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Abstract

Background

It was shown that single repetition, contraction-phase specific and total time-under-tension

(TUT) can be extracted reliably and validly from smartphone accelerometer-derived data of

resistance exercise machines using user-determined resistance exercise velocities at 60%

one repetition maximum (1-RM). However, it remained unclear how robust the extraction of

these mechano-biological descriptors is over a wide range of movement velocities (slow-

versus fast-movement velocity) and intensities (30% 1-RM versus 80% 1-RM) that reflect

the interindividual variability during resistance exercise.

Objective

In this work, we examined whether the manipulation of velocity or intensity would disrupt an

algorithmic extraction of single repetitions, contraction-phase specific and total TUT.

Methods

Twenty-seven participants performed four sets of three repetitions of their 30% and 80% 1-

RM with velocities of 1 s, 2 s, 6 s and 8 s per repetition, respectively. An algorithm extracted

the number of repetitions, single repetition, contraction-phase specific and total TUT. All

exercises were video-recorded. The video recordings served as the gold standard to which

algorithmically-derived TUT was compared. The agreement between the methods was

examined using Limits of Agreement (LoA). The Pearson correlation coefficients were used

to calculate the association, and the intraclass correlation coefficient (ICC 2.1) examined

the interrater reliability.

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0254164 July 20, 2021 1 / 22

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Viecelli C, Aguayo D, Dällenbach S, Graf

D, Achermann B, Hafen E, et al. (2021) Algorithmic

extraction of smartphone accelerometer-derived

mechano-biological descriptors of resistance

exercise is robust to changes in intensity and

velocity. PLoS ONE 16(7): e0254164. https://doi.

org/10.1371/journal.pone.0254164

Editor: Bijan Najafi, Baylor College of Medicine,

UNITED STATES

Received: December 9, 2020

Accepted: June 21, 2021

Published: July 20, 2021

Copyright: © 2021 Viecelli et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: Data has been

uploaded to Harvard Dataverse and is publicly

available. Viecelli, Claudio, 2020, "Algorithmic

extraction of smartphone accelerometer-derived

mechano-biological descriptors of resistance

exercise is robust to changes in intensity and

velocity", https://doi.org/10.7910/DVN/A6QHLF,

Harvard Dataverse, V1, UNF:6:

RliBzzoXce5V73hnKfL8Mw== [fileUNF].

https://orcid.org/0000-0002-9093-4864
https://doi.org/10.1371/journal.pone.0254164
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0254164&domain=pdf&date_stamp=2021-07-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0254164&domain=pdf&date_stamp=2021-07-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0254164&domain=pdf&date_stamp=2021-07-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0254164&domain=pdf&date_stamp=2021-07-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0254164&domain=pdf&date_stamp=2021-07-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0254164&domain=pdf&date_stamp=2021-07-20
https://doi.org/10.1371/journal.pone.0254164
https://doi.org/10.1371/journal.pone.0254164
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.7910/DVN/A6QHLF


Results

The calculated error rate for the algorithmic detection of the number of single repetitions

derived from two smartphones accelerometers was 1.9%. The comparison between algo-

rithmically-derived, contraction-phase specific TUT against video, revealed a high degree of

correlation (r > 0.94) for both exercise machines. The agreement between the two methods

was high on both exercise machines, intensities and velocities and was as follows:

LoA ranged from -0.21 to 0.22 seconds for single repetition TUT (2.57% of mean TUT),

from -0.24 to 0.22 seconds for concentric contraction TUT (6.25% of mean TUT), from -0.22

to 0.24 seconds for eccentric contraction TUT (5.52% of mean TUT) and from -1.97 to 1.00

seconds for total TUT (5.13% of mean TUT). Interrater reliability for single repetition, con-

traction-phase specific TUT was high (ICC > 0.99).

Conclusion

Neither intensity nor velocity disrupts the proposed algorithmic data extraction approach.

Therefore, smartphone accelerometers can be used to extract scientific mechano-biological

descriptors of dynamic resistance exercise with intensities ranging from 30% to 80% of the

1-RM with velocities ranging from 1 s to 8 s per repetition, respectively, thus making this sim-

ple method a reliable tool for resistance exercise mechano-biological descriptors extraction.

Introduction

Adaptations to resistance exercise are highly specific [1] and depend on mechano-biological

descriptors such as muscle action [2, 3], movement velocity [4–6], range of motion [7], muscle

groups [8], involved energy systems [9], intensity and training volume [10].

