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A B S T R A C T   

Purpose: Dementia with Lewy bodies (DLB) is the second most common neurodegenerative dementia, that shares 
clinical and metabolic similarities with both Alzheimer’s and Parkinson’s disease. In this study we aimed to 
identify a DLB-related pattern (DLBRP), study its relationship with other metabolic brain patterns and explore its 
diagnostic and prognostic value. 
Methods: A cohort of 79 participants with DLB, 63 with dementia due to Alzheimer’s disease (AD) and 41 normal 
controls (NCs) and their 2-[18F]FDG PET scans were analysed for identification and validation of DLBRP. Voxel- 
wise correlation and multiple linear regression were used to study the relation between DLBRP and Alzheimer’s 
disease-related pattern (ADRP), Parkinson’s disease-related pattern (PDRP) and PD-related cognitive pattern 
(PDCP). Diagnostic and prognostic value of DLBRP and of modified DLBRP after accounting for ADRP overlap 
(DLBRP ⊥ ADRP), were explored. 
Results: The newly identified DLBRP shared topographic similarities with ADRP (R2 = 24%) and PDRP (R2 =

37%), but not with PDCP. We could accurately discriminate between DLB and NC (AUC = 0.99) based on DLBRP 
expression, and between DLB and AD (AUC = 0.87) based on DLBRP ⊥ ADRP expression. DLBRP expression 
correlated with cognitive impairment, but the correlation was lost after accounting for ADRP overlap. DLBRP and 
DLBRP ⊥ ADRP correlated with patients’ survival time. 
Conclusion: DLBRP has proven to be a specific metabolic brain biomarker of DLB, sharing similarities with ADRP 
and PDRP, but not PDCP. We observed a similar metabolic mechanism underlying cognitive impairment in DLB 
and AD. DLB-specific metabolic changes were more detrimental for overall survival.   

1. Background 

Dementia with Lewy bodies (DLB) is an α-synucleinopathy and the 
second most common neurodegenerative dementia. It is characterized 
by dementia and one or more core features of the disease: parkinsonism, 
visual hallucinations, fluctuating cognition or rapid eye movement sleep 
behaviour disorder (RBD) (Arnaoutoglou et al., 2019). Unfortunately, 
DLB continues to be both under-diagnosed (Vann Jones and O’Brien, 
2014) and misdiagnosed; up to 20% of the clinically-made DLB di-
agnoses are erroneous (Rizzo et al., 2018). An accurate diagnosis is 
important in determining the prognosis of the disease, which is worse in 
DLB compared to the prognosis of the most common dementia that is 
caused by Alzheimer’s disease (AD) (Mueller et al., 2017). DLB and 

Parkinson’s disease dementia (PDD) also share many clinical and 
pathological features, thus making the diagnosis between the two dis-
eases hinge on the arbitrarily set “1-year rule”: dementia that occurs 
within one-year of parkinsonism is termed DLB (McKeith et al., 2017). 
Research and debate on the similarities and differences between these 
two diseases is still ongoing (Jellinger, 2018). 

DLB biomarkers are needed to improve diagnostic accuracy, to 
provide prognostic information, and to study potential novel therapies 
(Oppedal et al., 2019). Since specific biomarkers of α-synuclein are still 
under development (Hansson, 2021), we can turn to metabolic brain 
imaging with 2-[18F]fluoro-2-deoxy-D-glucose positron emission to-
mography (2-[18F]FDG PET), which is a widely accessible, relatively 
affordable, and a non-invasive imaging technique that is already 
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considered a supportive biomarker of DLB (McKeith et al., 2017). 
Metabolic changes in DLB are characterized by hypometabolism in the 
occipital, parietal and temporal lobes (Brown et al., 2014), and rela-
tively spared posterior cingulate metabolism with hypometabolism of 
the precuneus, i.e. cingulate island sign (Raffa et al., 2020). However, 
regional metabolic changes in DLB can overlap with those observed in 
AD (Meles et al., 2017). Clinically, the most frequent misdiagnosis of 
DLB is AD (Shim et al., 2013). Therefore, a search for metabolic brain 
biomarkers that would be able to differentiate between the two diseases 
is warranted. Multivariate analysis approaches, such as scaled subprofile 
model/principal component analysis (SSM/PCA), applied to 2-[18F]FDG 
PET images can reveal characteristic metabolic brain patterns. The 
expression of these metabolic brain patterns can be prospectively 
quantified and correlated with subjects’ clinical measures (Spetsieris 
and Eidelberg, 2011). An approach similar to the SSM/PCA model 
already identified core feature-specific patterns in DLB, which exhibit 
stable hypermetabolic regions in the medial temporal lobe, orbitofrontal 
cortex, cerebellum, pons, basal ganglia, thalami and sensorimotor cortex 
across features, but different hypometabolic regional involvement 
related to each core feature (Morbelli et al., 2019). Patterns of the two 
clinically overlapping syndromes, namely AD-related pattern (ADRP) 
(Perovnik et al., 2020) and PD-related pattern (PDRP) (which is related 
to severity of motor symptoms (Schindlbeck and Eidelberg, 2018)), as 
well as PD-related cognitive pattern (PDCP) (which is related to cogni-
tive impairment (Trošt et al., 2019)) have been identified and validated 
previously. However, their relation to DLB metabolic changes remains to 
be explored. Furthermore, DLB also pathologically overlaps with AD, 
with >50% of DLB patients exhibiting Alzheimer’s pathology, (i. e. 
amyloid β deposits, on post-mortem examination (Hepp et al., 2016)) and 
nearly 40% have positive Alzheimer’s CSF biomarkers in vivo (Lemstra 
et al., 2017). This renders amyloid β biomarkers less accurate in dif-
ferential diagnosis between the two disorders (Watson and Colloby, 
2016). The effect of concomitant Alzheimer’s pathology on clinical and 
imaging features in DLB has been shown before (Lee et al., 2018), but 
remains to be fully elucidated (Watson and Colloby, 2016). 

