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Insulin B-chain hybrid peptides
are agonists for T cells
reactive to insulin B:9-23 in
autoimmune diabetes

Janet M. Wenzlau1†, James E. DiLisio1†, Gene Barbour1,
Mylinh Dang2, Anita C. Hohenstein1, Maki Nakayama3,
Thomas Delong2, Rocky L. Baker1 and Kathryn Haskins1*

1Department of Immunology and Microbiology, School of Medicine, University of Colorado, Aurora,
CO, United States, 2Department of Pharmaceutical Sciences, Skaggs School of Pharmacy,
University of Colorado, Aurora, CO, United States, 3Department of Pediatrics-Barbara Davis Center,
School of Medicine, University of Colorado, Aurora, CO, United States
Insulin is considered to be a key antigenic target of T cells in Type 1 Diabetes

(T1D) and autoimmune diabetes in the NODmouse with particular focus on the

B-chain amino acid sequence B:9-23 as the primary epitope. Our lab previously

discovered that hybrid insulin peptides (HIPs), comprised of insulin C-peptide

fragments fused to other b-cell granule peptides, are ligands for several

pathogenic CD4 T cell clones derived from NOD mice and for autoreactive

CD4 T cells from T1D patients. A subset of CD4 T cell clones from our panel

react to insulin and B:9-23 but only at high concentrations of antigen. We

hypothesized that HIPs might also be formed from insulin B-chain sequences

covalently bound to other endogenously cleaved ß-cell proteins. We report

here on the identification of a B-chain HIP, termed the 6.3HIP, containing a

fragment of B:9-23 joined to an endogenously processed peptide of ProSAAS,

as a strong neo-epitope for the insulin-reactive CD4 T cell clone BDC-6.3.

Using an I-Ag7 tetramer loaded with the 6.3HIP, we demonstrate that T cells

reactive to this B-chain HIP can be readily detected in NOD mouse islet

infiltrates. This work suggests that some portion of autoreactive T cells

stimulated by insulin B:9-23 may be responding to B-chain HIPs as

peptide ligands.
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Introduction

Insulin has long been considered to be a predominant and

disease-initiating antigen in Type 1 Diabetes (T1D) in humans

and in the non-obese diabetic (NOD) mouse model of

autoimmune diabetes (1). There is evidence for insulin as a

primary target antigen in T1D and the NOD mouse with respect

to both humoral and T cell mediated autoimmunity. NOD mice

and patients with T1D exhibit insulin autoantibodies early in the

disease process (2–7). Children displaying high titers of insulin

autoantibodies at a young age, especially in combination with

other types of ß-cell autoantibodies, typically experience a rapid

progression to disease onset (8). Insulin-reactive T cells are a

major component of islet infiltrates of pre-diabetic NOD mice

(9–11) and can be detected as early as six weeks of age (12, 13).

The pathogenicity of insulin-reactive CD4 T cells has been

demonstrated via adoptive transfer of T cell clones isolated

from the islets of prediabetic NOD mice into NOD and/or

NOD.scid mice (9, 14, 15). T cells reactive to proinsulin have

likewise been identified and cloned from the peripheral blood of

T1D patients (16–22), and from the residual islets of deceased

organ donors with T1D (23–26). The specificity of human

insulin-reactive T cell clones includes native and altered

proinsulin epitopes within the insulin B-chain, C-peptide and

A-chain (16, 17, 23–25, 27–30).

Various epitopes have been mapped within proinsulin in

both T1D and the NODmouse (24, 31), but the B:9-23 sequence

from the insulin B-chain has been the most widely studied. This

sequence was found to be an epitope for several NOD islet-

derived T cell clones (32) and has subsequently been regarded as

the principal antigenic region of insulin (33, 34). The native B:9-

23 sequence is required for disease initiation in the NOD mouse

as mutation of one amino acid (B16Y>A), a key residue for the

MHC-II I-Ag7/T cell receptor interaction, protects NOD mice

from diabetes, ablates islet infiltration, and prevents

development of insulin autoantibodies (34). Unanue and

colleagues have characterized two distinct types of insulin-

reactive CD4 T cells with divergent functions, targeting the

B:12-20 or B:13-21 epitopes within B:9-23 (30). The

importance of the insulin B:9-23 epitope has also been

demonstrated by responses of CD8 T cells specific for insulin

B:15-23, the ligand for the diabetogenic CD8 T cell clone G9C8,

in work by Wong et al., that provided the first example of an

antigen in autoimmune diabetes targeted by both CD4 and CD8

T cells (35–37).

Identifying the antigenic ligands for autoreactive CD4 T cells

in autoimmune diabetes has been a major focus of our studies.