Movement velocity, for example, has been shown to increase cross-sectional area (CSA)

and muscle thickness of knee extensors [11, 12] and CSA of quadriceps [13] and biceps bra-

chial [14] to a greater extend when comparing slow versus fast movement velocities. Move-

ment velocities stimulate muscle protein synthesis rate responses differently [6], which

substantially impacts hypertrophy. Given the importance of these variables, movement velocity

is often overlooked [15] or neglected [16].

Resistance exercise consists of mechano-biological descriptors, comprising load magnitude,

number of repetitions, number of sets, rest in-between repetitions ([s] or [min]), number of

exercise interventions (per [d] or week), duration of the experimental period ([d] or weeks),

fractional and temporal distribution [s] of one repetition, rest in-between repetitions([s] or

[min]), time under tension ([s] or [min]), volitional muscular failure, range of motion, recov-

ery time in-between exercise sessions ([h] or [d]) and anatomical definition of exercise (exer-

cise form) (for an extensive review see [16]).

Up to date, still only classical resistance exercise mechano-biological descriptors such as

intensity (e.g. in % 1-repetition maximum [RM] or [kg]), number of repetitions, number of

sets, rest in-between sets (e.g. in [s] or [min]), number of exercise interventions (e.g. per [d] or

week) or duration of the experimental period (e.g. in [d] or weeks) are reported. As seen

above, contraction-specific phases per repetition (e.g. in [s]), for example, is important to inter-

pret different muscular adaptations to otherwise seemingly identical training protocols.

Just recently, Viecelli et al. [17] proposed an approach using smartphone accelerometer

data from a machine-based dynamic resistance exercise to extract contraction-phase specific
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temporal information algorithmically. In brief, 22 participants exercised on nine different

resistance exercise machines and performed two times ten repetitions with their respective

60% 1-RM using a user-determined velocity. Smartphones recorded the accelerations exerted

on the weight stack. Using these recordings, 99.8% of the repetitions were correctly identified

while temporal errors for single repetition time-under-tension (TUT), concentric contraction

TUT, eccentric contraction TUT and total TUT were 0.1%, 7.1%, 4.1% and 0.5%, respectively.

Although the study design mimicked a real-world scenario by allowing user-determined veloc-

ities, slow- or fast-movement repetition velocities with lower or higher intensities were not

tested. Therefore, this work aimed to examine the proposed algorithmic behaviour by collect-

ing acceleration data from slow- and fast-movement repetition velocities using low and high

intensities reflecting the interindividual variability during resistance exercise. We hypothesized

that neither exercise intensity nor movement velocity will disrupt the algorithmic temporal

detection.

Material and methods

Ethics statement

The study has been approved by the ethics committee of the Swiss Federal Institute of Technol-

ogy Zurich (ETH Zurich, Zurich, Switzerland) and conducted following the Declaration of

Helsinki.

All participants received oral and written information about all procedures of the study and

signed a written informed consent.

Design

This work investigated whether mechano-biological descriptors, i.e. the number of repetitions,

the temporal distribution of contraction modes and total TUT could be extracted from acceler-

ometer derived slow- and fast-movement velocity repetitions of dynamic resistance exercise

data performed on a single-joint (leg extension) and a multi-joint (leg press) resistance exer-

cise machine at high and low exercise intensities. Two resistance exercise machines were

selected at the Kieser Training AG (Kieser Training AG, Zurich, Switzerland). The selected

machines comprised the most often chosen exercises in a lower extremity workout and were

as follows: Leg Extension and Leg Press (Kieser Training AG, Zurich, Switzerland). Video

recordings, which are considered the gold standard, were made for all exercises.

Participants

Twenty-seven healthy volunteers between the ages of 22 and 70 years were recruited via aca-

demic mailing lists, flyers and word-to-mouth. All participants completed a standard health

questionnaire before giving written informed consent to participate in the study. The anthro-

pometrical information of participants is depicted in Table 1.

Equipment

Accelerometer data were collected using two Nexus 6P (Huawei Technologies Co., Ltd., Shen-

zhen, China) smartphones with a built-in 3-axis accelerometer BMI160 (Robert Bosch GmbH,

Stuttgart, Germany).

Two 3D-printed containers served as smartphone holders. The holders were firmly

attached to the weight stack using four strong neodymium magnets (Webcraft AG, Uster,

Switzerland). During the exercises, the magnet-equipped smartphone holders were attached to

the weight stacks of the resistance exercise machines.
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Exercises

Before starting with the measurements, correct settings and range of motion were determined

according to participant’s individual anatomy. The participants were familiarized with the

motor tasks to be performed on both resistance exercise machines. Next, the participants

underwent a ten minute warm-up consisting of climbing stairs.