The aims of this study were to (i) identify and validate a unified DLB- 
related pattern (DLBRP) in a new population, (ii) examine its spatial 
relation to metabolic patterns of AD and PD, (iii) study the effect of 
concomitant Alzheimer’s pathology on pattern expression, and (iv) 
explore diagnostic and prognostic clinical value of the expression of 
newly identified DLBRP. 

2. Methods 

2.1. Participants 

We analysed 79 patients with probable DLB, 63 patients with AD and 
41 normal controls (NCs) who all underwent 2-[18F]FDG PET brain 
imaging between January 2010 and April 2019 at the University Med-
ical Center Ljubljana (UMCL), Slovenia. Patients with DLB were diag-
nosed according to the latest clinical criteria (McKeith et al., 2017). To 
improve clinical diagnostic confidence, we included only DLB patients 
with diagnosis confirmed at a follow-up visit at least 12 months after 
being first diagnosed (n = 70/79) or at least one year (M = 3 years) after 
symptoms onset when first diagnosed (n = 9/79). 76 cases had two or 
more core features of the disease and three cases had just one core 
feature but also one indicative biomarker, namely imaging of the pre-
synaptic dopaminergic transporter (DaTSCAN™) to make a probable 
DLB diagnosis. Mini mental state examination (MMSE) (Rakusa et al., 
2006) score within one year of imaging (Mdn = 24 days) was obtained. 
For the deceased individuals we calculated the time from imaging to 
death. NCs completed clinical neurological and neuropsychological ex-
amination and 2-[18F]FDG PET brain imaging for purposes of an earlier 
research project (Tomše et al., 2017). In AD patients, the diagnosis was 
confirmed by CSF biomarkers profile (Jack et al., 2018). 

2.2. Cerebrospinal fluid analysis 

Thirty-two patients with DLB and all AD patients underwent lumbar 
puncture (LP) and CSF analysis within 18 months of 2-[18F]FDG PET 
scanning, with a mean of 6 months in DLB and 9 months in AD. CSF 
samples were centrifuged, aliquoted and stored at − 80 ◦C until 
biomarker analysis was performed at the Department of Neurology, 
UMCL. CSF Aβ42, phosphorylated tau (p-tau) and total tau protein (t-tau) 
were measured routinely, whereas Aβ40 was determined additionally in 
22 CSF (20 AD and 2 DLB) samples with ambiguous Aβ42 result 
(650–815 pg/ml). Biomarker analyses were performed according to 
manufacturers’ instructions using Innotest (Fujirebio, Europe) immu-
noassays with intra-assay variability < 5%. Between-assay coefficients 
of variation for Aβ42, Aβ40, p-tau and t-tau were 5.8%, 8.3%, 4.4% and 
8.2%, respectively, as determined by the longitudinal quality control 
sample. Locally validated biomarker cut-off levels were used to define 
Alzheimer’s CSF profile as: Aβ42 < 650 pg/ml or Aβ42/Aβ40 < 0.0077 (A 
+), p-tau > 60 pg/ml (T +) and t-tau > 400 pg/ml (N +). A+/T+/N±

was considered as Alzheimer’s disease and A+/T− /N± as Alzheimer’s 
pathologic change (Jack et al., 2018). 

2.3. Image acquisition 

2-[18F]FDG PET images were acquired at the Department of Nuclear 
Medicine, UMCL with Siemens Biograph mCT PET/CT (Siemens 
Healthineers, Erlangen, Germany) according to European Association of 
Nuclear Medicine (EANM) guidelines (Varrone et al., 2009) as described 
previously (Tomše et al., 2017). 

DaTSCAN™ was performed at the Department of Nuclear Medicine, 
UMCL, using a Siemens Symbia Intevo SPECT/CT system (Siemens 
Healthineers, Munich, Germany) using [123I]I-ioflupane ([123I]I-FP- 
CIT), following EANM recommendations (Darcourt et al., 2010). To 
minimize thyroid exposure to radiation, all patients received 90 mg of 
iodide (KI p.o.) 1 h prior to i.v. administration of 185 MBq of [123I]I-FP- 
CIT. SPECT images were acquired 4 h after the radiotracer application, 
using a LEHR collimator, with a photopeak of 159 KeV ± 15%, using a 
circular orbit in step-and-shoot mode (60 steps of 25 s) over 360◦, with a 
128 × 128 matrix, using a zoom of 1.78. Images were reconstructed 
using the Flash-3D iterative algorithm (2 iterations, 15 subsets), using 
scatter correction, a 3D Gaussian filter (FWHM = 6 mm) and AC 
correction using the Chang algorithm (μ = 0,12 cm− 1). 

2.4. Image pre-processing 

2-[18F]FDG PET scans were pre-processed with SPM12 (Wellcome 
Trust Centre for Neuroimaging, Institute of Neurology, London, UK) 
running on Matlab R2019a (Mathworks Inc., Natick, MA) using an in- 
house pipeline. Briefly, we performed 3D affine transformation, fol-
lowed by brain extraction by segmenting the skull based on the tissue 
probability map and spatial normalization onto a PET template in 
Montreal Neurological Institute brain space using old normalization 
function. Finally, the images were smoothed with an isotropic 3D 
Gaussian kernel of 10 mm FWHM. 

