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Urbanization associates with restricted gut
microbiome diversity and delayed
maturation in infants

Francesco Morandini,1 Kevin Perez,2 Loic Brot,3,4 Sidy Mohammed Seck,5 Laurence Tibère,6 Jean-Pierre Grill,4

Enguerran Macia,7,8 and Philippe Seksik3,4,9,10,*

SUMMARY

Alterations of the microbiome are linked to increasingly common diseases such as obesity, allergy, and in-
flammatory bowel disease. Post-industrial lifestyles are thought to contribute to the gut microbiome al-
terations that cause or aggravate these diseases. Comparing communities across the industrialization
spectrum can reveal associations between gut microbiome alterations and lifestyle and health, and help
pinpoint which specific aspect of the post-industrial lifestyle is linked to microbiome alterations. Here,
we compare the gut microbiomes of 60 mother and infant pairs from rural and urban areas of Senegal
over two time points. We find that urban mothers, who were more frequently overweight, had different
gut microbiome compositions than rural mothers, showing an expansion of Lachnospiraceae and Entero-
bacter. Urban infants, on the other hand, showed a delayed gut microbiome maturation and a higher sus-
ceptibility to infectious diseases. Thus, we identify new microbiome features associated with industriali-
zation, whose association with disease may be further investigated.

INTRODUCTION

Gut microbiome composition is known to affect a vast number of biological processes, including metabolism, immunity, and behavior.1–4 At

the same time, gut microbiome composition is highly plastic, and responds to lifestyle and environmental factors.5 Such factors change

greatly as societies become industrialized, acquiring access to antibiotics and better sanitization, as well as transitioning to a westernized

diet, typically characterized by increased consumption of refined carbohydrates, saturated fats, and reduced consumption of fruit, vegeta-

bles, and whole grains.6 The post-industrial microbiome has drifted significantly from its pre-industrial state and several health conditions

that are more common in industrialized societies such as obesity and inflammatory bowel disease are known to be linked with microbiome

composition. As themicrobiota and their human hosts have coevolved to form a symbiotic relationship, it is theorized that the perturbation of

this equilibrium caused by the post-industrial lifestyle may be partially to blame for these health conditions. Comparison of post-industrial

populations with communities that still practice pre-industrial subsistence strategies could allow us to identify which microbiome alterations

associate with industrialization and may offer clues as to which lifestyle and environmental factors are responsible for these changes.7

In the last decades, the African continent has been making rapid advances toward industrialization; nonetheless, it is home to many com-

munities whose lifestyle is still pre-industrial, as well as other communities that are in the midst of the transition. With this in mind, the societal

and environmental diversity of Africa offers the possibility to study the microbiota of communities that share similar environments and ge-

netics but occupy different points along the industrialization spectrum. Nonetheless, to this day, the number of microbiome studies carried

out in Africa is much smaller than those carried out in Europe or Northern America.7,8 Therefore, it is still unclear which microbial features can

be considered universal aspects of the transition to a post-industrial lifestyle and which are specific to the regions and subsistence strategies

of the studied populations. Moreover, especially when dealing with populations in remote areas, microbiome data are often scarce,

comprising few samples; single time points and detailed information regarding overall health and lifestyle are not always available. The

lack of multiple time points is particularly disadvantageous when studying the development of the infant gut microbiome as its composition
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is highly dynamic during the first years of life. Finally, not all studies compared populations of the same ethnicity, confounding the effects of

environmental and lifestyle factors with those determined by genetic differences.

To bridge these gaps, we have profiled the gut microbiomes of 30 mothers and infants from a pastoralist community in Senegal and

compared them to 30mothers and infants of the same ethnicity from an urban area, at two time points. Moreover, we have collected detailed

information regarding the health and lifestyle of both populations. To our knowledge, this study is the first to analyze the microbiome of a

pastoralist community in Africa, and to compare rural and urban African populations over multiple time points.

RESULTS

Population description

The Fula are an ethnic group spread throughout western Africa, northern central Africa, and northeastern Africa and comprise communities

with vastly different lifestyles. For this study, we have recruited, within this ethnic group, two groups of mothers and infants from rural and

urban areas of Senegal.

The individuals enrolled in the rural group reside inWidou Thiengoli in the Ferlo region in the north of Senegal. This region is located at the

edge of the Sahara Desert and is thus extremely arid. The locals practice a nomadic pastoralist lifestyle, as the dry weather conditions are

prohibitive to most food crops, except for the cowpea. Their diet is largely dependent on milk and other dairy products, cowpea, rice,

and millet. Some of the rarer ingredients found in their cuisine include beef, dried fish, and a few herbs and spices used for seasoning.

Notably, we previously observed some western influences in their diets, such as the occasional use of oil for cooking, bouillon, and sugar,

typically added to tea or coffee.9 The infrastructure in the region is minimal: there is no electricity and drinking water is sourced from ponds

or boreholes. Moreover, the local medical centers often lack even basic supplies, including antibiotics. In summary, the lifestyle of the Fula

living in Widou Thiengoli is almost completely pre-industrial.

