’19 fundus and Shenzhen TB CXR datasets. The calibra-

tion is performed using the best-performing calibration methods reported in Table 3.

Table 3. ECE metric achieved by the DenseNet-121 and VGG-16 models that are respectively retrained on the Set-20 and Set-60 datasets, individually from

APTOS’19 fundus (n = 600) and Shenzhen TB CXR (n = 200) data collections.

Metric Calibration

method

APTOS’19 fundus Shenzhen TB CXR

Set-20 Set-60 Set-100 Set-20 Set-60 Set-100

ECE Platt 0.0327� (0.0184,

0.047)

0.0409� (0.025,

0.0568)

0.0473 (0.0303,

0.0643)

0.0832 (0.0449,

0.1215)

0.0645 (0.0304,

0.0986)

0.0463� (0.0171,

0.0755)

Beta 0.0363 (0.0213,

0.0513)

0.0435 (0.0271,

0.0599)

0.0332 (0.0188,

0.0476)

0.1021 (0.0601,

0.1441)

0.0451� (0.0163,

0.0739)

0.0672 (0.0325,

0.1019)

Spline 0.0454 (0.0287,

0.0621)

0.0439 (0.0275,

0.0603)

0.0284� (0.0151,

0.0417)

0.0787� (0.0413,

0.1161)

0.0518 (0.021,

0.0826)

0.0552 (0.0235,

0.0869)

Baseline 0.2124 (0.1796,

0.2452)

0.1063 (0.0247,

0.0816)

0.0518 (0.034,

0.0696)

0.3237 (0.2588,

0.3886)

0.0977 (0.0565,

0.1389)

0.1378 (0.0900,

0.1856)

The value n denotes the number of test samples. Baseline denotes uncalibrated probabilities. Data in parenthesis are 95% CI as the Wilson score interval provided for the

ECE metric. The best performances are denoted by bold numerical values in the corresponding columns. The � denotes statistical significance (p< 0.05) compared to

baseline.

https://doi.org/10.1371/journal.pone.0262838.t003
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It is evident from the polar coordinates plot shown in Fig 5 that the MCC metric achieved

using the calibrated probabilities for the Set-20, Set-60, and Set-100 datasets are higher com-

pared to those achieved with the uncalibrated probabilities. This observation holds for both

APTOS’19 fundus and Shenzhen TB CXR datasets. It is observed from Table 4 that, for the

APTOS’19 fundus dataset, the MCC metric achieved using the calibrated probabilities for the

Set-20 dataset is significantly superior (p< 0.05) compared to that achieved with the uncali-

brated probabilities.

Fig 3. Polar coordinates plot showing the ECE metric achieved by the DenseNet-121 and VGG-16 models retrained on the Set-20, Set-60, and Set-100 datasets

from (a) APTOS’19 fundus and (b) Shenzhen TB CXR datasets.

https://doi.org/10.1371/journal.pone.0262838.g003

Fig 4. Reliability diagrams obtained using the uncalibrated and calibrated probabilities for the Set-20 dataset constructed from (a) APTOS’19 fundus and (b)

Shenzhen TB CXR datasets.

https://doi.org/10.1371/journal.pone.0262838.g004

PLOS ONE Deep model calibration for class-imbalanced classification

PLOS ONE | https://doi.org/10.1371/journal.pone.0262838 January 27, 2022 11 / 23

https://doi.org/10.1371/journal.pone.0262838.g003
https://doi.org/10.1371/journal.pone.0262838.g004
https://doi.org/10.1371/journal.pone.0262838


A similar performance is observed with the Set-20 and Set-60 datasets constructed from the

Shenzhen TB CXR dataset. In particular, the F-score and MCC metric achieved with the uncal-

ibrated probabilities is observed to be undefined. This is because the true positives (TPs) are 0

since all disease-positive samples are misclassified as normal samples. However, MCC values

achieved with the calibrated probabilities are significantly higher (p< 0.05) compared to those

achieved with the uncalibrated probabilities. This underscores the fact that calibration helped

to significantly improve classification performance at the default classification threshold of 0.5.