Among our panel of diabetogenic CD4 T cell clones, two

prototypic examples, BDC-2.5 and BDC-6.9, were derived

from diabetic NOD mice and selected through growth cycles

with islet cells as antigen. We recently discovered that the

cognate ligands for these two clones are unique post-
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translational modifications in the form of hybrid insulin

peptides (HIPs), non-genomically encoded peptide sequences

comprised of a C-peptide fragment at the N-terminus fused to

sequences from endogenous proteolytically processed b-cell
secretory granule proteins (28, 38, 39). The 2.5HIP consists of

an insulin C-peptide fragment covalently bound to the WE14

peptide, a cleavage product from chromogranin A (ChgA),

whereas the 6.9HIP has the same C-peptide sequence bound

to a proteolytically processed region of pro-islet amyloid

polypeptide (IAPP) (40). These HIPs and others have been

identified in mouse and/or human islets (41). In addition,

HIP-reactive T cells have been characterized among PBMC

from T1D patients (38, 42, 43) as well as in the islets of

deceased T1D organ donors (25, 28, 38).

A subset of T cell clones in the BDC panel, and a T cell clone

PD12-4.4 described by Wegmann and colleagues (32), react to

native insulin and/or to insulin B-chain and B:9-23. Because

responses by these clones to insulin and the B:9-23 sequence are

variable and orders of magnitude lower when compared to

responses to HIPs from T cell clones like BDC-2.5, we

hypothesized that the peptide ligands for the insulin-reactive

clones were also HIPs containing sequences from B:9-23 (instead

of insulin C-peptide) joined to other granule protein sequences.

In the current study we screened combinatorial B-chain HIP

libraries (Figure 1) using a small panel of insulin-reactive T cell

clones to investigate the role of B-chain HIPs as new epitopes in

autoimmune diabetes. We have identified a potent B-chain HIP

antigen which when loaded on tetramers detects a distinct

population of T cells within NOD islets.
Materials and methods

Mice

NOD (NOD/ShiLtJ (# 001976)) and NOD.scid (NOD.Cg-

Prkdcscid/J (# 001303)) mice were obtained from The Jackson

Laboratory. The NOD/Haskins colony was derived from three

strains in 1995: the original NOD/ShiJcl (Central Laboratory for

Experimental Animals Japan, Inc) developed in 1980, the NOD/

ShiLtJ (The Jackson Laboratory (#001976)) and the NOD/

MrkTac (Taconic) strains. The NOD/Haskins strain has been

interbred for 67 generations. Mice were monitored for

development of diabetes by urine glucose testing (Diastix:

Bayer) and validated by blood glucose testing with the

OneTouch Ultra glucometer (LifeScan). Mice were defined as

diabetic when blood glucose levels exceeded 15 mmol/L (270

mg/dL) on two consecutive measures. Mice were bred and

housed in a pathogen-free environment at the University of

Colorado School of Medicine and all experiments were

conducted according to guidelines approved by the

Institutional Animal Care and Use Committee.
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Isolation and culture of T cell clones

T-cell clone BDC-6.3 was originally isolated from NOD

mouse islets and restimulated every 2 weeks as previously

described (44) with porcine insulin (Sigma-Aldrich) and IL-2

(2.5%) EL-4 cell supernatant. T cell clone PD12-4.4 is an insulin-

reactive T cell clone originally produced in the lab of Wegmann

and colleagues (9).
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T cell receptor sequencing

Total RNA was extracted from T cell clones with a RNAeasy

Mini Kit (Qiagen) and cDNA synthesized using a SMARTer RACE

cDNAAmplification Kit (Clontech). Full length TCRa and b chain
variable region genes were amplified using nested PCR followed by

sequencing on the NovaSEQ 6000 sequencer as previously reported

(12, 45). TCR sequencing data is listed in Table S1.
A

B C

FIGURE 1

B-chain HIP crosslinking library scheme and IFN-g ELISAs for T cell clone BDC-6.3 and PD12-4.4. (A) In the Left Library, 11 individual B-chain
peptides form peptide bonds with two pools of right secretory granule peptides (pools R1-14, R15-28). The Right Library is comprised of 28
individual right peptides that form peptide bonds with the pool of 11 B-chain left peptides. (B, C) Heat maps for IFN-g ELISA screening of T cell
clones BDC-6.3 and PD12-4.4 with B chain Right and Left HIP libraries. Data is shown as absorption @ 415 nm minus background for a single
screen for each T cell clone.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.926650
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wenzlau et al. 10.3389/fimmu.2022.926650
Antigen assays