The individuals enrolled in the urban group reside in Dakar, where living conditions contrast strongly with those ofWidou Thiengoli. Dakar

residents have access to electricity, running water, healthcare, and education. Their diet consists of a mixture of traditional Fulani dishes but

also includes dishes of other local traditions as well as ‘‘globalized’’ ingredients and recipes, leading to muchmore nutritional variety than we

observed in the diet of the rural group. Fish and rice were among themost common ingredients, accompanied by a large variety of vegetables

and seasonings. Oil and salt or bouillon was often used for cooking. In conclusion, the lifestyle of the individuals in the urban group and the

environment in which they live is decidedly post-industrial.

Study design and sampling

The cohort examined in this study consists of 60 Fula mother and infant pairs, 30 of which formed the rural group fromWidou Thiengoli area,

and the remaining 30 formed the urban group from Dakar (Figure 1A). We collected stool samples at two time points, the first (T1) within

6 months of delivery and the second (T2) one year after T1 when all infants had been introduced to a (partially) solid diet.

We detected a total of 4901 amplicon sequence variants which we mapped to 21 phyla and 385 genera by referencing to the SILVA 13.8

database.10 Analysis of rarefaction curves revealed that the number of detected taxa plateaued before 14000 read pairs (Figure S1), meaning

that all samples but one had sufficient sequencing depth to capture the full richness of the microbial communities and were thus included in

the analysis. Importantly, stool sample collection at both time points was accompanied by amedical examination including personal and fam-

ily history of diseases, body mass index measurements, current treatments (all medication including antibiotics and NSAIDs), as well as an

interview on lifestyle and dietary habits. We note that antibiotic use was overall low in both rural and urban groups during the study: only

two infants belonging to the urban group had recently been administered amoxicillin, shortly before T1. Additionally, all infants except

two (1 rural, 1 urban) had been delivered naturally. Two urban infants were partially formula-fed, whereas the remainder of the infants

were fed with fresh milk. The key descriptors of the studied cohort are summarized in Tables 1 and 2, while the full metadata is available

in Table S1.

The gutmicrobiome ofmothers is shaped by urbanization status, time since pregnancy, and colonization by Entamoeba coli

First, we explored broad differences between the gut microbiomes of rural and urban mothers (Figure 1B). At T1, the most prevalent phyla

were Firmicutes (79%), Bacteroidota (11%), Proteobacteria (5%), and Actinobacteriota (4%), with no significant differences between rural and

urban groups (Mann-Whitney U test, p = 0.542, 0.390, 0.889, 0.752). At T2, the most prevalent phyla were Firmicutes (73%), Actinobacteriota

(10%), Bacteroidota (9%), and Proteobacteria (4%) with lower abundance of Firmicutes in rural individuals compared to urban individuals, and

no other significant differences (p = 0.036, 0.607, 0.503, 0.221). Between T1 and T2, we observed an increase in the abundance of Actinobac-

teriota in both rural and urban mothers (Wilcoxon signed-rank test, rural: p = 0.020, urban: p = 0.039) which seemed to correspond to a

decrease in Firmicutes in rural mothers but not in urban ones (rural: p = 0.046, urban: p = 0.324).

Alpha diversity, measured by multiple metrics, was higher in urban mothers, compared to rural, although not significantly (Figures 2A and

S2). Curiously, we observed an increase in alpha diversity between T1 and T2 for both rural and urban mothers. As the two time points were

processed in separate batches, this difference could be due to a technical batch effect. On the other hand, previous studies have shown that

alpha diversity decreases during pregnancy,11,12 thus the increase in alpha diversity between T1 and T2might reflect a recovery from the state

of low diversity at the end of pregnancy. Indeed, at T1, the Chao1 index of mothers was positively correlated with time since delivery (Fig-

ure 2B). We looked for further associations between alpha diversity and lifestyle/environmental factors by constructing linear regression
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models with the Chao1 index as dependent variable and selecting explanatory variables by stepwise feature selection. The resulting model

selected the covariates for time since pregnancy, rural/urban environment, and colonization by Entamoeba coli (t since preg.: p < 0.001, envi-

ronment: p = 0.038, Entamoeba coli: p = 0.028). Entamoeba coli is a non-pathogenic amoeba which was previously found to strongly affect

gut microbiome composition in several Cameroonian communities.13 In our cohort, colonization by Entamoeba coli was associated with

increased alpha diversity (Figure 2C) and was more common in the rural group than the urban one, albeit not significantly (Fisher’s exact

test: odds ratio = 0.42, p = 0.107).