2.5. Image analysis 

2.5.1. Identification and validation of DLB-related pattern 
For the identification of the DLBRP we applied SSM/PCA (ScAnVP, 

Center for Neuroscience, Feinstein Institutes for Medical Research, NY, 
USA) to 2-[18F]FDG PET scans of 20 randomly selected DLB patients and 
20 age- and sex-matched NC. The SSM/PCA procedure was described in 
detail before (Meles et al., 2021; Spetsieris and Eidelberg, 2011). The 
output of the procedure are principal components (PCs) and the corre-
sponding subject scores, which underwent further analysis to identify 
DLBRP. This analysis was limited to all PCs that explained at least 5% of 
the total variance. Subject scores for these PCs were entered into a series 
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of logistic regression models, with the group as the dependent variable 
and the subject scores for the PCs as the independent variables in each 
model. The model with the lowest Akaike Information Criterion (AIC) 
score was selected. For the validation of the newly identified DLBRP we 
used topographic profile rating (TPR) (Spetsieris and Eidelberg, 2011) 
and 2-[18F]FDG PET scans from 59 DLB, 63 AD and 21 NC not included 
in the identification cohort (Table 1). The raw scores were Z-trans-
formed based on the mean pattern expression and standard deviation of 
subjects scores in the NC identification cohort (NC1). 

2.5.2. Relation to other metabolic patterns 
We assessed the topographic relationship between newly identified 

DLBRP and previously identified ADRP (Perovnik et al., 2020) as well as 
two metabolic patterns observed in PD: PDRP (Tomše et al., 2017) and 
PDCP (Huang et al., 2007) on a voxel-by-voxel basis using Pearson’s 
correlation corrected for spatial autocorrelation (Ko et al., 2014). 
Furthermore, we used multiple linear regression to calculate total 
variance explained and relative importance of ADRP, PDRP and PDCP 
voxel weights on DLBRP voxel weights with the CAR method (Zuber and 
Strimmer, 2011), which adjusts for correlation among explanatory 
variables, implemented in the relaimpo R package (Grömping, 2006). 
Finally, we examined topographic overlap between patterns by identi-
fying voxels with weights above 1 or below − 1 in each of the three 
pattern pairs. DLBRP-specific regions were then determined as voxels 
with weights above 1 or below − 1 in DLBRP but not in the other 
metabolic pattern. Overlapping and DLB-specific regions were localized 
with MRIcroGL (version 1.2.20200331, (Rorden and Brett, 2000)). 

2.5.3. Identification of DLB-related pattern without AD-network component 
First, we calculated ADRP expression in DLB patients using the TPR 

algorithm. The scores were Z-transformed based on the mean pattern 
expression and standard deviation of subjects scores in the NC group 
used for pattern identification (Perovnik et al., 2020). Then, to eliminate 
any possible contribution of ADRP on the DLBRP, we performed SSM/ 
PCA of orthogonal components using vp_ssm_voxOpca function imple-
mented in ScAnVP. This special application of SSM is used to remove PCs 
that might influence the analysis, i.e. ADRP in our case, by removing 
them from the 2-[18F]FDG PET scans used for the DLBRP identification. 
Then, SSM/PCA was performed in the reduced, orthogonal space 
(Spetsieris and Eidelberg, 2011). The pattern identified in this orthog-
onal space was termed DLBRP ⊥ ADRP, and again the new pattern’s 
expression was evaluated prospectively in patients not used for pattern 
identification using TPR algorithm (Table 1). 

2.6. Effect of Alzheimer’s pathology on patterns expression 

To examine the effect of Alzheimer’s pathology on the expression of 
the patterns, we divided DLB patients based on their CSF results into two 
groups, i. e. with and without concomitant Alzheimer’s pathology. Pa-
tients on CSF Alzheimer’s continuum (either A+/T+ or A+/T− ) were 
considered as having concomitant Alzheimer’s pathology. We compared 
the two DLB subgroups by using a two-sample t-test according to the 
general linear model at each voxel using SPM12. To evaluate results, we 
set the peak threshold at p < 0.01 (uncorrected) and visualized the re-
sults with xjView toolbox (https://www.alivelearn.net/xjview). Signif-
icant regions were localized with BioImage Suite 
(https://bioimagesuiteweb.github.io/webapp/mni2tal.html). Addition-
ally, we calculated the expressions of DLBRP, ADRP and DLBRP ⊥ ADRP 
in both DLB subgroups. 

2.7. Statistical analysis 

Student’s independent-sample t-test or one-way analysis of variance 
(ANOVA) with post hoc Tukey HSD was used to examine differences in 
age, MMSE and disease duration in the NC and patient groups. When 
comparing small groups with unequal variances we used Welch’s t-test 
(Delacre et al., 2017). Fisher’s exact test for count data was used to 
examine differences in sex distribution. One-way ANCOVA with post 
hoc Tukey HSD was used to assess group differences in pattern expres-
sions while controlling for differences in age, sex and MMSE across 
groups. We used pROC R package (Robin et al., 2011) to calculate the 
area under the curve (AUC); specificity, sensitivity, positive and nega-
tive predictive values were determined by Youden’s index. Pearson’s 
correlation coefficient was used for correlational analyses. All statistical 
analyses were conducted in RStudio version 1.3.1093, R version 3.6.0 (R 
Core Team, 2019) and figures were produced with ggplot2 R package 
(Wickham, 2016). Results were considered significant at p < 0.05 (two- 
tailed). 

3. Results 

Subjects demographic and clinical data are presented in Table 1. 

3.1. DLBRp 

3.1.1. Identification 
For the DLBRP identification, DLB1 and NC1 cohorts were analysed. 

They did not differ in mean age (t(38) = 1.32, p = 0.19) or sex 

Table 1 
Demographic data for identification and validation cohorts.   