After the warm-up, the one repetition maximum (1-RM) was determined submaximally.

Briefly, participants were asked to choose a resistance level they thought they could lift ten

times maximally. Before starting the 1-RM assessment, participants were instructed to lift over

the full range of motion. Only repetitions fulfilling this criterion were counted. If the chosen

resistance was lifted was more than four but less than ten times, 1-RM was extrapolated, using

the formula described in Mayhew et al. [18]. If more than ten repetitions were achieved, the

exercise was repeated with 20% increase of resistance, following a two-minute recovery break.

This was repeated until the number of repetitions was in the defined range. After the 1-RM

determination, the volunteers were familiarized with the four velocities using a metronome.

Participants then started with the leg press or the leg extension with 30% or 80% of their 1-RM

respectively as intensity and exercises were randomized. The protocol consisted of three repeti-

tions for the fast-movement (1 s/Repetition, 2 s/Repetition) and slow-movement (6 s/Repeti-

tion, 8 s/Repetition) velocities, for both intensities as depicted in Fig 1. Participants were asked

to follow the metronome as closely as possible to ensure repetition duration.

All exercises were recorded with a 62 mm lens Sony HDR-CX900E (Sony, Tokio, Japan) on a

tripod using a resolution of 1280 x720 pixels at 25 frames per second. Hence, the sampling fre-

quency between smartphone accelerometer derived measurements and video recordings were

different (400 Hz versus 25 Hz). However, we do not consider this discrepancy to be a limitation,

because method-comparison studies with handheld devices versus machines, e.g. in dynamome-

try, will never be able to achieve synchronization nor sampling frequency equality [19].

Table 1. Anthropometrical information of participants.

Young (n = 24) Old (n = 3) Total (n = 27) p value
Age [years] < 0.001

Mean (SD) 35.3 (10.8) 65.0 (4.6) 38.6 (13.9)

Range 22–59 61–70 22–70

Sex 0.681

Male 13 (54.2%) 2 (67.7%) 15 (55.6%)

Female 11 (45.8%) 1 (33.3%) 12 (44.4%)

Weight [kg] 0.904

Mean (SD) 73.9 (19.3) 75.3 (16.0) 74.1 (18.7)

Range 49–129 59–91 49–129

Height [m] 0.337

Mean (SD) 1.71 (0.1) 1.73 (0.1) 1.71 (0.1)

Range 1.56–1.86 1.69–1.82 1.56–1.86

Experience 0.260

no 8 (33.3%) 2 (66.7%) 10 (37.0%)

yes 16 (66.7%) 1 (33.3%) 17 (63.0%)

Experience [mt] 0.253

Mean (SD) 65 (93.0) 1 (1.7) 57.89 (89.9)

Range 0–360 0–3 0–360

Young refers to the population younger than 60 while old includes 60 years and older.

https://doi.org/10.1371/journal.pone.0254164.t001
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Rating

Video recordings. The free software Kinovea V0.8.27 (www.kinovea.org) was used for

reviewing and rating the video recordings. Kinovea is a video player that is widely used for

sports analysis. It allows frame-by-frame playback and includes a stopwatch function, which

allows for precise annotation of specific time-critical events such as contraction-phases.

Video recordings were rated by the two study investigators, who screened all recordings

independently, frame-by-frame. A 2.5-fold magnification of the weight stack within Kinovea

was used to determine contraction phases. The starting point of a concentric contraction was

determined as the last frame before the weight stack movement was visually detected. The end

of the concentric phase was defined as the first frame, whereby no additional displacement

increase of the weight stack could be visually recognized. This frame, due to the dynamic

nature of the exercise, was then selected as the starting point of the eccentric phase. The end-

point of the eccentric phase was set to the last frame before the opposite weight stack move-

ment was noticeable. All ten repetitions (20 contraction phases) were annotated in

milliseconds in Kinovea as depicted in Fig 2.

Smartphone accelerometer derived data. Smartphone accelerometer derived data were

analyzed using the algorithm from Viecelli et al. [17]. In brief, the vector length was used, and

data were pre-processed by applying a Hampel filter to remove outliers [20]. Non-unique

timestamps were removed, and the data were subjected to interpolation to achieve an equidis-

tant time series. The gravitational offset was subtracted. Repetition counting was performed by

the single integration of the time series. The resulting drift was compensated by a polynomial

fit. A moving average filter ensured curve smoothness. Thresholds for minimum inter-repeti-

tion distance and prominence were defined for peak detection on the integrated time series.