Beta diversity analysis using permanova14 produced different results based on themetric of beta diversity employed: differences between

rural and urban environments hadmuch stronger effect and significance on Bray-Curtis, Aitchison, and unweighted UniFrac distances than on

Table 1. Summary of the mother’s cohort characteristics

Rural mothers T1 Urban mothers T1 Rural mothers T2 Urban mothers T2

Number 30 30 27 27

Age (years) 26 G 8.6 26.5 G 6.1 27.9 G 8.4 27.7 G 6.4

Height (cm) 164.2 G 6.2 161.7 G 4.9 164.1 G 6.7 161.9 G 5

Weight (kg) 57.9 G 9.2 62.7 G 13.3 57 G 10.1 64.1 G 18.6

BMI 21.4 G 2.4 24 G 5.1 21.1 G 2.8 24.4 G 7.1

WHR 0.78 G 0.06 0.81 G 0.06 0.8 G 0.04 0.83 G 0.08

Entamoeba coli + 10 (33.3%) 5 (16.7%) 6 (22.2%) 3 (11.1%)
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Figure 1. Design of the study and phylum-level gut microbiome composition of the study groups

(A) Design of the study.

(B) Proportions of most common phyla for mothers and infants at both time points. One bar corresponds to one individual. Individuals have been ordered by

decreasing proportion of Firmicutes.
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the weighted UniFrac distance (Bray-Curtis: R2 = 0.019, p = 0.001, Aitchison: R2 = 0.015, p = < 0.001, UniFracU: R2 = 0.016, p = 0.027, Uni-

FracW: R2 = 0.010, p = 0.348). As the type of environment had a stronger effect on the unweighted UniFrac distance than on its weighted

counterpart, this could mean that the microbiome of mothers residing in rural areas differed from the microbiome of urban dwellers mostly

by the presence or absence of rare, phylogenetically diverse taxa. We note that, despite significance, the variance explained by the environ-

ment was relatively low (R2 � = 1%–2%). This is, however, in line with similar studies which investigated associations between lifestyle, envi-

ronment, and gut microbiome composition in relatively homogeneous populations.13,15,25 Next, we repeated permanova including terms for

potential confounders (Figures 2D and S3). As for alpha diversity, time since pregnancy and Entamoeba coli parasitism had a significant effect.

The effect of time since pregnancy was stronger on unweighted rather than weighted UniFrac distances, whereas the opposite was true for

Entamoeba coli parasitism. Notably, Entamoeba coli-positive individuals formed a clear cluster in the first two components of principal co-

ordinate analysis (PCoA) on Bray-Curtis dissimilarities (Figure 2E). Finally, BMI and age had generally weak effects among the explored vari-

ables, but they were nonetheless significant according to most metrics.

Lastly, we used Maaslin216 to look for microbial genera whose abundance differed between rural and urban environments. We included

covariates for time since pregnancy and Entamoeba coli parasitism due to the strong effects that they showed on alpha and beta diversity, as

well as random effect terms for individuals and time points to account for repeated measurements and batch effects (Figure 2F). Focusing on

differences related to urbanization, we observed a loss of Enterococcus and Lactococcus in urban mothers. These genera are closely related

and found in fermented dairy foods.17,18 Thus, their difference in abundance between the rural and urban group is probably due to higher

consumption of dairy products in the pastoralist rural population. Butyrivibrio and Lachnospira are two genera within Lachnospiraceae, a fam-

ily with conflicting associations with human health.19 While several studies found that higher overall levels of Lachnospiraceae and Lachno-

spira associated with obesity andmetabolic syndrome, not all genera within Lachnospiraceae associated with negative health conditions.20,21

Nonetheless, the group of urban mothers showed increased abundance of Butyrivibrio and Lachnospira and higher BMI (Table 1) compared

to the rural group, possibly confirming the association between Lachnospiraceae and obesity in this population. Lastly, Enterobacter, another

genus with association to obesity, was more abundant in urban mothers.22,23

The gut microbiome of urban infants shows delayed maturation

Next, we investigated the effects of urban conditions on the composition anddevelopment of the infantmicrobiome. At T1, when infants were

exclusively milk-fed, the most abundant phyla were Actinobacteriota (55%), Proteobacteria (26%), Firmicutes (19%), and Bacteroidota (<1%),

with no significant differences between the rural and urban group (Figure 1B, Mann-Whitney U test, p = 0.572, 0.958, 0.898, 0.388). Interest-

ingly, we observed a sub-group (n = 12) of individuals whose microbiome was almost entirely populated by Proteobacteria. At T2, after the

introduction of solid foods, the infant’smicrobiomemainly comprisedActinobacteriota (46%), Firmicutes (43%), Proteobacteria (7%), and Bac-

teroidota (2%) with a higher abundance of Bacteroidota in rural infants and no other significant differences (Mann-Whitney U test, p = 0.242,

0.335, 0.400, 0.037). None of the infants at T2 exhibited the high abundance of Proteobacteria observed at T1. Between T1 and T2, both rural

and urban groups saw an increase in abundance of Firmicutes (rural: p = 0.002, urban: p = 0.001) and a decrease in Proteobacteria (rural: p =

0.019, urban: p = 0.003). The increase in abundance of Bacteroidota was more pronounced in the urban group than in the rural one, even

though Bacteroidota were more abundant in the microbiome or rural infants (rural: p = 0.095, urban: p = 0.033).