T cell clones (2 x 104) were co-cultured with peritoneal exudate

cells (2.5 x 104) as antigen presenting cells and synthetic peptides

(CHI Scientific, Genescript) or whole porcine insulin (Sigma-

Aldrich) for 48 hrs in 0.25 ml in 96-well plates. Interferon

gamma (IFN-g) secretion in the culture supernatant was

measured via ELISA using anti-mouse IFN-g (BD Pharmingen)

to coat ELISA plates, biotin-labeled anti-mouse IFN-g (BD

Pharmingen), streptavidin-peroxidase (Sigma), and 2,2’-Azino-bis

(3-ethylbenzothiazolin-6-sulfonic acid) diammonium salt for

colorometric detection. Absorption was quantified at 415 nm on

a microplate reader (iMARK, BIORAD) (46, 47).
Adoptive transfer of CD4 T cell clones

To confirm diabetogenicity, T cell clones were expanded in

secondary cultures with IL-2 four days post-restimulation and 1 x

107 cells were injected intraperitoneally into 6-18 day-old NOD,

NOD.scid or NOD/Haskins recipient mice which were monitored

for disease incidence.
Peptides and B-chain HIP libraries

Peptides were obtained at a purity >95% (CHI Scientific or

GenScript) and are listed in Figure S1. The Left and Right

Libraries are composed of 12 amino acid peptide pools: each

HIP is comprised of 6 amino acids from insulin B-chain (left)

and 6 amino acids from different secretory granule proteins

(right). As shown in the left panel of Figure S1, all B-chain left

peptides were acquired with acetyl-blocked N-termini, three

arginine (R) residues for solubility, and a glycine (G) residue

as a spacer. The right peptides are derived from proinsulin, islet

amyloid polypeptide (IAPP), chromogranins A (ChgA) B

(ChgB), and C (ChgC), secretogranin 3 (Scg3), prohormone

convertase 2 (PC2), neuroendocrine protein 7B2, ProSAAS,

glucose regulated protein 78 (GRP78), and neuropeptide Y

(NPY1). To generate the left library, eleven individual B-chain

left peptides were activated and cross-linked to two pools (14

peptides/each) of right peptides, shown schematically in

Figure 1A as described previously (28). Reciprocally, to

generate the right library, twenty-eight individual right

peptides were cross-linked to a pool of eleven activated B-

chain peptides. Subsequent screens were conducted with

synthetic B-chain HIPs consisting of 14 amino acids to include

adjacent amino acids that could enhance antigen binding.
Flow cytometry

Antibodies used in flow cytometry surface marker

phenotyping experiments were: anti-CD45 BUV395 (clone 30-
Frontiers in Immunology 04
F11) (BD Biosciences), anti-CD4 BV711, BV786 (clone GK1.5)

(BD Biosciences) or FITC (clone RM4-5) (BioLegend), anti-

Ly6G BB700 (clone 1A8) (BD Biosciences), anti-CD11c BB700

(clone HL3) (BD Biosciences), anti-CD11b BB700 (clone M1/

70) (BD Biosciences), anti-CD19 BB700 (clone 1D3) (BD

Biosciences), anti-CD8 BB700 (clone 53-6.7) (BD Biosciences),

anti-CD44 BV711 (clone IM7) (BioLegend), and anti-CD62L

FITC (clone MEL-14) (BioLegend). The fixable viability dye

eFluor780 (eBioscience) was used for live/dead discrimination.

Gating strategy for lymphocytes was determined by gating

singlets using FSC-H by FSC-A and lymphocytes were gated

using FSC-A by SSC-A. Live CD4+ cells assessed for tetramer

staining were CD45+, lineage- (Ly6G, CD11c, CD11b, CD19,

CD8). An example of gating strategy can be found in the Figure

S2. Samples were analyzed on a Cytek Aurora flow cytometer (5

lasers) and data was analyzed using FlowJo software V10.

Tetramers labeled with either PE or APC were acquired from

the NIH Tetramer Core and were used to stain T cells at 37°C for

1 hr as reported previously (46). I-Ag7 tetramers used in this

study contained the following peptides: HEL11-25, 2.5HIP (28),

two insulin B:9-23 mimotope peptides (insp8G and insp8E) (11)

and 6.3HIP1-11 (B13-19/ProSAAS219-222).
Results

Diabetogenic T cell clone responses to
insulin and the B chain B:9-23 epitope
require high concentrations of antigen

The NOD-derived BDC T cell clones, originally isolated

from co-culture of primary NOD spleen and lymph node cells

(44), are maintained in culture with islet cells or extracts from b-
cell tumors, which contain only very small amounts of antigen.

Most of these T cell clones exhibit high sensitivity and specificity

to islet peptide antigens, but in vitro responses of the insulin-

reactive BDC CD4 T cell clones to the B:9-23 peptide, as well as

whole insulin, are variable and low level (e.g., near background).