Contraction-specific TUT was determined using the velocity curve zero-crossings.

The following mechano-biological descriptors were extracted from the video recordings and

accelerometer data: (I) the number of single repetitions, (II) contraction-specific phases TUT,

(III) temporal length of single repetitions as the sum of the concentric and eccentric phase TUT

and (IV) the total TUT, which is defined as the sum of all repetitions TUT (3) during a set [16].

Data and statistical analyses

Validity. The analysis aimed to determine whether slow- and/or fast-movement repeti-

tion velocities at different intensities would disrupt the algorithmic extraction of mechano-bio-

logical resistance exercise descriptors such as the number of single repetitions, contraction-

specific phases TUT and the total TUT. Both raters examined video recordings independently

and in a randomized order. For the method comparison, the mean of the video recording

Fig 1. Study design. Two different intensities (30% and 80% one repetition maximum) with fast- (1 s/repetition, 2 s/

repetition) and slow-movement repetition (6 s/repetition, 8 s/repetition) velocities on single-joint (leg extension) and

multi-joint (leg press) machines were examined.

https://doi.org/10.1371/journal.pone.0254164.g001
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results and the mean of the algorithmic detection of the two smartphones derived accelerome-

ter data were calculated.

Bland-Altman plots were used to compare the two methods visually. Systematic bias is

depicted by the mean difference between the two methods. To examine the linear association

between the methods, Pearson correlation coefficients were calculated. Limits of agreement

(LoA) were used to determine the level of agreement between methods [21]. The LoA for all

contraction phases was calculated as the mean difference between methods, whereby 2.5% or

97.5% denoted the lower and upper limits, respectively [22]. The normalized error was calcu-

lated as the division of the contraction-specific mean of the differences between the two meth-

ods and the contraction-specific TUT of the algorithmic rating [21].

Methodological outlier removal was performed as described for exploratory studies in [23].

To summarize, the interquartile range (IQR) of the mean difference of the two methods was

calculated per contraction-specific phase for both resistance exercise machines. Data values

higher than 1.5 or smaller than -1.5 times the IQR were marked and excluded, as suggested by

Sachs and Hedderich [23]. Visual assessment of heteroscedasticity was performed without rec-

ognizing trends towards heteroscedasticity.

Scoring reliability of the two raters. Interrater reliability and agreement were examined

between the two raters who rated all 16 sets, consisting of three repetitions each, on two resis-

tance exercises machines of 27 participants. The raters annotated all TUT of all contraction-

specific phases. Interrater reliability was calculated using a two-way random-effects model

(2.1), single measures, absolute agreement and ICC.

Results

The detection of single repetitions algorithmically-derived from the two smartphone acceler-

ometers yielded high precision, recall and accuracy. The mean precision was 0.962 ± 0.011

Fig 2. Rating of video recordings. Time per contraction phase was annotated in milliseconds using a 2.5x magnification of the weight

stack.

https://doi.org/10.1371/journal.pone.0254164.g002
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(mean ± SD) for both smartphones. The average accuracy, calculated by the F-Score, for all the

exercise machines, was 0.981 ± 0.001 (mean ± SD) equalling an error rate of 1.9%.

The comparison between video recordings and the algorithmically-derived, contraction-

phase specific TUT, showed a high degree of correlation (r> 0.94) for both exercise machines

(Table 2). Besides, the ICC for the interrater reliability was above 0.99 with 95% CI [0.99, 1.00]

for all contraction-phase specific TUT. Table 2 depicts the agreement between concentric,

eccentric, single repetition and total TUT derived from algorithmic accelerometer data and

video recordings. In Figs 3–18 Bland-Altman plots show the systematic bias as the mean differ-

ence between the methods whereas Fig 19 visualizes the normalized errors of contraction-spe-

cific phases for both resistance exercise machines.

In addition, the single contraction-specific phases were contrasted using a Mann Withney

U test between metronome and actual repetition duration for both exercise machines

(Table 3).