Fig 5. Polar coordinates plot showing the MCC metric achieved at the default operating threshold of 0.5, by the DenseNet-121 and VGG-16 models using

calibrated and uncalibrated probabilities generated from Set-20, Set-60, and Set-100 datasets for (a) APTOS’19 fundus and (b) Shenzhen TB CXR data

collections, respectively.

https://doi.org/10.1371/journal.pone.0262838.g005

Table 4. Performance metrics achieved at the default operating threshold of 0.5, by the DenseNet-121 and VGG-16 models using calibrated (obtained using the

best-performing calibration method from Table 3) and uncalibrated probabilities that are generated for Set-20, Set-60, and Set-100 datasets, constructed from the

APTOS’19 fundus (n = 600) and Shenzhen TB CXR (n = 200) datasets, respectively.

Metric APTOS’19 fundus Shenzhen TB CXR

Set-20 Set-60 Set-100 Set-20 Set-60 Set-100

Accuracy 0.8117 0.8600 0.8417 0.6050 0.8050 0.8050

(0.7417) (0.8500) (0.8367) (0.5000) (0.7950) (0.785)

AUPRC 0.9034 0.9455 0.9290 0.6494 0.9004 0.8869

(0.9034) (0.9455) (0.9290) (0.6494) (0.9004) (0.8869)

F-score 0.7957 0.8789 0.8372 0.5635 0.804 0.8079

(0.6563) (0.8289) (0.8359) (NA) (0.8093) (0.8054)

MCC 0.6311� 0.7223 0.6850 0.2139� 0.6100 0.6103

(0.5569) (0.7219) (0.6733) (NA) (0.5968) (0.583)

The value n denotes the number of test samples. Data in parenthesis denote the performance achieved with uncalibrated probabilities and data outside the parenthesis

denotes the performance achieved with calibrated probabilities. The best performances are denoted by bold numerical values. The � denotes statistical significance

(p< 0.05) compared to the performance obtained with uncalibrated probabilities.

https://doi.org/10.1371/journal.pone.0262838.t004
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Figs 6 and 7 show the confusion matrices obtained using the uncalibrated and calibrated prob-

abilities, at the default classification threshold of 0.5, for the Set-20 dataset, individually con-

structed from the APTOS’19 fundus and Shenzhen TB CXR datasets. S4 and S5 Figs show the

confusion matrices obtained for other class-imbalance simulated datasets.

Fig 6. Confusion matrices obtained using the uncalibrated and calibrated probabilities (from left to right) at the baseline threshold of 0.5 for the Set-20

dataset constructed from the APTOS’19 fundus dataset.

https://doi.org/10.1371/journal.pone.0262838.g006

Fig 7. Confusion matrices obtained with the uncalibrated and calibrated probabilities (from left to right) at the baseline threshold of 0.5 for the Set-20

dataset constructed from the Shenzhen TB CXR dataset.

https://doi.org/10.1371/journal.pone.0262838.g007
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Fig 8 and Table 5 summarize the optimal threshold values identified from the PR curves

using the uncalibrated and calibrated probabilities. The probabilities are calibrated using the

best-performing calibration method as reported in Table 3.

The polar coordinates plot shown in Fig 8 illustrates a difference in the optimal threshold

values obtained before and after calibration. It is observed from Table 5 that the optimal

threshold values are significantly different (p< 0.05) for the uncalibrated and calibrated prob-

abilities obtained across the class-imbalance simulated datasets. The observation holds for

both APTOS’19 fundus and Shenzhen TB CXR data collections. Fig 9 shows the PR curves

with their optimal thresholds, obtained using the uncalibrated and calibrated probabilities for

the Set-20 dataset, constructed from the APTOS’19 fundus and Shenzhen TB CXR datasets.

The PR curves for other class-imbalance simulated datasets are shown in S6 Fig. The perfor-

mance obtained at these optimal threshold values is summarized in Table 6 and S7 Fig. It is

evident from the polar coordinates plot shown in S7 Fig that, at the optimal threshold values

derived from the PR curves, there is no significant difference in the MCC values obtained

Fig 8. Polar coordinates plot showing the optimal threshold values identified from the PR curves using uncalibrated and calibrated probabilities generated

from Set-20, Set-60, and Set-100 datasets for (a) APTOS’19 fundus and (b) Shenzhen TB CXR data collections.

https://doi.org/10.1371/journal.pone.0262838.g008

Table 5. Optimal threshold values identified from the PR curves using uncalibrated and calibrated probabilities (using the best-performing calibration method for

the respective datasets).