Expansion of the insulin-reactive T cell clones requires

stimulation with high concentrations of insulin, and in antigen

assays (Figure S3) concentrations of whole insulin (10 mM and

1.0 mM) and B:9-23 peptide (10 and 1.0 µM) were required to

observe responses from the insulin-reactive T cell clones PD12-

4.4 and BDC-6.3. Disease relevance of the insulin-reactive T cell

clones was demonstrated by the capacity to efficiently transfer

diabetes into NOD or NOD.scid neonatal (< 3 wks of age)

recipient mice (Table 1).
B:9-23-responsive T cell clones are
stimulated by B-chain HIP antigen pools

To test our hypothesis that the peptide ligands for insulin-

reactive T cell clones could consist of a portion of B:9-23 fused to
frontiersin.org
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other secretory granule protein cleavage products, combinatorial

B-chain HIP libraries were assembled representing 308 potential

HIPs. Left and right peptide library pools were generated to test

novel B-chain HIP candidate epitopes. The “Left Peptide

Library” contains individual B-chains (11 peptides) on the

amino termini of the HIPs cross-linked to two pools of

abundant secretory granule peptides (14 peptides each) on the

carboxy (C-) termini of the HIPs (41) to yield 28 pools. The

“Right Peptide Library” contains individual secretory granule

peptides (28 peptides) on the carboxy (C-) termini of the HIPs

cross-linked to a pool of the eleven B-chain peptides on the

amino termini to yield 28 pools (shown schematically in

Figure 1A and detailed in Materials and Methods). Criteria for

B-chain (“left”) peptides included a leucine (L), isoleucine (I) or

valine (V) at either of the last two amino acid residues at the HIP

junction as these amino acids are predicted to have high affinity

for pocket 4 (p4) of the I-Ag7 binding groove. All C-terminal

“right” peptides (Figure S1) contained either an aspartic acid (D)

or glutamic acid (E) residue located four or five amino acids

from the N-terminus as negatively charged amino acids most

often occupy pocket 9 (p9) of I-Ag7 (48).

The initial screening of the cross-linked libraries for the

insulin-reactive T cell clones BDC-6.3 and PD12-4.4 is shown in

Figures 1B, C. Individual right peptides (R1-28) crosslinked to a

pool of 11 left B chain peptides were used to stimulate IFN-g
production from T cell clones in an antigen assay co-cultured

with NOD APCs. The most stimulatory individual right peptide

for clone BDC-6.3 was ProSAAS219-225 (R14) (Figure 1B and

Table S2). The most stimulatory right peptides for T cell clone

PD12-4.4 were ChgA374-379 (R5) and ProSAAS219-225 (R14)

(Figure 1B and Table S2). We focused on the one positive

right peptide pool that was common to both clones,

ProSAAS219-225 (R14), and the highest scoring individual

right peptide pool for PD12-4.4, ChgA374-379 (R5). We also

observed intermediate IFN-g responses from both T cell clones

to right peptides PC2616-621(R20), GRP78275-280 (R21) and

GRP78335-340 (R22). R22 was selected to represent a pool that

generated a moderate IFN-g response. (Figures 1B, C, Table

S2). When Individual left B-chain peptides (L1-11) were

crosslinked to two pools of 14 right peptides (R1-14 and R15-

28), T cell clone BDC-6.3 gave the highest IFN-g response to left
peptide insB8-13 (L3) crosslinked to R15-28. (Figure 1B, Table
Frontiers in Immunology 05
S2). Clone PD12-4.4 was most responsive to left peptides insB10-

15 (L7) and insB14-19 (L11) when cross-linked to R15-28 and R1-

14 respectively (Figure 1C, Table S2). Combinations of left and

right peptides that stimulated T cell clones BDC-6.3 and PD12-

4.4 in the library screen were subsequently synthesized as

individual HIPs at high purity for further examination (listed

in Figure 2A).
A B-chain HIP is the ligand for the BDC-
6.3 T cell clone

To determine the T cell antigen specificity for individual

peptides, synthetic peptides 14 amino acids in length and at 95%

purity, were obtained from a commercial source and tested for

reactivity with the insulin-reactive T cell clones BDC-6.3 and

PD12-4.4 (Figures 2A–C). The seven B-chain HIP candidates

tested were comprised of four B-chain left peptides (B7-13, B9-15,

B12-18, and B13-19) combined with three right secretory granule

peptides (ProSAAS219-225, ChgA374-380 and GRP78335-340)

(Figure 2A). We measured IFN-g secretion by T cell clones

BDC-6.3 and PD12-4.4 in response to 10 µM concentrations of

the synthetic B-chain HIP candidate sequences or the native B:9-

23 peptide; data for the BDC-6.3 clone and PD12-4.4 clone is

shown in Figures 2B, C, respectively. BDC-6.3 responded to two

B-chain HIPs, B13-19/ProSAAS219-225 and InsB/GRP78. PD12-

4.4 also responded to B13-19/ProSAAS219-225 but only weakly to

InsB/GRP78 (Figure 2C). None of the other synthetic B-chain

hybrid peptides elicited a response from either clone despite

responses to various pools in the initial screen. Due to the strong

response of T cell clone BDC-6.3 to the B13-19/ProSAAS219-225
HIP (EALYLVC-SVDQDLG), we termed this peptide sequence

the 6.3HIP.