Discussion

In this study, we show that neither variations of intensity nor velocity disrupted the algorith-

mic extraction of smartphone accelerometer-derived mechano-biological descriptors of resis-

tance exercise as long as a dynamic movement is detected. As such, the temporal distribution

of contraction-specific phases and total TUT can be extracted reliably and validly using smart-

phone accelerometer-derived data while manipulating movement velocity and/or resistance

exercise intensity of a dynamic resistance exercise setting. Evidence for this finding is that even

though intensity and velocity were manipulated the single repetition detection error is 1.9%

when compared to the video recordings, which represented the gold standard. The mean tem-

poral error of single repetitions, when compared to the video recordings, is 0.39%.

Low loads, e.g. 30% of 1-RM, require less force, allowing faster movement speeds. In con-

trast, higher loads, e.g. 80% of 1-RM are associated with higher force. Thus, movement speeds

decrease following the force-velocity relationship of Hill [24]. Therefore, the acceleration

decreases with increasing force production. The proposed algorithm of Viecelli et al. works as

follows: First, the length of the three-dimensional acceleration vector is calculated and outliers

are removed by a Hampel filter followed by a linear interpolation. The outliers are caused by

using high-frequency (ca. 400 Hz) accelerometer measurements. Afterwards the gravitational

offset gets corrected. To obtain the velocity, the preprocessed acceleration time-series is sub-

jected to an integration and a polynomial fit followed by a moving average smoothing of the

time-series. Although the algebraic double-integration of acceleration yields the displacement,

a constant little offset error in the measured acceleration produces a quadratic baseline error

on displacement calculations [25]. Therefore, the velocity domain offered an acceptable trade-

off between noise and drift. Afterwards, the peaks, which are proxies for the number of repeti-

tions while the zero-point crossings in the velocity domain reflect the reversal points (end of

concentric or eccentric phase contractions) get detected. Using the time between the zero-

point crossings points, the single contraction (concentric or eccentric) phase specific TUT is

calculated.

As such, reversal points are the Achilles heel of the calculation. During dynamic exercise,

time-spent at reversal points is typically short. Any acceleration-dependent algorithmic data

extraction approach will fail if phases with constant and/or no velocities are introduced as

acceleration becomes zero. This in turn, will lead to an algorithmic distinction problem where

contraction-specific phases cannot be assigned unequivocally.

As we anticipated that intensity would not threaten the algorithmic extraction and repeti-

tion velocities ranging from 3.15–4.43 s were reliably and validly extracted by the same
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Table 2. Agreement between concentric, eccentric, single repetition and total time-under-tension, derived from algorithmic accelerometer data and video

recordings.

Intensity

[%-1RM]

Machine Repetition

Velocity

[s]

Contraction

Mode Level

Mean time based

on accelerometer

data [s] (±SD)

Mean time

based on video

recordings

[s] (±SD)

Mean

difference [s]

(±SD)

Correlation 95% Limits of

Agreement [s]

Agreement

(% of mean TUT

from algorithm)

30 Leg

Extension

1 Concentric TUT

(n = 68)

0.79 (0.23) 0.8 (0.23) 0 (0.09) 0.93��� -0.18–0.19 9.6

30 Leg

Extension

1 Eccentric TUT (n
= 63)

0.86 (0.38) 0.86 (0.37) 0 (0.09) 0.97��� -0.18–0.17 8.6

30 Leg

Extension

1 Single Repetition

TUT (n = 58)

1.68 (0.51) 1.68 (0.51) 0 (0.09) 0.98��� -0.12–0.23 4.2

30 Leg

Extension

1 Total TUT (n =
20)

5.64 (1.99) 5.38 (1.82) 0.26 (0.93) 0.88��� -1.6–1.32 11.98

30 Leg

Extension

2 Concentric TUT

(n = 69)

1.07 (0.27) 1.06 (0.28) 0.01 (0.09) 0.95��� -0.15–0.2 7.05

30 Leg

Extension

2 Eccentric TUT (n
= 72)

1.34 (0.65) 1.36 (0.64) 0.01 (0.09) 0.99��� -0.19–0.18 5.67

30 Leg

Extension

2 Single Repetition

TUT (n = 68)

2.46 (0.79) 2.45 (0.78) 0.01 (0.09) 0.99��� -0.21–0.17 2.78

30 Leg

Extension

2 Total TUT (n =
24)

8 (3.14) 7.71 (2.89) 0.29 (0.64) 0.98��� -1.72–0.37 4.97

30 Leg

Extension

6 Concentric TUT

(n = 70)