Before continuing our analysis, we briefly investigated the Proteobacteria-high sub-group observed at T1. Individuals with high Proteo-

bacteria abundance (>50%) were equally common in the rural and urban groups (Fisher’s exact test: odds ratio = 0.98, p = 1) and were neither

younger nor older than the rest of the infants (Mann-Whitney U test, p = 0.503). In the PCoA of weighted UniFrac distances computed on all

samples, the Proteobacteria-high group formed a cluster that was equidistant fromboth themothers and the remaining infants (Figure S1E). A

longitudinal study profiling the gut microbiome of Nigerian infants similarly found high levels of Proteobacteria in young infants.24 As the

high-Proteobacteria group appeared to have a completely distinct phenotype from the rest of the infants and was a minority in our dataset,

we opted to remove them from the analysis.

Table 2. Summary of the infants’ cohort characteristics

Rural infants T1 Urban infants T1 Rural infants T2 Urban infants T2

Number 30 30 27 27

Age (months) 3 G 1.7 2.6 G 1.6 14.8 G 1.7 14.5 G 1.9

Male | Female 19 | 10 17 | 13 17 | 9 16 | 11

Height (cm) 60.6 G 6.3 58.6 G 5.6 78.3 G 4.4 74.2 G 3.4

Weight (kg) 5.8 G 1.7 5.6 G 1.7 9.3 G 1.4 9.4 G 1.3

BMI 15.4 G 2 16 G 2.5 15.2 G 1.8 17 G 1.7

Head circumference (cm) 39.9 G 3.2 39.5 G 2.6 45.6 G 1.7 45.9 G 1.2

C section delivery 1 (3.3%) 1 (3.3%) 1 (3.7%) 0 (0%)

Time since solid diet introduced (months) 0 G 0 0 G 0 9 G 2.6 7.7 G 2.3

Weaned 0 (0%) 0 (0%) 1 (3.7%) 2 (7.4%)
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Figure 2. Factors affecting gut microbiome diversity and composition in mothers

(A) Comparison of alpha diversity (Chao1) between rural and urban mothers at multiple time points.

(B) Correlation between time since delivery and alpha diversity in mothers (Chao1).

(C) Effect of Entamoeba coli parasitism in mothers, separated by rural/urban and time point.

(D) Variables explaining beta diversity (Aitchison) between mothers ranked by effect size. (. = p < 0.1, * = p < 0.05, ** = p < 0.01, *** = p < 0.001).

(E) PCoA of Aitchison beta diversity, showing clustering of Entamoeba coli + mothers. Group centroids are included as a visual aid.

(F) Associations between genera abundance in mothers and rural/urban environment, Entamoeba coli parasitism, and time since delivery.
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Figure 3. Factors affecting gut microbiome diversity and composition in infants

(A) Comparison of alpha diversity (Chao1) between rural and urban infants at multiple time points.

(B) Variables explaining beta diversity (Aitchison) between infants ranked by effect size. (. = p < 0.1, * = p < 0.05, ** = p < 0.01, *** = p < 0.001) (C) PCoA of

Aitchison beta diversity, showing a maturation trajectory from newborn (T1) to adult microbiome. Group centroids are included as a visual aid.

(D) UnifracW beta diversity between adults and infants by group.

(E) Associations between genera abundance in infants and rural/urban environment, infant age, and the interaction of environment and age.
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Alpha diversity did not differ between the rural and urban groups at T1; however, at T2, all examined metrics indicated higher alpha di-

versity in rural infants (Figures 3A and S2). We once again looked for lifestyle/environmental variables associated with alpha diversity in infants

by constructing linear regression models. The selected model included terms for infant age, rural/urban environment, and their interaction

but no additional lifestyle-related variables (Age: p < 0.001, environment: p = 0.821, age*environment: p = 0.081).

Permanova analysis of beta diversity revealed that in infants, like inmothers, the type of environment had a significant effect on Bray-Curtis,

Aitchison, and unweighted UniFrac distances but not on the weighted UniFrac distance (Bray-Curtis: R2 = 0.021, p = 0.027, Aitchison: R2 =

0.015, p = 0.008, UniFracU: R2 = 0.021, p = 0.026, UniFracW: R2 = 0.015, p = 0.180). The type of environment had a stronger effect when per-

forming permanova on infants at T2 separately (Bray-Curtis: R2 = 0.039, p = 0.030, Aitchison: R2 = 0.028, p = 0.006, UniFracU: R2 = 0.039, p =