To further characterize the response of BDC-6.3 and PD12-

4.4 to the two B-chain HIPs, we assayed IFN-g responses of these
T cell clones to titrations of four peptides: native insulin B:9-23,

the 6.3HIP, the B-chain HIP InsB/GRP78 and a peptide

spanning the propeptide sequence of ProSAAS (as a negative

control). As shown in Figure 3, both BDC-6.3 and PD12-4.4

show a strong IFN-g response to the B-chain 6.3HIP, titrating

into the picomolar range. In this assay, the response of T cell

clone BDC-6.3 to B-chain HIP InsB/GRP78 was measurable, but
TABLE 1 Features of insulin-responsive T cell clones.

Clone TCR a TCR ß Insulin/B:9-23 DT NOD DT NOD.scid DT NOD/Haskins CDR3 a CDR3 ß

BDC-6.3 TRAV5D-4 TRAB5 + N/A N/A 5/7
13-23 days

CAASAVGSGGSNYKLTF CASSQEGGGNEQYF

PD12-4.4 TRAV5D-4 TRAB5 + 7/9
9-24 days

½
16 days

4/6
9-24 days

CAASASGGSNYKLTF CASSQDTNTGQLYF
Listed are TCR Va, Vb and CDR3 a and b designations and T cell stimulation scores (+ or -) for responses to insulin and B-chain peptide B:9-23 for the set of two T cell clones.
Diabetogenicity of each clone was assessed by injecting 6-18 day-old indicated recipient mice with 1 X 107 T cells and monitoring for incidence of diabetes 3-4 wks post transfer. Disease
transfer (DT) numbers represent the number of diabetic mice/total number of mice injected.
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only at the 10 µM concentration. Neither of the T cell clones

responds to the propeptide ProSAAS212-225 sequence, or to the

natural cleavage product proSAAS219-230 (not shown) even at a

concentration of 10 µM.
Defining the 6.3HIP core epitope

The peptide-binding grooves of MHC class II molecules can

be described in terms of pockets (p1, p4, p6 and p9) that must

accommodate the amino acid side chains of each peptide antigen.

It is well-established that NOD mice possess a unique

polymorphism at position 57 in the b-chain of the MHC class

II molecule I-Ag7: the aspartic acid (D) present in non-

autoimmune BALB/c mice is replaced by serine (S) in NOD
Frontiers in Immunology 06
mice (49–52). The loss of a negatively charged residue at b57
favors the presentation of epitopes containing a negatively

charged amino acid at the p9 position in the peptide binding

groove (53), which may explain the unique immunopeptidome

presented by I-Ag7 (54). Since the 6.3HIP contains D in both

positions 10 and 12 (Figure 4A), we synthesized two mutant

6.3HIP peptides substituting either of the two negatively charged

D residues with a positively charged arginine (10D>R or 12D>R)

(Figure 4A). Our results show that the mutant peptide 6.3HIP

10D>R could not stimulate either the BDC-6.3 or the PD12-4.4 T

cell clone, whereas activation of these clones with 6.3HIP 12D>R

was comparable to the 6.3HIP (down to 0.1 µM), suggesting that

the D at position 10 occupies p9 of I-Ag7. Furthermore,

truncation of 12D at the C-terminus (6.3HIP1-11) moderately

affected stimulation of both BDC-6.3 and PD12-4.4, suggesting
A

B C

FIGURE 2

BDC-6.3 IFN-g response to candidate B-chain HIP antigens. (A) Synthetic peptides representing the highest scoring peptides within the Left and
Right peptide libraries. Blue = B:9-23 derived peptides, red italics = natural cleavage product peptides from other ß-cell proteins. The
PreProSAAS peptide is 14 amino acids spanning a dibasic proteolytic processing site and was included as a negative control. (B) IFN-g responses
of T cell clone BDC-6.3 to 10 µM concentrations of B:9-23 or synthetic B-chain HIP candidates. (C) IFN-g responses of T cell clone PD12-4.4 to
10 µM concentrations of B:9-23 or synthetic B-chain HIP candidates. Compiled data is shown for the average of 3-8 experiments (BDC-6.3) or
3-7 experiments (PD12-4.4), with statistical analysis using a one-way ANOVA with Dunnett’s multiple comparison test *P<0.05, ****P<0.0001
where the box defines the interquartile range, and the whiskers indicate minimum and maximum values.
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that the 12D residue of the 6.3HIP is not essential for yet