Data APTOS’19 fundus Shenzhen TB CXR

Opt. threshold (Uncalibrated) Opt. threshold (Calibrated) Opt. threshold (Uncalibrated) Opt. threshold (Calibrated)

Set-20 0.2143 0.4701� (Platt) 0.1632 0.4192� (Spline)

Set-60 0.3577 0.5339� (Platt) 0.5177 0.3505� (Beta)

Set-100 0.4726 0.3937� (Spline) 0.5121 0.3921� (Platt)

The text in parentheses shows the best-performing calibration method used to produce calibrated probabilities. The � denotes statistical significance (p< 0.05)

compared to the optimal threshold obtained with uncalibrated models.

https://doi.org/10.1371/journal.pone.0262838.t005
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before and after calibration. This is also evident from Table 6 where, at the PR-guided optimal

threshold, the classification performance obtained with the calibrated probabilities is not sig-

nificantly superior (p> 0.05) compared to that obtained with the uncalibrated probabilities.

This observation holds across the class-imbalance simulated datasets constructed from the

APTOS’19 fundus and Shenzhen TB CXR collections. Figs 10 and 11 show the confusion

matrices obtained using the uncalibrated and calibrated probabilities, at the optimal thresholds

derived from the PR curves, for the Set-20 dataset, individually constructed from the

APTOS’19 fundus and Shenzhen TB CXR collections. S8 and S9 Figs show the confusion

matrices obtained for other class-imbalance simulated datasets.

We observed similar performances while repeating the aforementioned experiments with

Set-40 (number of disease-positive samples is 40% of that in the normal class) and Set-80

(number of disease-positive samples is 80% of that in the normal class) datasets, individually

constructed from the APTOS’19 fundus and Shenzhen TB CXR data collections. S1 Table

shows the ECE metric achieved using various calibration methods for the Set-40 and Set-80

Fig 9. PR curves with their optimal thresholds obtained using the uncalibrated and calibrated probabilities for the Set-20 dataset, individually constructed

from the (a) APTOS’19 fundus and (b) Shenzhen TB CXR datasets.

https://doi.org/10.1371/journal.pone.0262838.g009

Table 6. Performance metrics achieved at the optimal threshold values (from Table 6), by the DenseNet-121 and VGG-16 models using calibrated (using the best

performing calibration method from Table 3) and uncalibrated probabilities generated for Set-20, Set-60, and Set-100 datasets, constructed from the APTOS’19

fundus (n = 600) and Shenzhen TB CXR (n = 200) datasets, respectively.

Metric APTOS’19 fundus Shenzhen TB CXR

Set-20 Set-60 Set-100 Set-20 Set-60 Set-100

Accuracy 0.8133 0.8683 0.8400 0.6400 0.8200 0.7950

(0.8133) (0.8683) (0.8400) (0.6350) (0.8150) (0.7950)

AUPRC 0.9034 0.9455 0.9290 0.6494 0.9091 0.8869

(0.9034) (0.9455) (0.9290) (0.6494) (0.9091) (0.8869)

F-score 0.8014 0.8612 0.8342 0.7097 0.8286 0.8110

(0.8014) (0.8612) (0.8342) (0.7044) (0.8230) (0.8110)

MCC 0.6312 0.7406 0.6802 0.3192 0.6432 0.5987

(0.6312) (0.7406) (0.6802) (0.3059) (0.6326) (0.5987)

Data in parenthesis denote the performance achieved with uncalibrated probabilities and data outside the parenthesis denotes the performance achieved with calibrated

probabilities. The best performances are denoted by bold numerical values.

https://doi.org/10.1371/journal.pone.0262838.t006
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datasets constructed from the APTOS’19 fundus and Shenzhen TB CXR data collections. S2

Table shows the performance achieved at the baseline operating threshold of 0.5 using the cali-

brated and uncalibrated probabilities for the Set-40 and Set-80 datasets. The calibration is per-

formed using the best-performing calibration method as reported in the S1 Table. S3 Table

shows the optimal threshold values identified from the PR curves using the uncalibrated and

calibrated probabilities for the Set-40 and Set-80 datasets. S4 Table shows the performance

obtained at the optimal threshold values identified from the PR curves for Set-40 and Set-80

datasets.