0.014, UniFracW: R2 = 0.038, p = 0.103). When more terms were included, we observed a strong effect related to infant age while BMI and

gender of the infant did not appear to have any influence on beta diversity (Figures 3B and S3). PCoA of weighted UniFrac distances

computed on all samples placed the infants on a trajectory of maturation from newborn to adult (Figure 3C). Because urban infants showed

delayed maturation of alpha diversity, we asked if beta diversity would indicate that the gut microbiomes of urban infants were further sepa-

rated from adult microbiomes, compared to rural infants. Indeed, we found that at both time points, beta diversity between urban mothers

and infants was higher than between rural mothers and infants according to all metrics (Figures 3D, S4A, S4C, S4E, and S4G) despite rural

infants being almost exactly the same age as urban ones (9 days difference in means, t test p = 0.809). This finding is in agreement with a

prior study which found a higher similarity between the gut microbiome of rural infants and adults than between the microbiome of urban

infants and adults.25 Lastly, we wondered if the infant microbiome could be more similar to the microbiome of the infants’ own mothers

as compared to the microbiome of unrelated adults due to genetics, exposure to common environmental sources, or a shared lifestyle; how-

ever, this did not appear to be the case at either of the time points (Figures S4B, S4D, S4F, and S4H).

The gut microbiome affects the development of the immune system in infants, influencing the response to infection and the development

of allergies.26 Thus, we wondered if the delayedmaturation of the gutmicrobiome in urban infants (lower alpha diversity, higher beta diversity

from mothers compared to rural) associated with weakened immune defenses or a higher prevalence of allergy. Indeed, our medical exam-

inations reported a higher prevalence of diseases (mostly infections, respiratory and dermatologic) in urban infants compared to rural infants

at T2 (Experiencing symptoms/total group size: urban 16/27, rural 6/27; Fisher’s exact test: odds ratio = 4.93, p = 0.012). Notably, 5 infants from

the urban group experienced some symptoms of allergy during or prior to the T2 medical examination, while only one child in the rural group

experienced such symptoms (odds ratio = 5.74, p = 0.192). Because urban environments correspond to increased human density, the higher

prevalence of infectious diseases in the urban group at T2 could simply be explained by facilitated infection spreading in densely populated

areas.27 However, we note that disease prevalence was actually higher in the rural group at T1, albeit not significantly (Experiencing symp-

toms/total group size: urban 5/24, rural 11/23, odds ratio = 0.30, p = 0.069).

Finally, we again used Maaslin2 to look for associations between the abundance of specific genera and type of environment, infant age,

and the interaction of the former two variables (Figure 3E). To our surprise, only 2 of 27 significant associations were related to the type of

environment, whereas the remaining 25 genera were positively associated with infant age. In particular, urban infants showed lower abun-

dance of the genus Libanicoccuswhich is closely related toOlsenella, andwithin theCoriobacteriales order.28 This order is common in human

microbiomes and carries out important functions such as the conversion of bile salts and the activation of dietary polyphenols.29 Not surpris-

ingly, the remaining genera such as Blautia, Roseburia, Lachnospira, Lachnoclostridium, Eubacterium, and Clostridium, which increased in

relative abundance with infant age, are found in infant gut microbiota and usually associate with mature adult microbiota and aging.30 In

conclusion, urbanization showedonlyminor associations with abundance ofmicrobiota at the genus level. However, before runningMaaslin2,

we filtered out rare genera as abundance data for rare genera are highly sparse and sensitive to outliers. It is possible that themain differences

between the microbiome of rural and urban infants consist in the presence or absence of rare genera, rather than the abundance of com-

mon ones.

DISCUSSION

Our study investigates how urbanization, lifestyle, and environment associate with gut microbiome composition in adulthood and during

development. To approach this question, we performed a longitudinal study on a genetically homogeneous population, living in drastically

opposite conditions such as urban and rural environments. Our results clearly show that urbanization associates with changes in gut micro-

biome composition in both adults and infants, although seemingly, in very different ways between the two groups. While urbanization

associated with slowed growth of alpha diversity in infants, it seemed to slightly boost it in mothers. A possible explanation is that the

better sanitary conditions of urban environments reduce the exposure of infants to microbial sources, while in adults, alpha diversity

has had time to ‘‘saturate’’. Beta diversity revealed urbanization-related compositional changes in the microbiome of both adults and in-

fants, but this effect was stronger in adults. This could once again be explained by the difference in timescales relevant for adults and

infants: by year 1, infants have had limited exposure to factors which differ between rural and urban environments. Diet, for example,

only starts diversifying after the infants are introduced to solid food. Conversely, lifestyle and environment have ample time to affect

the microbiome of adults. This is also evidenced by the larger number of factors which affected beta diversity in mothers (urbanization,

Entamoeba coli parasitism, time elapsed since pregnancy, BMI, and age) as compared to infants (age and urbanization). Similarly, multi-

variable association discovery using Maaslin2 showed that the abundance of several genera in the microbiome of mothers was associated

with urbanization, whereas only two genera were associated with urbanization in infants. Taken together, these pieces of evidence suggest

that urbanization alters the composition of the adult gut microbiome by boosting or inhibiting the growth of specific commensals by
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unknown mechanisms (e.g., diet, sanitization, pollution .). In contrast, urbanization may act on the gut microbiome of infants by limiting

the exposure to diverse genera, delaying the growth of alpha diversity but only driving minor compositional changes with respect to rural

gut microbiomes, at least in this population.