enhances antigenicity (Figure 4B). Truncation of the glutamine

(Q) immediately after 10D (6.3HIP1-10) diminished activation of

the PD12-4.4 T cell clone, and to a lesser extent BDC-6.3,

indicating a critical role of the Q in position 11 (Figure 4B). In

all cases, differences in reactivity of the T cell clones to altered

ligands compared to the 6.3HIP was most apparent at the lowest

concentration (.001 µM). We concluded that the minimum

contribution from the ProSAAS right peptide is four amino

acids, ProSAAS219-222.
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The contribution of N-terminal amino acids to the

antigenicity of the 6.3HIP was assessed in Figure 4C. While

truncation of the N-terminal glutamic acid (E) of the 6.3HIP

(6.3HIP2-14) prevented stimulation of both T cell clones,

addition of a valine (V) to the N-terminal sequence of the

6.3HIP potentiated activation of both clones. Even though the

E and the V would be predicted to be outside of the binding

groove (in position p-1 and p-2, respectively), these data indicate

that the N-terminal portion of the 6.3HIP plays an essential role

in its activity and define VEALYLCSVDQDLG as the optimal
A B

FIGURE 3

IFN-g responses of T cell clones to parent peptides and B-chain HIPs. Stimulation of T cell clones BDC-6.3 (A) and PD12-4.4 (B) with titrations
(0.00001 - 10 mM) of individual left (B:9-23) and right (PreProSAAS212-225) components of the 6.3HIP (B13-19/ProSAAS219-225), the 6.3HIP and B-
chain HIP InsB/GRP78335-340. Blue open circle = B:9-23, red open square = 6.3HIP, brown open triangle = PreProSAAS212-225, green open
diamond = InsB/GRP78335-340. Compiled data is shown for the mean ± SD of 3-5 experiments (BDC-6.3) and 3-4 experiments (PD12-4.4). Data
is expressed as IFN-g ng/ml.
FIGURE 4

I-Ag7 binding pocket 9 and optimal limits of the 6.3HIP antigen. (A) Determination of 6.3HIP residue occupying p9 of I-Ag7. IFN-g ELISA assays of T cell
clones BDC-6.3 and PD12-4.4 stimulated with 6.3HIP1-14 antigen compared to 6.3HIP substituted with 12D>R or 10D>R. (B) Response to C-terminal
truncations of the 6.3HIP. IFN-g production by BDC-6.3 and PD12-4.4 in response antigens 6.3HIP, 6.3HIP1-11 and 6.3HIP1-10. (C) Limits of the 6.3HIP
epitope N-terminus. IFN-g production by BDC-6.3 and PD12-4.4 in response to peptides 6.3HIP. 6.3HIP-1-14, and 6.3HIP2-14. Blue = B:9-23 sequence,
red italics = ProSAAS sequence. Representative data from 4 experiments (A), 6 experiments (B), and 4 experiments (C) shown as ng/ml IFN-g.
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ligand for both T cell clones (Figure 4C). The schematic diagram

in Figure 5 illustrates how the 6.3HIP may bind to I-Ag7 based

on our cumulative findings.
A 6.3HIP- I-Ag7 tetramer binds insulin-
reactive CD4 T cell clones and a sub-
population of islet-infiltrating CD4 T
cells in NOD mice

MHC class II tetramers can be robust tools for detecting

antigen-specific CD4 T cells by flow cytometry. To analyze B-

chain HIP tetramer-positive (tet+) T cells in NOD mice, we

obtained a tetramer from the NIH Tetramer Core consisting of

the 6.3HIP1-11 peptide (EALYLVCSVDQ) loaded onto

fluorescently labeled I-Ag7. T cell clones BDC-6.3, PD12-4.4 and

BDC-2.5 (as a control), were analyzed for staining with the 6.3HIP

tetramer, the two insulin mimotope tetramers (insp8G or insp8E),

or the 2.5HIP tetramer. The BDC-6.3 clone stained with the

6.3HIP tetramer with high intensity and only slightly with the

insp8G tetramer; no binding of this T cell clone by the insp8E or

2.5HIP tetramer was observed. The T cell clone PD12-4.4 was

moderately bound by both the 6.3HIP and p8G tetramers and had

no cross reactivity to the insp8E or 2.5HIP tetramers. As expected,

BDC-2.5 did not bind either of the B-chain mimotope tetramers

or the 6.3HIP tetramer, and only to the cognate 2.5HIP tetramer

(Figures 6A, B). These data demonstrate that the 6.3HIP tetramer

selectively binds the 6.3HIP-reactive T cell clone BDC-6.3 and to a

lesser extent PD12-4.4.