2.56 (0.3) 2.56 (0.27) 0 (0.1) 0.94��� -0.2–0.2 3.32

30 Leg

Extension

6 Eccentric TUT (n
= 61)

3.37 (0.51) 3.37 (0.5) 0 (0.1) 0.98��� -0.21–0.2 2.43

30 Leg

Extension

6 Single Repetition

TUT (n = 71)

5.93 (0.57) 5.93 (0.56) 0 (0.11) 0.98��� -0.2–0.25 1.41

30 Leg

Extension

6 Total TUT (n =
23)

17.64 (1.21) 18.02 (0.78) 0.38 (0.77) 0.78��� -0.35–2.02 3.12

30 Leg

Extension

8 Concentric TUT

(n = 47)

3.36 (0.68) 3.31 (0.67) 0.04 (0.13) 0.98��� -0.27–0.18 5.46

30 Leg

Extension

8 Eccentric TUT (n
= 45)

4.51 (0.5) 4.51 (0.5) 0.01 (0.11) 0.98��� -0.15–0.2 1.92

30 Leg

Extension

8 Single Repetition

TUT (n = 59)

7.88 (0.54) 7.88 (0.54) 0 (0.11) 0.98��� -0.15–0.2 1.17

30 Leg

Extension

8 Total TUT (n =
23)

24.29 (1.41) 24.08 (1.34) 0.2 (0.49) 0.94��� -1.24–0.44 1.35

30 Leg Press 1 Concentric TUT

(n = 68)

0.76 (0.19) 0.75 (0.19) 0.01 (0.07) 0.93��� -0.11–0.15 6.87

30 Leg Press 1 Eccentric TUT (n
= 73)

0.86 (0.46) 0.84 (0.45) 0.02 (0.08) 0.98��� -0.23–0.15 7.77

30 Leg Press 1 Single Repetition

TUT (n = 61)

1.66 (0.58) 1.62 (0.57) 0.04 (0.07) 0.99��� -0.2–0.08 3.76

30 Leg Press 1 Total TUT (n =
20)

5.71 (1.59) 5.13 (1.39) 0.58 (0.87) 0.84��� -2.1–0.44 11.81

30 Leg Press 2 Concentric TUT

(n = 71)

1.06 (0.24) 1.01 (0.23) 0.05 (0.07) 0.95��� -0.21–0.07 5.9

30 Leg Press 2 Eccentric TUT (n
= 77)

1.24 (0.48) 1.25 (0.48) 0.01 (0.07) 0.99��� -0.13–0.13 4.59

30 Leg Press 2 Single Repetition

TUT (n = 68)

2.32 (0.68) 2.29 (0.67) 0.03 (0.08) 0.99��� -0.19–0.1 2.87

30 Leg Press 2 Total TUT (n =
25)

7.35 (1.86) 6.97 (1.77) 0.38 (0.62) 0.94��� -1.75–0.4 6.2

30 Leg Press 6 Concentric TUT

(n = 64)

2.57 (0.34) 2.53 (0.32) 0.04 (0.13) 0.93��� -0.24–0.24 4.18

(Continued)
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Table 2. (Continued)

Intensity

[%-1RM]

Machine Repetition

Velocity

[s]

Contraction

Mode Level

Mean time based

on accelerometer

data [s] (±SD)

Mean time

based on video

recordings

[s] (±SD)

Mean

difference [s]

(±SD)

Correlation 95% Limits of

Agreement [s]

Agreement

(% of mean TUT

from algorithm)

30 Leg Press 6 Eccentric TUT (n
= 66)

3.14 (0.35) 3.18 (0.32) 0.04 (0.1) 0.95��� -0.18–0.19 2.99

30 Leg Press 6 Single Repetition

TUT (n = 56)

5.76 (0.47) 5.77 (0.47) 0.01 (0.11) 0.97��� -0.19–0.23 1.58

30 Leg Press 6 Total TUT (n =
20)

17.5 (0.96) 17.33 (0.92) 0.16 (0.58) 0.81��� -1.56–0.6 2.07

30 Leg Press 8 Concentric TUT

(n = 54)

3.47 (0.43) 3.46 (0.42) 0.02 (0.12) 0.96��� -0.2–0.22 2.94

30 Leg Press 8 Eccentric TUT (n
= 54)

4.17 (0.51) 4.21 (0.5) 0.04 (0.12) 0.97��� -0.15–0.29 2.49

30 Leg Press 8 Single Repetition

TUT (n = 52)