Discussion and conclusions

We critically analyze and interpret the findings of our study as given below:

Model selection

The method of selecting the most appropriate model from a collection of candidate models

depends on the data size, type, characteristics, and behavior. It is worth noting that the DL

models are pretrained on a large-scale collection of natural photographic images whose visual

characteristics are distinct from medical images [16]. These models differ in several character-

istics such as architecture, parameters, and learning strategies. Hence, they learn different fea-

ture representations from the data. For medical image classification tasks with sparse data

availability, deeper models may not be always optimal since they may overfit the training data

and demonstrate poor generalization [2]. It is therefore indispensable that for any given medi-

cal data, the most appropriate model should be identified that could help extract meaningful

Fig 10. Confusion matrices obtained using the uncalibrated and calibrated probabilities (from left to right) at the optimal thresholds derived from the PR curves

(refer to Table 6) using the Set-20 dataset constructed from the APTOS’19 fundus dataset.

https://doi.org/10.1371/journal.pone.0262838.g010
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feature representations and deliver superior classification performance. In this study, we

experimented with several DL models that delivered SOTA performance on medical image

classification tasks and selected the best model that delivered superior performance. While

using the best model for a given dataset, we observed that the performance with the test set

improved with an increase in class balance. This observation holds for both APTOS’19 fundus

and Shenzhen TB CXR datasets. The model demonstrated superior recall values with an

increasing number of positive abnormal samples in the training set. This shows the model

learned meaningful feature representations from the additional training samples in the positive

abnormal class to correctly classify more abnormals in the test set.

Simulating data imbalance

A review of the literature shows several studies that analyze the effect of calibration in a model

trained with fixed-size data [9, 14, 15]. Until the time of writing this manuscript, to the best of

our knowledge, we observed that no literature is available that explored the relationship

between the calibration methods, degree of class imbalance, and model performance. Such an

analysis would be significant, particularly considering medical image classification tasks,

where there exist issues such as (i) low volume of disease samples and (ii) limited availability of

expert annotations. In this study, we simulated class imbalance by dividing a balanced dataset

into multiple datasets with varying degrees of imbalance of the positive disease samples. We

observed that different calibration methods delivered improved calibration performance with

different datasets. This underscores the fact that the performance obtained with a given cali-

bration method depends on the (i) existing relationship between the predicted probabilities

and the fraction of positive disease samples and (ii) if that calibration method would help map

these uncalibrated probabilities to the true likelihood of occurrence of these samples.

Fig 11. Confusion matrices obtained with the uncalibrated and calibrated probabilities (from left to right) at their optimal thresholds derived from the PR curves

(refer to Table 6) using the Set-20 dataset constructed from the Shenzhen TB CXR dataset.

https://doi.org/10.1371/journal.pone.0262838.g011
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The values of AUPRC before and after calibration

We observed that irrespective of the calibration method, the value of AUPRC didn’t change

before and after calibration. This is because AUPRC provides a measure of discrimination

[30]. This is a rank measure that helps to analyze if the observations are put in the best possible

order. However, such an analysis does not ensure that the predicted probabilities would repre-

sent the true occurrence likelihood of events. On the other hand, calibration applies a transfor-

mation to map the uncalibrated probabilities to their true occurrence likelihood while

maintaining the rank order. Therefore, the AUPRC values remained unchanged after

calibration.

PR-guided threshold and model performance

Unlike ROC curves, PR curves focus on model performance for the positive disease class sam-

ples that are low volume, high-impact events in a classification task. Hence, they are more use-

ful where the positive disease class is significant compared to the negative class and are more

informative than the ROC curves, particularly in imbalanced classification tasks [30]. We

aimed to (i) identify an optimal PR-guided threshold for varying degrees of data imbalances

and (ii) investigate if the classification performance obtained with these optimal thresholds

derived from calibrated probabilities would be significantly superior (p< 0.05) compared to

those derived from uncalibrated probabilities. We observed that, at the default classification

threshold of 0.5, the classification performance achieved with the calibrated probabilities is sig-

nificantly superior (p< 0.05) compared to that obtained with the uncalibrated probabilities.