Identification Validation p value    

Ident Val  
NC1 DLB1 NC2 DLB2 AD  

N 20 20 21 59 63  
Age (y) 68.8 ± 5.4 71.5 ± 7.1 61.9 ± 6.8 76.4 ± 5.8 72.9 ± 8.8 0.19 < 0.001†

Sex (f/m) 9/11 6/14 19/2 22/37 31/32  0.51 < 0.001††

Disease duration (y) / 3.9 ± 2.1 
(n = 19) 

/ 3.9 ± 2.1 
(n = 55) 

3.6 ± 2.3 
(n = 54) 

0.39 

MMSE 28.8 ± 1.1 
(n = 16) 

20.1 ± 5.2 
(n = 15) 

29.2 ± 0.9 
(n = 16) 

21.5 ± 5.0 
(n = 39) 

18.0 ± 5.1 
(n = 59)  

< 0.001 < 0.001†††

Parkinsonism / 20/20 / 59/59 /  – 
Visual hallucinations / 15/20 / 43/59 / 1.00 
Fluctuating cognition / 10/20 / 24/59 / 0.60 
REM sleep behavior disorder / 9/20 / 26/59 / 1.00 
Repeated falls / 3/20 / 12/59 / 0.75 
Autonomic dysfunction / 10/20 / 26/59 / 0.80 
DaTSCAN™ 

(abnormal/total) 
/ 11/11 / 14/17 / 0.26 

All the data is presented as mean ± SD. NC – normal control, DLB – dementia with Lewy bodies, AD – dementia due to Alzheimer’s disease, MMSE – Mini Mental State 
Examination. †DLB2 > AD > NC2, ††NC2 different from DLB2 and AD, †††NC2 > DLB2 > AD. 
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distribution (p = 0.51). The DLB1 had lower MMSE scores than NC1, t 
(29) = − 6.46, p < 0.0001 (Table 1). 

DLBRP was defined as the first PC (34.9% variance accounted for 
(VAF)) and was characterized by relatively reduced bilateral metabolic 
activity in the occipital, inferior parietal and inferior temporal cortices 
and precuneus, which co-varied with relatively increased metabolic 
activity in bilateral pallidum, putamen, amygdala, hippocampi, para-
hippocampi, cerebellar vermis and cortex and pons (Fig. 1). The pat-
tern’s expression was significantly higher in DLB1 (M = 6.0, SD = 1.5) 
compared to NC1 (M = 0.0, SD = 1.0), t(38) = 14.78, p < 0.0001 (Fig. 2). 
DLBRP expression did not correlate with age (r(18) = − 0.14, p = 0.56), 
nor with MMSE (r(13) = − 0.39, p = 0.15) in DLB1. 

3.1.2. Validation 
There was a significant difference in age between the validation 

groups (F(2, 140) = 29.9, p < 0.001). Post hoc comparisons indicated 
that DLB2 and AD were each older than NC2 (p < 0.001) and that DLB2 
was older than AD (p = 0.02). Sex distributions differed for NC2 and 
DLB2 (p < 0.001) and NC2 and AD (p < 0.001), but not for DLB2 and AD 
(p = 0.20). There was a significant difference in MMSE scores between 
the validation groups (F(2, 111) = 36.4, p < 0.001). Post hoc compari-
sons indicated that the MMSE scores were significantly higher in NC2 
compared to DLB2 and AD, both p < 0.001. DLB2 had higher MMSE 
scores than AD (p = 0.001). Disease duration did not differ between 
DLB2 and AD, t(107) = 0.86, p = 0.39 (Table 1). 

DLBRP expression differed in the validation groups (F(2, 108) =
27.0, p < 0.001) even after controlling for age, sex and MMSE differ-
ences. Post hoc comparisons showed that covariate adjusted mean 
DLBRP expression was significantly higher in DLB2 than in NC2 

(difference = 3.3, t = 5.49, p < 0.001) and AD (difference = 2.08, t =
6.06, p < 0.001), but not between AD and NC2 (difference = 1.26, t =
2.02, p = 0.11) (Fig. 2). DLBRP expression did not correlate with age (r 
(57) = − 0.12, p = 0.38), but did so with MMSE (r(37) = − 0.35, p =
0.03) in DLB2. 

Adjusted mean DLBRP expression did not differ between NC1 and 
NC2 after controlling for age, sex and MMSE (difference = 0.15, t = 0.34, 
p = 0.74). Adjusted mean DLBRP expression differed between DLB1 and 
DLB2 even after controlling for age, sex and MMSE (difference = 1.21, t 
= 2.31, p = 0.025). 

3.2. Relationship between DLBRP and other metabolic brain patterns 

We observed a close correlation between DLBRP and ADRP (r =
0.692, p < 0.001; corrected for spatial autocorrelation) as well as be-
tween DLBRP and PDRP (r = 0.775, p < 0.001; corrected for spatial 
autocorrelation) (Fig. 3). Correlation between DLBRP and PDCP was 
non-significant (r = 0.348, p = 0.05; corrected for spatial 
autocorrelation). 

Multiple linear regression showed that 64.4% of the variance in 
voxel weights of DLBRP was predicted from the three other patterns, 
leaving 35.6% variance unexplained. A decomposition of R2 among 
explanatory variables showed that 37.4% is accounted by PDRP, 24.4% 
by ADRP and 2.6% by PDCP. 

The overlap between DLBRP and ADRP was seen in the hypo-
metabolic regions of the parietal cortices, angular gyri, occipital supe-
rior and middle cortices, precuneus and cuneus; hypermetabolic regions 
were seen in the insula, amygdala, cerebellar vermis and cortex and pons 
(Fig. 3a). DLBRP was additionally comprised of hypometabolic regions 
in the occipital and inferior temporal cortices; hypermetabolic regions 
were seen in the bilateral putamen, pallidum, hippocampi and 
parahippocampi. 