It has been established that T cells accumulate in the

pancreas only when their cognate antigen is present,

suggesting a majority of CD4 T cells in the pancreas have

unassigned antigen specificity (15, 55). To determine whether

6.3HIP-reactive T cells were present in the islets of NOD mice,

we used the 6.3HIP tetramer to stain cells from dissociated islets

of prediabetic NOD mice. As shown in Figure 6C, we detected a

population of CD4 T cells that stained exclusively with the

6.3HIP tetramer, which represented about 0.75% of the total

CD4 infiltrate, a percentage significantly elevated compared to T

cells staining with the HEL tet (negative control) and similar to
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the percentage of the combined insp8G/E tet+ cells (n=18;

Figure 6D). The islet-infiltrating CD4 cells staining with the

6.3HIP tetramer exhibit an antigen-experienced phenotype

(CD44+ CD62L-) (Figures 6E, S2), similar to that of 2.5HIP-

reactive T cells in islet infiltrates (12). The observation that the

6.3HIP tetramer captures a population of CD4 T cells not

stained with either insp8G or insp8E tetramers suggests that

this tetramer detects a separate population of disease-relevant

insulin-reactive T cells within islets.
Discussion

Although the insulin B-chain sequence B:9-23 has been widely

regarded to be the principal antigenic T cell epitope in the insulin

molecule, there is little if any difference in the reactivity of T cells

to this epitope when comparing controls and T1D patients (45).

Moreover, we observe that insulin-reactive T cell clones typically

demonstrate low to moderate responses in vitro to the B:9-23

sequence. One possibility could be that the B chain undergoes

post-translational modification to become a more potent agonist.

We hypothesized that insulin B-chain sequences could fuse with

other ß-cell granule peptides through transpeptidation to form B-

chain HIPs highly stimulatory to B:9-23-reactive T cells.

Combinatorial B-chain HIP libraries were screened with

diabetogenic T cell clones responsive to insulin B:9-23 to

identify two B-chain HIPs that could stimulate clones BDC-6.3

and PD12-4.4. Our data presented here demonstrate that the

6.3HIP, a B-chain HIP comprised of part of B:9-23 joined to a

sequence from ProSAAS, is a potent ligand for BDC-6.3. ProSAAS

is an endogenous inhibitor of prohormone convertase 1, required

for proteolytic processing of proinsulin to its bioactive form, and

serves as a neuroendocrine chaperone (56, 57). Along with insulin,

ProSAAS ranks in the top five most abundant proteins within ß-

cell secretory granules (58), suggesting that a high concentration

and accessibility of these proteins may facilitate formation of the

6.3HIP. We also found that the previously described B:9-23-

reactive CD4 T cell clone, PD12-4.4 (9), reacts to the 6.3HIP

epitope. To our knowledge this is the first report defining

ProSAAS as the source of an islet antigen in autoimmune
FIGURE 5

Schematic diagram of the 6.3HIP binding in the trimolecular complex. I-Ag7 binding pockets 1, 4, and 6 are occupied by insB-chain amino acids
14 (A), 17 (L) and 19 (C), respectively. ProSAAS amino acids 219 (S) and 221 (D) residue in pockets 7 and 9 of I-Ag7.
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disease. In addition, the T cell clone BDC-6.3 is slightly activated

at high concentrations (10 µM) by a second B-chain HIP,

containing a similar fragment of B:9-23 fused to a peptide from

GRP78 (which contains two D residues for putative p9 binding),

the InsB/GRP78 HIP. Thus, a sequence from B:9-23 may be

providing only the N-terminal portion of the epitope recognized

by some insulin-reactive T cells. By identifying a hybrid insulin

peptide neo-epitope that contains an insulin B:9-23 sequence,

these studies may provide an explanation for the apparent epitope

dominance of the B chain in autoimmune diabetes, despite the

limited ability of the native peptide to bind to I-Ag7.

We also describe and validate a new tetramer containing the

6.3HIP. This reagent strongly stains the BDC-6.3 T cell clone,

and to a lesser degree, the PD12-4.4 T cell clone. In NOD mice,

the 6.3HIP tetramer detects a subpopulation of islet-infiltrating

CD4 T cells that are distinct from those staining with the insulin

tetramers, insp8E and insp8G, which are mimotopes for B:9-23.

Our data also indicate that islet-infiltrating CD4 T cells that

bound the 6.3HIP tetramer almost exclusively exhibited an
Frontiers in Immunology 09
antigen-experienced phenotype (CD44hi CD62L-) and were

found in similar abundance to the combined P8G/P8E tet+

population in the islets of 10-12 wk-old mice. The phenotype of

6.3HIP tet+ cells parallels previous studies showing that nearly

all 2.5HIP tet+ T cells found in islets are antigen-experienced in

the NOD mouse (12). We speculate that in NOD mice the

6.3HIP tetramer detects a non-redundant population of insulin-

reactive CD4 T cells highly specific for a B-chain HIP. However,

as illustrated by the tetramer staining of the PD12-4.4 clone,

there may exist a population of islet-infiltrating T cells capable

of binding to multiple tetramers sharing portions of insulin

B:9-23.