This holds when experimenting with the class-imbalance simulated datasets constructed from

both APTOS’19 fundus and Shenzhen TB CXR data collections. This observation underscores

the fact that, at the default classification threshold of 0.5, calibration helped to significantly

improve classification performance. However, literature studies reveal that adopting the theo-

retical threshold of 0.5 may adversely impact performance in class imbalanced classification

tasks that is common with medical images where the abnormal samples are considered rare

events [26, 27]. Hence, we derived the optimal threshold from the PR curves.

We observed that the performance achieved with the PR-guided threshold derived from

calibrated probabilities is not significantly superior (p> 0.05) compared to that derived from

uncalibrated probabilities. It is important to note that calibration does not necessarily improve

performance. The purpose of calibration is to rescale the predicted probabilities to reflect the

true likelihood of occurrence of the class samples. The lack of association between calibration

and model performance has also been reported in the literature [33] that demonstrates that the

performance may not significantly improve after calibration. Therefore, model calibration

guarantees the most reliable performance from a classifier, not necessarily the best perfor-

mance for a given problem. In other words, the desired best performance depends on other

factors such as data size, diversity, DL model selection, training strategy, etc. This performance

is made more reliable by model calibration.

Limitations and future work

The limitations of this study are: (i) We evaluated the performance of VGG-16, DenseNet-121,

Inception-V3, and EfficientNet-B0 models, before and after calibration, toward classifying the

datasets discussed in this study. With several DL models with varying architectural diversity

being reported in the literature in recent times, future studies could focus on using multiple

DL models and perform ensemble learning to learn improved predictions compared to any

individual constituent model. (ii) We used PR curves to find the optimal threshold, however,

there are other alternatives including ROC curve-based methods and manual threshold tuning.
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The effect of optimal thresholds obtained from these methods on classification performance is

an open research avenue. (iii) We used Platt scaling, beta calibration, and spline calibration

methods in this study. However, we didn’t use other popular calibration methods such as iso-

tonic regression since we had limited data and our pilot studies showed overfitting with the

use of isotonic regression-based calibration. This observation is identical to the results

reported in the literature [32, 33]. (iv) We explored calibration performance with individual

calibration methods. With a lot of research happening in calibration, new calibration algo-

rithms and an ensemble of calibration methods may lead to improved calibration perfor-

mance. (v) Calibration is used as a post-processing tool in this study. Future research could

focus on proposing custom loss functions that incorporate calibration into the training process

thereby alleviating the need for explicit training toward calibration.

Supporting information

S1 Fig. Test performance achieved by the models using the Set-100 dataset. (a) and (b) con-

fusion matrix achieved by the DenseNet-121 and VGG-16 models, respectively, using the

APTOS’19 fundus and Shenzhen TB CXR data collections; (c) and (d) AUPRC curves achieved

by the DenseNet-121 and VGG-16 models, respectively, using the APTOS’19 fundus and

Shenzhen TB CXR data collections.

(TIF)

S2 Fig. Polar coordinates plot showing the test performance achieved by the models retrained

on the Set-100 dataset from (a) APTOS’19 fundus and (b) Shenzhen TB CXR datasets.

(TIF)

S3 Fig. Reliability diagrams obtained using the uncalibrated and calibrated probabilities

for the Set-40, Set-60, Set-80, and Set-100 datasets. (a), (c), (e), and (g) shows the reliability

diagrams obtained respectively using the. Set-40, Set-60, Set-80, and Set-100 datasets con-

structed from APTOS’19 fundus dataset; (b), (d), (f), and (h) show the reliability diagrams

obtained respectively using the Set-40, Set-60, Set-80, and Set-100 datasets constructed from

Shenzhen TB CXR dataset.

(TIF)

S4 Fig. Confusion matrices obtained using the uncalibrated and calibrated probabilities (from

left to right) at the baseline threshold of 0.5 for the Set-40, Set-60, and Set-80 datasets con-

structed from the APTOS’19 fundus dataset. (a), (c), and (e) show the confusion matrices

obtained using uncalibrated probabilities; (b), (d), and (f) show the confusion matrices

obtained using calibrated probabilities.