The overlap between DLBRP and PDRP was seen in hypometabolic 
regions in precuneus, cuneus, parietal and occipital cortices and in hy-
permetabolic regions in putamen, cerebellar vermis and cortex and pons 
(Fig. 3b). DLBRP was additionally comprised of hypometabolic regions 
in inferior temporal cortices and hypermetabolic regions in hippocampi, 
parahippocampi, insula and amygdala. The overlap between DLBRP and 
PDCP was seen in the hypometabolic region of the precuneus and hy-
permetabolic region of the cerebellal vermis and cortex. 

3.3. ADRP contribution to DLBRP expression 

ADRP expression differed in validation groups (F(2, 108) = 10.3, p <

Fig. 1. Dementia with Lewy bodies-related pattern (DLBRP). DLBRP was 
characterized by relatively reduced bilateral metabolic activity (color-coded 
blue to green) in occipital, inferior parietal and inferior temporal cortices and 
precuneus which co-varied with relatively increased metabolic activity (color- 
coded red to white) in bilateral pallidum, putamen, amygdala, hippocampi, 
parahippocampi, cerebellar vermis and cortex and pons. (For interpretation of 
the references to color in this figure legend, the reader is referred to the web 
version of this article.) 

Fig. 2. Dementia with Lewy bodies-related pattern (DLBRP) expression in 
identification (NC1 and DLB1) and validation (NC2, DLB2 and AD) groups. Data 
are Z-transformed based on the pattern expression in NC1 group. Means (SD) 
are presented to the right of individual data. NC – normal controls, DLB – de-
mentia with Lewy bodies, AD – dementia due to Alzheimer’s disease. ***p <
0.001, NS. – non-significant difference after adjusting for age, sex and MMSE. 
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0.001) even after controlling for age, sex and MMSE differences between 
groups and post hoc comparisons showed that covariate adjusted mean 
ADRP expression was significantly higher in both DLB2 (difference =
2.6, t = 4.5, p < 0.001) and AD (difference = 2.1, t = 3.4, p = 0.002) 
compared to NC2, but not between DLB2 and AD (difference = 0.6, t =
1.7, p = 0.18) (Fig. S1). 

DLBRP ⊥ ADRP was defined as a linear combination of PC1 (22.5% 
VAF, β = 0.94) and PC3 (6.8% VAF, β = 0.34) and was characterized by 
relatively reduced metabolic activity in the occipital and left superior 
temporal cortex which co-varied with relatively increased metabolic 
activity in the bilateral inferior temporal cortices, hippocampi, para-
hippocampi, middle and anterior cingulate cortex (Fig. 4). This pattern’s 
expression was significantly higher in DLB1 (M = 5.0, SD = 2.0) than 
NC1 (M = 0.0, SD = 1.0), t(38) = 9.83, p < 0.001 (Fig. 5). DLBRP ⊥
ADRP expression did not correlate with age (r(18) = 0.00, p = 0.99) nor 
MMSE (r(13) = − 0.13, p = 0.65) in the DLB1. 

DLBRP ⊥ ADRP expression differed in validation groups (F(2, 108) =
46.5, p < 0.001) even after controlling for age, sex and MMSE differ-
ences. Post hoc comparisons showed that covariate adjusted mean 
DLBRP ⊥ ADRP expression was significantly higher in DLB2 than in NC2 
(difference = 2.3, t = 4.18, p < 0.001) and AD (difference = 3.0, t =
9.44, p < 0.001). There was no significant difference between AD and 
NC2 (difference = − 0.64, t = − 1.12, p = 0.49) (Fig. 5). DLBRP ⊥ ADRP 
expression did not correlate with age (r(57) = 0.03, p = 0.84) nor MMSE 
(r(37) = − 0.21, p = 0.20) in the DLB2. 

DLBRP and DLBRP ⊥ ADRP accurately differentiated between DLB2 
and NC2 (AUC of 0.99 and 0.93, respectively). DLBRP moderately 
discriminated between DLB2 and AD (AUC = 0.72). DLBRP ⊥ ADRP 
accurately discriminated between DLB2 and AD (AUC = 0.87). Other 
performance metrics are given in Table 2. 3.4. The effect of Alzheimer’s CSF profile in DLB patients on patterns 

expressions 

A subset of 23 DLB patients from the validation group underwent CSF 
analysis and were classified as DLB with concomitant Alzheimer’s 

Fig. 3. Comparison between dementia with Lewy bodies related pattern 
(DLBRP) and other metabolic patterns. (A) Voxel-wise correlation and topo-
graphic overlap between DLBRP and Alzheimer’s disease-related pattern 
(ADRP). (B) Voxel-wise correlation and topographic overlap between DLBRP 
and PDRP. The areas with overlapping hypometabolic activity are color-coded 
blue and the areas with overlapping hypermetabolic activity are color-coded 
red. (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.) 

Fig. 4. Dementia with Lewy bodies-related pattern orthogonal to Alzheimer’s 
disease-related pattern (DLBRP ⊥ ADRP). DLBRP ⊥ ADRP was characterized by 
relatively reduced metabolic activity (color-coded blue to green) in occipital 
and left superior temporal cortex which co-varied with relatively increased 
metabolic activity (color-coded red to white) in bilateral pallidum, right puta-
men, bilateral inferior temporal cortices, hippocampi, parahippocampi, middle 
and anterior cingulate cortex. (For interpretation of the references to color in 
this figure legend, the reader is referred to the web version of this article.) 