Several epitopes within the B:9-23 sequence have been

defined for pathogenic, insulin-reactive CD4 T cells in the

NOD mouse (9, 11, 32, 34, 59). Unanue and colleagues

described subsets of “A” and “B” insulin-reactive CD4 T cells

(30). Type “A” T cells recognize the insB:13-21 peptide,

generated from the conventional processing and loading of the

B chain onto I-Ag7 in antigen-presenting cells and thymic
A B

D EC

FIGURE 6

MHC Class II tetramer staining of CD4+ T cell clones and islet infiltrating CD4+ T cells. Representative histograms of (A) T cell clones BDC-2.5
(purple), PD12-4.4 (blue), and BDC-6.3 (red) stained with 6.3HIP, P8G, P8E, and 2.5HIP tetramers and the (B) geometric MFI from 2-3
experiments with lines connecting tetramer stains conducted on the same day. (C) Representative CD4 T cells from NOD islets stained with a
mixture of I-Ag7 tetramers loaded with the P8G/E insulin mimotopes and 6.3HIP, and labeled with APC and PE, respectively. (D) Summary of
results of the analysis of infiltrating CD4+ T cells from the islet isolations from a total of 18 NOD mice (5 separate islet isolations) stained with
hen egg lysozyme (HEL), 6.3HIP and P8G/E tetramers. Data represented as percent of live lin- CD4+ T cells positive for each tetramer/animal
and analyzed using a one-way ANOVA with Tukey’s multiple comparison test, (****P<0.0001) where the box defines the interquartile range, and
the whiskers indicate minimum and maximum values. (E) Summary data (n=10) comparing the proportion of CD44+ and CD62L+ in total CD4 T
cells or tetramer+ CD4 T cells within islets. A two-way ANOVA was used with Dunnett’s multiple comparison test to assess the antigen
experience phenotype of CD4 T cells staining with each tetramer compared to the total CD4 infiltrate as a control (****P<0.0001). Gating
strategy for tetramer staining of T cells is provided in Figure S2.
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epithelial cells; these T cells are thought to be deleted by negative

selection in the thymus. Type “B” T cells are thought to

recognize the B:12-20 peptide after an unconventional

exogenous uptake of the truncated peptide and direct loading

onto I-Ag7, an event speculated to only occur in the periphery,

affording B:12-20-reactive T cells escape from central tolerance

(60, 61). Based on the high relative abundance of B:12-20 tet+

cells in the islets of young mice (6 wk-old), type “B” T cells are

thought to be involved in disease initiation (50). T cells specific

for the 6.3HIP may also escape central tolerance by only a weak,

partial recognition of either the B chain of insulin or ProSAAS in

the thymus. Although the T cell clones BDC-6.3 and PD12-4.4

react to insulin B:9-23, they do not respond to the B13-21 nor

B12-20 peptides and therefore may represent a distinct subset of

insulin-reactive T cells, responding to hybrid insulin peptides.

The specificity of I-Ag7-restricted T cell clones reactive to

insB:9-23 is thought to be influenced by both common

utilization of certain TCRa variable segments as well as the

composition of TCRb complementarity-determining region 3

(CDR3)(Tables 1, S1) (62). The TCRa variable segments

TRAV5D-4 and TRAJ53, used in both PD12-4.4 and BDC-6.3,

are preferentially enriched in B:9-23-reactive T cells (63–65).

While the PD12-4.4 and BDC-6.3 clones also share the same

TRBV5 segment, they differ in N-region additions within the

CDR3b and BDC-6.3 contains a negatively charged E residue, in

the +3 position of the CDR3b, shown to be highly enriched in

insB:12-20-specific T cells (50, 66). Although the TCRa and b
chains of BDC-6.3 and PD12-4.4 have sequences in common to

other B:9-23-reactive T cells, our tetramer and mutagenesis

studies indicate that these insulin-reactive T cell clones react

strongly to a B-chain HIP.

Our data show that 6.3HIP-reactive T cells are present

within the islet and are antigen-experienced. However, it may

be that the balance between regulatory and effector phenotype of

T cells is a stronger determinant of their role in disease. We

previously showed that there is a marked difference in phenotype

between the highly inflammatory 2.5HIP tet+ T cells and insp8G

tet+ T cells which were enriched in regulatory T cells (Tregs)

(12). A similar result was obtained in a comparison of islet-

infiltrating 6.9HIP tet+ versus insB:12-20 tet+ cells by single-cell

RNA sequencing, wherein a subset of insulin B12-20 tet+ cells,

but not 6.9HIP tet+ cells, were found to exhibit a Treg expression

signature (13). It remains to be established whether in the islet

infiltrate any 6.3HIP tet+ or other B-chain HIP-reactive T cells

exhibit a Treg phenotype or are effector T cells only, like 2.5HIP

and 6.9HIP tet+ cells.
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