Our findings point to interesting links between urbanization, gut microbiome, and human health. Gut microbiota interact with the immune

system, and alterations to the microbiome can disrupt immune functions.4,5,26 In this study, we observed that urban infants, who showed de-

layed maturation of the gut microbiome at T2, were more susceptible to infectious diseases at T2 compared to rural infants but not at T1.

Furthermore, symptoms of allergy tended to bemore common in urban infants compared to rural. These results would need to be confirmed

in a larger cohort and with additional time points but are nonetheless intriguing, given the intimate relationship between the gut microbiome

andmaturation of the immune system during infancy.26 As for the mothers in our study: the urban group had higher BMIs than the rural group

and showed increased abundance of microbial taxa previously found to associate with obesity such as Lachnospiraceae and Entero-

bacter.20–23 It would be worth investigating the link between these taxa and weight gain both in a general setting and in recent mothers,

who may gain weight as a consequence of pregnancy.

Although our study is mainly descriptive, we believe that our results allow us to draw strong conclusions due to several strengths of the

study design. First and foremost, we chose to study rural and urban communities of matching (Fula) ethnicity. This was critical to study the

effects of lifestyle and environment without the genetic confounder, which often limits the interpretability of studies contrasting urban and

rural societies across the world. As confirmation of genetic homogeneity, we did not find the gut microbiomes of related mother-infant pairs

to be more similar to each other than those of unrelated pairs. Second, the inclusion of two time points in the study design allowed us to

investigate the gut microbiome development in infants over the transition to solid foods. Thanks to repeated measurements, we were

also able to identify and correct for the confounding effect of pregnancy on the microbiome composition in mothers. Lastly, we were able

to obtain highly detailed information on the health and dietary habits of the studied populations. This level of detail is often unavailable

for communities living in remote areas and allowed us to test for associations between many lifestyle variables and gut microbiome

composition.

Despite the rich health and lifestyle data, we were not able to pinpoint the sources of microbiome alterations associated with urbanization.

The transition to an urban lifestyle is characterized bymany changes in habits (nutrition, work, social structure.) and in the environment (sani-

tization, pollution, human density.). Separating the individual effects of these factors on themicrobiome and health is indeed challenging. It

is not clear why the microbiome of rural infants showed a faster development than that of urban infants. We hypothesize that pollution and

water sanitation, two factors which we did not measure in this study, may have played a role. Additionally, we did not have access to quan-

titative information regarding caloric intake and macronutrients. Finally, we may have missed associations present in our data due to insuf-

ficient statistical power. Future studies interested in determining how exactly urbanization exerts a pressure on the gut microbiome should

strive to collect detailed information on nutrition, water sanitation, and parasite colonization.

In conclusion, our study shows several ways in which urbanization can influence the gut microbiome in adulthood and infancy. These find-

ings contribute to our understandingon how industrialization has alteredgutmicrobiomes in developed anddeveloping countries, leading to

the rise of several non-communicable diseases. We hope that continued efforts in studying the transition from pre- to post-industrial micro-

biomes will help produce treatments and health recommendations that prevent the emergence of non-communicable diseases as more of

the world becomes industrialized.

Limitations of the study

Although we collected information on antibiotic usage, and are confident that data regarding recent antibiotic use are complete, we did not

have access to information on lifetime antibiotics usage. Additionally, the nutrition data we collected included lists of ingredients and meals,

but it did not include calorie or macronutrient intake quantifications.
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Núñez, G. (2017). Gut microbiota: Role in
pathogen colonization, immune responses,
and inflammatory disease. Immunol. Rev.
279, 70–89. https://doi.org/10.1111/imr.
12567.

5. Conlon, M.A., and Bird, A.R. (2014). The
Impact of Diet and Lifestyle on Gut
Microbiota and Human Health. Nutrients 7,
17–44. https://doi.org/10.3390/nu7010017.

6. Statovci, D., Aguilera, M., MacSharry, J., and
Melgar, S. (2017). The Impact of Western Diet
and Nutrients on theMicrobiota and Immune

Response at Mucosal Interfaces. Front.
Immunol. 8, 838.

7. Brewster, R., Tamburini, F.B., Asiimwe, E.,
Oduaran, O., Hazelhurst, S., and Bhatt, A.S.
(2019). Surveying Gut Microbiome Research
in Africans: Toward Improved Diversity and
Representation. Trends Microbiol. 27,
824–835. https://doi.org/10.1016/j.tim.2019.
05.006.

8. Allali, I., Abotsi, R.E., Tow, L.A., Thabane, L.,
Zar, H.J., Mulder, N.M., and Nicol, M.P.
(2021). Human microbiota research in Africa:
a systematic review reveals gaps and
priorities for future research. Microbiome 9,
241. https://doi.org/10.1186/s40168-021-
01195-7.