Fig. 5. Dementia with Lewy bodies-related pattern orthogonal to Alzheimer’s 
disease-related pattern (DLBRP ⊥ ADRP) expression in identification (NC1 and 
DLB1) and validation (NC2, DLB2 and AD) groups. Data are Z-transformed 
based on the pattern expression in NC1 group. Means (SD) are presented to the 
right of individual data. NC – normal controls, DLB – dementia with Lewy 
bodies, AD – dementia due to Alzheimer’s disease. ***p < 0.001, NS. – non- 
significant difference after adjusting for age, sex and MMSE. 
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pathology (DLB-Alz), n = 5 (3 patients were A+/T+ and 2 were A+/ 
T− ), or DLB without concomitant Alzheimer’s pathology (DLB-nonAlz), 
n = 18 (Table 3). The time between CSF and FDG PET imaging was 1 ±
3 months and it did not differ between the two groups (t(17.1) = − 1.48, 
p = 0.16). The two groups did not differ in average age (t(6.3) = 0.92, p 
= 0.39), sex distribution (p = 1.0) or disease duration (t(11) = 1.25, p =
0.23). DLB-Alz had significantly higher expression of both DLBRP (M =
6.1, SD = 0.9 vs. M = 4.5, SD = 1.7, t(13.8) = 2.88, p = 0.01) and ADRP 
(M = 6.9, SD = 1.1 vs. M = 5.1, SD = 1.7, t(10) = 2.87, p = 0.02) 
compared to DLB-nonAlz. There was no statistically significant differ-
ence in expression of DLBRP ⊥ ADRP (M = 3.9, SD = 1.1 vs. M = 3.0, SD 
= 1.7, t(7.3) = 1.27, p = 0.14) (Fig. 6). Exploratory SPM analysis (p ≤
0.01 (unc.)) revealed clusters of decreased metabolic activity in DLB-Alz 
in bilateral middle and superior temporal gyri, and clusters of increased 
metabolic activity in right frontal middle orbital cortex and cerebellar 
cortex (Fig. S2). 

3.5. Correlation between DLB metabolic patterns and survival time 

During the available follow-up time, 32 patients out of 59 in the 
validation dataset died. The median survival from imaging was 657 days 
(range: 19–2297 days) and 1223 days (range: 29–2622 days) from first 
exam. We did not observe any correlation between the survival time and 
age (r(30) = − 0.19, p = 0.61), disease duration (r(27) = − 0.03, p =
0.86), MMSE (r(21) = − 0.10, p = 0.78), or sex (H(1) = 0.34, p = 0.78). 
However, there was a significant moderate correlation between DLBRP 
(r(30) = − 0.43, p = 0.04) and DLBRP ⊥ ADRP (r(30) = − 0.44, p =
0.04) and survival time (Fig. 7). Reported p values are corrected for false 
discovery rate. 

4. Discussion 

In this study we identified and validated a metabolic biomarker of 
DLB in a large cohort of DLB patients. We explored its topographic 
relationship to metabolic brain patterns characteristic for syndromes 
with similar/overlapping clinical presentations, i. e. ADRP, PDRP and 
PDCP. We also examined an influence of concomitant Alzheimer’s pa-
thology on the pattern expression scores and lastly we studied prog-
nostic value of DLBRP expression. 

The DLBRP was characterized by relatively reduced bilateral meta-
bolic activity in the occipital, inferior parietal and inferior temporal 
cortices and precuneus. This co-varied with relatively increased meta-
bolic activity in the bilateral pallidum, putamen, amygdala, hippo-
campi, parahippocampi, cerebellar vermis and cortex and pons. 
Although the topography is similar to a DLB pattern described by Iizuka 
et Kameyama (Iizuka and Kameyama, 2020), our DLBRP showed addi-
tional hypometabolism in the inferior temporal lobes and 

Table 2 
Performance metrics of dementia with Lewy bodies-related pattern (DLBRP) and 
DLBRP orthogonal to Alzheimer’s disease-related pattern (DLBRP ⊥ ADRP) 
expression.   

Pattern AUC Threshold Spec. Sens. NPV PPV 

DLB2 vs 
NC2 

DLBRP  0.99  1.42 100% 93% 84% 100% 

DLB2 vs 
NC2 

DLBRP ⊥
ADRP  

0.93  1.58 100% 86% 72% 100% 

DLB2 vs 
AD 

DLBRP  0.72  3.90 73% 68% 71% 70% 

DLB2 vs 
AD 

DLBRP ⊥
ADRP  

0.87  1.95 86% 80% 82% 84% 

AUC – area under the curve, Threshold – optimal threshold according to Youden 
Index, Spec. – specificity, Sens. – sensitivity, NPV – negative predictive value, 
PPV – positive predictive value, DLB – dementia with Lewy bodies, NC – normal 
controls, AD – dementia due to Alzheimer’s disease, DLBRP – DLB-related 
pattern, ADRP – AD-related pattern. 

Table 3 
Demographic data of subset of DLB participants with CSF analysis.   

DLB-Alz DLB-nonAlz 

N 5 18 
Age (y) 76.6 ± 5.9 73.9 ± 5.7 
Sex (f/m) 1/4 6/12 
Disease duration (y) 4.8 ± 1.3 3.8 ± 2.1 

(n = 17) 
Aβ42 (pg/ml) 532 ± 59 1038 ± 246 
p-Tau (pg/ml) 50 ± 32 48 ± 21 
t-Tau (pg/ml) 357 ± 218 320 ± 174 
A+/T+ 3/5 0/18 
A+/T− 2/5 0/18 

All the data is presented as mean ± SD. DLB-Alz – dementia with Lewy bodies 
with concomitant Alzheimer’s pathology, DLB-nonAlz – DLB without concomi-
tant Alzheimer’s pathology, CSF – cerebrospinal fluid, Aβ42 – amyloid β42, p-Tau 
– phosphorylated tau, t-Tau – total tau, A – amyloid, T – tau. 