7.76 (0.55) 7.78 (0.55) 0.02 (0.13) 0.97��� -0.19–0.24 1.38

30 Leg Press 8 Total TUT (n =
19)

22.93 (1.91) 22.75 (2.14) 0.18 (0.73) 0.94��� -2.12–0.42 1.77

80 Leg

Extension

1 Concentric TUT

(n = 70)

0.81 (0.23) 0.81 (0.19) 0 (0.1) 0.89��� -0.2–0.23 10.17

80 Leg

Extension

1 Eccentric TUT (n
= 76)

0.87 (0.34) 0.87 (0.33) 0 (0.1) 0.96��� -0.19–0.24 8.51

80 Leg

Extension

1 Single Repetition

TUT (n = 66)

1.71 (0.48) 1.69 (0.47) 0.02 (0.09) 0.98��� -0.18–0.22 4

80 Leg

Extension

1 Total TUT (n =
21)

5.33 (1.37) 5.19 (1.16) 0.14 (0.39) 0.97��� -0.98–0.46 4.51

80 Leg

Extension

2 Concentric TUT

(n = 71)

1.06 (0.27) 1.06 (0.25) 0 (0.1) 0.93��� -0.14–0.22 7.7

80 Leg

Extension

2 Eccentric TUT (n
= 73)

1.23 (0.48) 1.24 (0.47) 0.01 (0.1) 0.98��� -0.16–0.24 6.86

80 Leg

Extension

2 Single Repetition

TUT (n = 68)

2.3 (0.66) 2.29 (0.65) 0.01 (0.11) 0.99��� -0.19–0.24 3.9

80 Leg

Extension

2 Total TUT (n =
21)

7.22 (1.98) 7.03 (1.89) 0.19 (0.65) 0.94��� -1.8–0.55 5.13

80 Leg

Extension

6 Concentric TUT

(n = 64)

2.44 (0.35) 2.42 (0.33) 0.02 (0.11) 0.95��� -0.25–0.15 3.75

80 Leg

Extension

6 Eccentric TUT (n
= 64)

3.23 (0.47) 3.22 (0.43) 0.02 (0.11) 0.97��� -0.25–0.23 2.88

80 Leg

Extension

6 Single Repetition

TUT (n = 67)

5.7 (0.61) 5.67 (0.6) 0.03 (0.12) 0.98��� -0.25–0.23 1.7

80 Leg

Extension

6 Total TUT (n =
25)

17.27 (1.52) 17.09 (1.45) 0.18 (0.39) 0.97��� -1.12–0.46 1.6

80 Leg

Extension

8 Concentric TUT

(n = 53)

3.32 (0.44) 3.3 (0.42) 0.02 (0.12) 0.96��� -0.27–0.18 2.83

80 Leg

Extension

8 Eccentric TUT (n
= 57)

4.44 (0.5) 4.44 (0.5) 0 (0.12) 0.97��� -0.2–0.27 2.2

80 Leg

Extension

8 Single Repetition

TUT (n = 66)

7.8 (0.54) 7.77 (0.53) 0.03 (0.09) 0.98��� -0.2–0.16 1.01

80 Leg

Extension

8 Total TUT (n =
23)

23.16 (1.23) 23.12 (1.15) 0.04 (0.45) 0.93��� -0.6–1.1 1.16

80 Leg Press 1 Concentric TUT

(n = 64)

0.74 (0.21) 0.76 (0.18) 0.01 (0.09) 0.91��� -0.16–0.2 10.35

80 Leg Press 1 Eccentric TUT (n
= 79)

0.82 (0.36) 0.77 (0.36) 0.06 (0.1) 0.96��� -0.26–0.1 11.32

(Continued)
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algorithm by Viecelli et al. [17], velocities of 1 s, 2 s, 6 s and 8 s per repetition were chosen. Par-

ticipants tried to follow the metronome as closely as possible. We used a metronome to ensure

repetition velocities. Although participants were familiarized with all the velocities, comparing

the actual repetition velocities with the metronome revealed significant differences as seen in

Table 3. However, as explained above, reversal points are examined and therefore the time

spent in between reversal points (e.g. half-repetition velocity) does not impact the temporal

extraction of the contraction-specific phases.

Hence, smartphone accelerometer-derived extraction of mechano-biological descriptors of

resistance exercise works in non-static environments and are not intensity nor velocity

dependent.