9. Macia, E., Tibère, L., Ka, A., Seksik, P., Faye,
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Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Philippe Seksik

(philippe.seksik@aphp.fr).

Materials availability

This study did not generate any new unique materials.

Data and code availability

� The raw 16s RNA-seq data generated in this study is available on SRA under the accession code: PRJNA899851.
� The code used to call ASVs, assign taxonomic annotations, perform the analysis, and create figures is available at https://github.com/

SunScript0/Fula-microbiome.

� Instructions to recreate the entirety of the analysis and figures are included with the code.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

This study involved 120 humanparticipants of Fula ethnicity. Deidentified demographic, nutritional and health data is included in Table S1 and

summarized in Tables 1 and 2. The study was approved by Ethical committee No. 272/MSAS/DPRS/CNRS 28May 2014 and informed consent

was ensured.

METHOD DETAILS

Subject enrollment and questionnaires

The two sampling campaigns (T1 and T2) were conducted in July 2017 and July 2018 in two regions (urban and rural). Mother-child pairs

were deemed eligible for the study if the child had been born less than six months prior to T1. For each region, the first 30 mothers who

accepted and their newborns were included in the study after informed consent (Ethical committee No. 272 /MSAS/DPRS/CNERS 28 May

2014). Thus, 60 mother and infant pairs were part of the study at T1, however, six of them dropped out of the study before T2. At each

sampling campaign, general anthro-biometric, health, and dietary data questionnaires were filled. The questionnaire was written in French

and the questions were asked in Wolof by the interviewers. Briefly, questionnaires were developed to collect data on the socio-demo-

graphic characteristics of the households, the health status, and feeding practices of the mother and child as previously described.31,32

The feeding practice information included a list of ingredients used in any meal throughout the day for both mothers and infants, and

the number of individuals present at meals. Additional information regarding the infants included the first meal that infants received after

birth, the time (months) since introduction to solid food at T2, and whether the infants had been weaned. Infants received fresh milk unless

otherwise reported.

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Raw 16S rRNA data This paper SRA: PRJNA899851

Oligonucleotides

16S rRNA V3-V4 region primers, forward:

TACGGRAGGCAGCAG reverse:

CTACCNGGGTATCTAAT

This paper

Software and algorithms

Analysis code This paper https://github.com/SunScript0/Fula-

microbiome

QIIME2 version 2021.11 Bolyen et al.36 https://qiime2.org/

R version 4.0.4 https://www.r-project.org/

Maaslin2 Mallick et al.16 https://huttenhower.sph.harvard.edu/maaslin/
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Stool sample collection

A fecal sample from themother and child was collected and immediately sampled in three aliquots: two tubes of 200mL in RNA-later tubes�
were frozen at -20�C on site within 12 h for gut microbiota analysis and the remainder of the sample (> 40 g) was stored at 4�C for parasite

screening performed in Dakar (UMI 3189, UCAD, CNRS). At the end of each campaign, which lasted less than a week, all samples were ship-

ped frozen to Dakar (UMI 3189, UCAD, CNRS) and then transferred on dry ice from Senegal to the MI2 lab (microbiota, intestine & inflam-

mation - CRSA UMRS_938, Inserm, Sorbonne université) and frozen on arrival at -80�C.

16s rRNA sequencing

DNA was extracted from fecal samples by both mechanical and chemical methods, as previously described.33 Microbial lysis was performed

by both mechanical and chemical methods. Briefly, mechanical lysis was performed with glass beads and following isopropanol precipitation

of nucleic acids for 10min at room temperature, samples were incubated on ice for 15min and then centrifuged for 30min at 20 000 g and 4�C.
The resulting pellets were suspended in phosphate buffer (450 mL) and potassium acetate (50 mL). Following RNase treatment and DNA pre-

cipitation, recovery of nucleic acids was performed via centrifugation at 20 000 g and 4�C for 30min. TheDNApellet was suspended in 80 mL of

trypsin-EDTA buffer. Amplicon sequencing of the V3-V4 region of the 16S ribosomal RNA gene was employed for microbiota analysis. The

primers used for this analysis were – 16S sense 50-TACGGRAGGCAGCAG-30 and anti-sense 50-CTACCNGGGTATCTAAT-30. This was per-
formed using an optimized and standardized 16S amplicon library preparation protocol (Metabiote, GenoScreen, Lille, France). 16S DNA

PCR was performed with 5 ng of genomic DNA with barcoded primers (Metabiote MiSeq Primers) according to the manufacturer’s protocol

(Metabiote) at a final concentration of 0.2 mmol/L, with an annealing temperature of 50�C for 30 cycles. PCR product purification was per-

formed with Agencourt AMPure XP-PCR purification system (Beckman Coulter, Brea, CA, USA) and was quantified according to the manu-

facturer’s protocol with samplesmultiplexed at equal concentrations. An IlluminaMiSeq platform (Illumina, San Diego, CA, USA) was used for

sequencing both timepoints in two different sequencing runs: a 250 bp paired-end sequencing protocol and a 300 bppaired-end sequencing

protocol, at GenoScreen. Raw paired-end sequencing reads were subjected to the following initial procedures at GenoScreen: (1) quality

filtering with the PRINSEQ-lite PERL script,34 truncating bases from the 30 end with a quality <30 (based on the Phred algorithm) and (2) using

CutAdapt to remove primers, with no mismatches allowed in the primer sequences.35 Only sequences with perfectly matching forward and

reverse primers were retained for further analysis.