Fig. 6. Pattern expression in dementia with Lewy bodies (DLB) patients with 
and without concomitant Alzheimer’s pathology. (a) Dementia with Lewy 
bodies-related pattern (DLBRP), (b) Alzheimer’s disease-related pattern (ADRP) 
and (c) DLBRP orthogonal to ADRP (DLBRP ⊥ ADRP) expression. Differences 
between groups are given as p values. Data are Z-transformed based on the 
pattern expression in NC1 group. Means (SD) are presented to the right of in-
dividual data. Means of combined NC groups are presented as dashed lines and 
95% confidence intervals as shaded areas. DLB-Alz – DLB with concomitant 
Alzheimer’s pathology, DLB-nonAlz – DLB without concomitant Alz-
heimer’s pathology. 

Fig. 7. Correlation analysis between pattern expression and survival time. (a) 
Correlation between dementia with Lewy bodies-related pattern (DLBRP) 
expression and survival time. (b) Correlation between DLBRP orthogonal to 
Alzheimer’s disease-related pattern (DLBRP ⊥ ADRP) expression and survival 
time. Each dot represents an individual patient’s data and the lines and shaded 
areas correspond to the fit of a linear regression with 95% confidence interval. 
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hypermetabolism in the cerebellum. Patients in our cohort had lower 
MMSE scores than those in Iizuka’s cohort. This can account for more 
pronounced metabolic changes in our pattern. Topography of our 
DLBRP is similar to findings from Kang et al., who included similarly 
cognitively impaired DLB patients and used a modified SSM/PCA pro-
cedure (Kang et al., 2021). Cerebellar hypermetabolism was previously 
observed in DLB patients (Miyazawa et al., 2010; Ye et al., 2020) and 
spatial covariance pattern of brain perfusion that correlates with 
cognitive decline in DLB includes relative increases in the cerebellum 
(Taylor et al., 2013). Similarly, it has been shown that increased cere-
bellar activity is a compensatory mechanism to cognitive impairment in 
AD (Jacobs et al., 2018). The role of the cerebellum and the contribution 
of different regions to cognitive impairment in DLB, however, remains to 
be fully elucidated in future studies. 

We studied the relationship of the newly identified DLBRP to three 
patterns characterized in clinically overlapping syndromes: ADRP, 
PDRP and PDCP. We observed a significant correlation between DLBRP 
and ADRP on a voxel-by-voxel basis, which was not unexpected since it 
is known that the hypometabolic profile is similar, but not the same, 
between the two diseases (Nestor et al., 2018). We also observed a 
correlation with PDRP, which was not surprising since all of our patients 
exhibited signs of parkinsonism and PDRP reflects the severity of 
parkinsonism (Schindlbeck and Eidelberg, 2018). Interestingly, DLBRP 
did not correlate with the cognitive pattern observed in PD − PDCP nor 
was there any correlation between PDCP expression and MMSE scores in 
DLB patients (r = − 0.23, p = 0.17). Additionally, we noted that the 
results of DLBRP vs. PDRP/PDCP in our study are not impacted by dif-
ferences in mean disease duration. 

Another resting state network, which loss is commonly involved in 
cognitive impairment is the default mode network (DMN) (Carli et al., 
2021). DMN is, however, intact in DLB, as suggested by a recent meta- 
analysis (Ma et al., 2022). On the other hand, PDCP shares topographical 
similarities with ventral part of the DMN with additional changes in 
lateral prefrontal, posterior parietal and medial temporal regions and 
both components are important for cognitive impairment in PD 
(Schindlbeck et al., 2021). Histopathologically, both PDD and DLB are 
characterized by Lewy body pathology, but with more severe limbic and 
neocortical involvement in the latter (Fan et al., 2021). Furthermore, 
different α-synuclein strains were reported in PDD and DLB (Van der 
Perren et al., 2020). Concomitant Alzheimer’s pathology is also more 
common in DLB (Fan et al., 2021). Lastly, while neuropsychological 
profile can be similar in the two syndromes (Fields, 2017), a meta- 
analysis suggested, that on a group level there is a more severe 
impairment in executive functions in PDD and in memory and language 
in DLB (Brønnick, 2015). Our findings support the notion of a different 
underlying mechanism of cognitive dysfunction in DLB in comparison to 
PD. However, these observations should be further addressed in future 
research, preferably with a direct comparison of metabolic changes in 
PDD and DLB patients. Multiple linear regression analysis further 
confirmed that ADRP and PDRP both significantly contributed to DLBRP 
voxel weights, accounting for 24% and 37% variance, respectively. This 
leaves a remainder of approximately 35% of the variance unexplained, 
which might represent DLB-specific changes. 

We observed that ADRP expression was elevated in DLB patients, 
probably on the account of overlapping pathology, topography of neu-
rodegeneration and clinical presentation. Elevated ADRP expression in 
DLB patients in comparison to NC has been reported before (Katako 
et al., 2018; Lau et al., 2021). To account for overlapping topography we 
used an orthogonalization procedure to remove the contribution of AD- 
network and re-derived a pattern reflecting the “pure” DLB pathology, i. 
e. DLBRP ⊥ ADRP. This pattern was characterized by relatively reduced 
metabolic activity in the occipital and superior temporal cortices which 
co-varied with relatively increased metabolic activity in the bilateral 
pallidum, right putamen, bilateral inferior temporal cortices, para-
hippocampal area and middle and anterior cingulate cortex. Occipital 
cortex was the most prominent region included in DLBRP ⊥ ADRP, 

which is in line with previous studies that have shown that occipital 
hypoperfusion and hypometabolism is a distinct DLB feature (Arnaou-
toglou et al., 2019). It was shown before that occipital perfusion and 
metabolism does not differ between amyloid negative and amyloid 
positive DLB patients (Donaghy et al., 2018), or between different 
neuropathological Lewy body disease subtypes (Graff-Radford et al., 
2020). The effect of Alzheimer’s pathology on DLBRP was further 
explored in a small group of DLB patients with Alzheimer’s CSF changes. 
This group of patients exhibited higher expression of both ADRP and 
DLBRP in comparison to patients without concomitant Alzheimer’s pa-
thology. However, the two groups did not differ in the expression of 
DLBRP ⊥ ADRP, which presumably reflects the DLB-specific metabolic 
changes. 