(TIF)

S5 Fig. Confusion matrices obtained using the uncalibrated and calibrated probabilities (from

left to right) at the baseline threshold of 0.5 for the Set-40, Set-60, and Set-80 datasets con-

structed from the Shenzhen TB CXR dataset. (a), (c), and (e) show the confusion matrices

obtained using uncalibrated probabilities; (b), (d), and (f) show the confusion matrices

obtained using calibrated probabilities.

(TIF)

S6 Fig. PR curves with their optimal thresholds obtained using the uncalibrated and cali-

brated probabilities for the Set-40, Set-60, Set-80, and Set-100 datasets. (a), (c), (e), and (g)

shows the PR curves obtained respectively using the Set-40, Set-60, Set-80, and Set-100 datasets

from APTOS’19 fundus dataset; (b), (d), (f), and (h) show the PR curves obtained respectively
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using the Set-40, Set-60, Set-80, and Set-100 datasets from Shenzhen TB CXR dataset.

(TIF)

S7 Fig. Polar coordinates plot showing the MCC metric achieved at the optimal operating

thresholds, by the DenseNet-121 and VGG-16 models using calibrated and uncalibrated prob-

abilities generated from Set-20, Set-60, and Set-100 datasets for (a) APTOS’19 fundus and (b)

Shenzhen TB CXR data collections, respectively.

(TIF)

S8 Fig. Confusion matrices obtained using the uncalibrated and calibrated probabilities (from

left to right) at the optimal thresholds derived from the PR curves for the Set-40, Set-60, and

Set-80 datasets constructed from the APTOS’19 fundus dataset. (a), (c), and (e) show the con-

fusion matrices obtained using uncalibrated probabilities; (b), (d), and (f) show the confusion

matrices obtained using calibrated probabilities.

(TIF)

S9 Fig Confusion matrices obtained using the uncalibrated and calibrated probabilities

(from left to right) at the optimal thresholds derived from the PR curves for the Set-40,

Set-60, and Set-80 datasets constructed from the Shenzhen TB CXR dataset (a), (c), and (e)

show the confusion matrices obtained using uncalibrated probabilities; (b), (d), and (f)

show the confusion matrices obtained using calibrated probabilities.

(TIF)

S1 Table. ECE metric achieved by the DenseNet-121 and VGG-16 models that are respec-

tively retrained on the Set-40 and Set-80 datasets, individually from APTOS’19 fundus

(n = 600) and Shenzhen TB CXR (n = 200) image collections. The value n denotes the num-

ber of test samples. Data in parenthesis are 95% CI as the Wilson score interval provided for

the ECE metric. The best performances are denoted by bold numerical values in the corre-

sponding columns.

(PDF)

S2 Table. Performance metrics achieved at the baseline threshold of 0.5, by the DenseNet-

121 and VGG-16 models using calibrated (using the best performing calibration method

from Table 4) and uncalibrated probabilities generated for Set-40 and Set-80 datasets

from the APTOS’19 fundus (n = 600) and Shenzhen TB CXR (n = 200) image collections,

respectively. Data in parenthesis denote the performance achieved with uncalibrated probabil-

ities and data outside the parenthesis denotes the performance achieved with calibrated proba-

bilities. The best performances are denoted by bold numerical values in the corresponding

columns.

(PDF)

S3 Table. Optimal threshold values identified from the PR curves using uncalibrated and

calibrated probabilities (using the best-performing calibration method for the respective

datasets) for Set-40 and Set-80 datasets. The text in parentheses shows the best-performing

calibration method used to produce calibrated probabilities.

(PDF)

S4 Table. Performance metrics achieved at the optimal threshold values (from Table 3), by

the DenseNet-121 and VGG-16 models using calibrated (using the best performing cali-

bration method from Table 4) and uncalibrated probabilities generated for Set-40 and Set-

80 datasets from the APTOS 2019 fundus (n = 600) and Shenzhen TB CXR (n = 200) data-

sets, respectively. Data in parenthesis denote the performance achieved with uncalibrated
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probabilities and data outside the parenthesis denotes the performance achieved with cali-

brated probabilities. The best performances are denoted by bold numerical values.

(PDF)
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