ASV calling, taxonomic assignment

Pre-processed sequences were imported in qiime236 version 2021.11 and denoised using the dada2 qiime plugin37 with –p-trim-left-f 10, –p-

trim-left-r 0, –p-trunc-len-f 0 and –p-trunc-len-r 0. A phylogenetic tree of ASV representative sequences was generated using align-to-tree-

mafft-fasttree with default settings.38 ASVs were assigned to a taxonomic annotation using a naı̈ve bayes classifier pre-trained on the SILVA

16s database clustered to 99% similarity.10,39,40 Abundance tables at genus and phylum levels were also generated by collapsing ASVs using

the qiime taxa collapse tool.

QUANTIFICATION AND STATISTICAL ANALYSIS

Quality control and exploration

Following processing with qiime2, the data was imported in R version 4.0.4 for analysis. We considered samples with more than 14000 read

pairs to be of good quality as rarefaction curved had reached a plateau at that sequencing depth, meaning that all samples but one had suf-

ficient depth to capture the full richness of the microbial communities. After removal of the sample with insufficient sequencing depth, the

relative abundance of the most common phyla (mean relative abundance across all samples > 1%) was summarized and compared across

groups. Having noted a subpopulation of infants with an abnormally high abundance of proteobacteria (> 50%) we opted to remove

them from the remainder of the analysis.

Alpha diversity

Alpha diversity was evaluated with three metrics (Shannon diversity, Chao1 index and Faith’s phylogenetic diversity (PD), in the Vegan and

Picante R packages41,42) applied to unrarefied ASV data and compared across groups. To explore variables associated with alpha diversity

we constructed linear regression models with alpha diversity (Chao1) as the dependent variable and selected independent variables by per-

forming stepwise feature selection using the stepAIC function in theMASSpackage.43 Feature selection for themothers’model started froma

null model and potential independent variables included rural/urban environment, time since pregnancy and their interaction, age, BMI,

Entamoeba coli colonization, number of unique ingredients used in food preparation, and average number of individuals present at meals.

Feature selection for the infants’ model started from a null model and potential independent variables included rural/urban environment, age

and their interaction, maternal age, BMI, sex, and the first meal the infants had after birth (to investigate potential effects on initial gut colo-

nization by microbiota). Seven samples from infants with abnormally high alpha diversity within their group were excluded from regression

analysis (Chao1 < Q1 – 1.5*IQR or Chao1 > Q3 + 1.5*IQR).
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Beta diversity

Beta diversity was evaluated with four metrics (Bray-Curtis dissimilarity, Aitchison distance, weighted and unweighted UniFrac) applied to un-

rarefied ASV data. The effects of explanatory variables on beta diversity were evaluated using Permanova implemented by the adonis2 func-

tion in the Vegan package with 2000 permutations. When multiple variables were included, effect significance was evaluated by margin. For

mothers and infants both, the effect of environment was evaluated individually first and later accounting for potential confounders. Variables

were considered as potential confounders either based on prior reports showing they may have an effect on beta diversity (e.g. BMI, age) or

based on having an effect on alpha diversity within this study (e.g. Entamoeba coli colonization, time since pregnancy). PCoAswere computed

with the cmdscale function in the stats package on all samples (Figures 3C and S1E) or on mothers only (Figure 2E).

Differential abundance

Multivariate association between lifestyle/environmental factors and abundance of microbial genera was investigated using Maaslin2.16 To

increase the interpretability of the results we removed taxa with undefined terms in their taxonomic annotation (genus unknown or containing

the term ‘‘uncultured’’ at any taxonomic level at or above genus). Additionally, to decrease the effect of outliers, we ignored genera that were

not detected in at least five samples in at least one group (e.g. urban infants at T2). This reduced the number of genera from 385 to 142, how-

ever, the removed taxa accounted for only 3.5% of microbial abundance on average.Maaslin2 was run on unrarefied counts with the following

arguments: normalization = ‘‘TSS’’, transform = ‘‘LOG’’, analysis_method = ‘‘LM’’, max_significance = 0.1, min_prevalence = 0. Fixed effects

were chosen based on the results of alpha and beta diversity analyses. Random effects for individuals and time points were included to ac-

count for the longitudinal nature of the measurements and potential batch effects. The full Maaslin2 results for mothers and infants can be

found in Data S2 and S3 respectively. Additionally, Data S4 and S5 contain Masslin2 results for mothers and infants without prior filtering to

genera detected in more than 5 samples.
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