DLBRP expression was elevated in DLB patients in identification and 
validation cohorts, but not in NC or AD after accounting for differences 
in age, sex, and cognitive impairment. Based solely on the DLBRP 
expression we could very accurately discriminate between DLB and NC, 
comparable to other 2-[18F]FDG PET studies (Etminani et al., 2022; 
Iizuka and Kameyama, 2020). The discriminatory power of DLBRP 
against NC was reduced after accounting for ADRP overlap, suggesting 
that the whole DLBRP is needed for an accurate separation of DLB and 
NC. On the contrary, the diagnostic accuracy of DLB versus AD greatly 
improved after removing ADRP, showing DLBRP ⊥ ADRP value in dif-
ferential diagnosis. The sensitivity (80%) and specificity (86%) of 
DLBRP ⊥ ADRP to distinguish DLB from AD is comparable to DaTS-
CAN™ with sensitivity of 78% and specificity of 90% (McKeith et al., 
2017). 2-[18F]FDG PET also provides additional diagnostic value in 
discrimination between DLB and other parkinsonian syndromes 
(Caminiti et al., 2017). Furthermore, in contrast to DaTSCAN™ (Ziebell 
et al., 2013), 2-[18F]FDG PET disease specific pattern expression scores, 
correlate well with the measures of clinical impairment. 

In current clinical practice 2-[18F]FDG PET scans are still mostly 
assessed visually with the help of semi-quantitative methods, which 
improve diagnostic accuracy (Perani et al., 2014), but still an expert 
reader is mandatory. On the other hand, methods that enable quantifi-
cation on an individual level, such as SSM/PCA, provide the reader with 
an exact score to aid the diagnosis, and to be used for following disease 
progression or even treatment response (e.g. Ge et al., 2020; Matthews 
et al., 2021). Several other methods for automated assessment and 
computer-aided diagnosis, such as volumetric region of interest (VROI)- 
based analysis and calculation of Bayesian factor (Massa et al., 2022) or 
deep learning (Etminani et al., 2022) have been proposed. A head-to- 
head comparison between different methods and validation in inde-
pendent datasets would be desirable before successful integration to 
routine clinical work-up. 

Furthermore, DLBRP expression negatively correlated with MMSE in 
both the identification and validation cohorts with similar correlation 
coefficients (although we lacked statistical power in the former cohort). 
After removing the AD component this correlation was lost, suggesting a 
detrimental effect of Alzheimer’s related neurodegeneration in regions 
involved in both patterns on cognitive impairment in DLB. Since DLB is 
related to a less favourable prognosis than AD and prognostic bio-
markers for DLB are lacking (Mueller et al., 2017), we also aimed to 
explore the prognostic value of DLB patterns, which has not been done 
before. We found a significant correlation between DLBRP expression 
and survival time. A similar correlation coefficient was observed for 
DLBRP ⊥ ADRP expression, implicating that DLB-specific metabolic 
changes are driving the overall survival in DLB. The prognostic value of 
DLBRP and DLBRP ⊥ ADRP needs to be further examined in prospective 
settings, by including patients in earlier phases of the disease. 

This study is not without limitations. Because this was a retrospective 
study and we did not have data on post mortem brain examination, we 
had to rely on the clinical records when making a diagnosis of DLB. The 
accuracy of the diagnosis was improved with a long-term follow-up by a 
dementia specialist. Furthermore, all of our patients with DLB exhibited 
signs of parkinsonism, which does eventually occur in over 85% of 
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patients (McKeith et al., 2017), but not all. Thus, our cohort does not 
represent the entire DLB spectrum. Additionally, the mean interval be-
tween CSF analysis and 2-[18F]FDG PET imaging was 8 months. How-
ever, previous studies have shown a longitudinal stability of Alzheimer’s 
CSF biomarkers up to 4 years from baseline (Lleó et al., 2019; Mattsson 
et al., 2012). The group of DLB patients with available information on 
CSF biomarkers was small. The presented results on the effect of Alz-
heimer’s pathology on pattern expression are thus exploratory and 
should be validated in larger sample. All patients were recruited from a 
single institution. Therefore, the value of DLBRP and DLBRP ⊥ ADRP as 
metabolic biomarkers should be further studied and validated in other 
populations. 

5. Conclusions 

In this study we derived a metabolic brain biomarker characteristic 
for DLB, which expression can be prospectively quantified and used to 
accurately differentiate between DLB and NC. More importantly, it can 
differentiate between DLB and AD when appropriately accounting for 
network similarities between the two diseases. We have shown that 
DLBRP shares some similarities with both ADRP and PDRP, but is also 
characterized by DLB-specific changes that are not a part of either 
aforementioned patterns. We have also shown that the expression of 
DLBRP correlates with cognitive impairment. This correlation disap-
pears with the removal of AD contribution to the pattern, suggesting a 
similar underlying mechanism involved with cognitive dysfunction in 
both diseases. Conversely, both DLB patterns (with and without AD 
contribution) correlated with survival time; this demonstrates the 
prognostic value of this biomarker and suggests a more detrimental 
contribution of DLB-specific changes to the patients’ survival. 
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