Practical relevance of the results

Smartphones are ubiquitously available and equipped with a plethora of sensors that could

contribute to solving health problems. As such, the automatic extraction of scientific resistance

exercise mechano-biological descriptors using private smartphones could be used to

Table 2. (Continued)

Intensity

[%-1RM]

Machine Repetition

Velocity

[s]

Contraction

Mode Level

Mean time based

on accelerometer

data [s] (±SD)

Mean time

based on video

recordings

[s] (±SD)

Mean

difference [s]

(±SD)

Correlation 95% Limits of

Agreement [s]

Agreement

(% of mean TUT

from algorithm)

80 Leg Press 1 Single Repetition

TUT (n = 64)

1.58 (0.5) 1.54 (0.49) 0.04 (0.08) 0.99��� -0.22–0.08 4.04

80 Leg Press 1 Total TUT (n =
20)

5.11 (1.44) 4.82 (1.56) 0.29 (0.61) 0.92��� -1.21–1.04 9.81

80 Leg Press 2 Concentric TUT

(n = 66)

1.06 (0.31) 1.03 (0.27) 0.03 (0.11) 0.94��� -0.23–0.16 8.32

80 Leg Press 2 Eccentric TUT (n
= 75)

1.17 (0.45) 1.15 (0.46) 0.03 (0.09) 0.98��� -0.21–0.14 7.19

80 Leg Press 2 Single Repetition

TUT (n = 59)

2.25 (0.65) 2.21 (0.63) 0.04 (0.09) 0.99��� -0.17–0.11 3.41

80 Leg Press 2 Total TUT (n =
24)

7.14 (1.59) 6.5 (1.48) 0.64 (0.66) 0.91��� -1.86–0.16 9.09

80 Leg Press 6 Concentric TUT

(n = 47)

2.64 (0.36) 2.59 (0.36) 0.05 (0.11) 0.95��� -0.26–0.15 3.55

80 Leg Press 6 Eccentric TUT (n
= 58)

3.07 (0.43) 3.08 (0.43) 0.01 (0.12) 0.96��� -0.2–0.26 3.11

80 Leg Press 6 Single Repetition

TUT (n = 48)

5.68 (0.54) 5.66 (0.54) 0.02 (0.13) 0.97��� -0.26–0.25 1.83

80 Leg Press 6 Total TUT (n =
18)

17.57 (1.17) 16.72 (1.01) 0.86 (0.81) 0.73��� -1.97–0.37 5.2

80 Leg Press 8 Concentric TUT

(n = 39)

3.27 (0.62) 3.24 (0.61) 0.04 (0.17) 0.96��� -0.28–0.25 4.85

80 Leg Press 8 Eccentric TUT (n
= 45)

4.02 (0.88) 4.05 (0.91) 0.04 (0.14) 0.99��� -0.21–0.28 4.85

80 Leg Press 8 Single Repetition

TUT (n = 46)

7.5 (0.97) 7.47 (0.96) 0.03 (0.13) 0.99��� -0.22–0.27 1.49

80 Leg Press 8 Total TUT (n =
18)

23.07 (2.3) 22.33 (2.2) 0.74 (0.84) 0.93��� -1.98–0.2 3.35

Abbreviations: TUT: time-under-tension

���� Denotes: p< 0.0001

https://doi.org/10.1371/journal.pone.0254164.t002
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Fig 3. Bland-Altman plots of agreement between algorithmically accelerometer derived and video recordings derived contraction-

specific phases of the leg extension machine at 30% 1-RM with a velocity of 1 s per repetition. A: Concentric contraction phase. B:

Eccentric contraction phase. C: Single repetition. D: Total time-under-tension.

https://doi.org/10.1371/journal.pone.0254164.g003

Fig 4. Bland-Altman plots of agreement between algorithmically accelerometer derived and video recordings derived contraction-

specific phases of the leg extension machine at 30% 1-RM with a velocity of 2 s per repetition. A: Concentric contraction phase. B:

Eccentric contraction phase. C: Single repetition. D: Total time-under-tension.

https://doi.org/10.1371/journal.pone.0254164.g004
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Fig 5. Bland-Altman plots of agreement between algorithmically accelerometer derived and video recordings derived contraction-

specific phases of the leg extension machine at 30% 1-RM with a velocity of 6 s per repetition. A: Concentric contraction phase. B:

Eccentric contraction phase. C: Single repetition. D: Total time-under-tension.

https://doi.org/10.1371/journal.pone.0254164.g005

Fig 6. Bland-Altman plots of agreement between algorithmically accelerometer derived and video recordings derived contraction-

specific phases of the leg extension machine at 30% 1-RM with a velocity of 8 s per repetition. A: Concentric contraction phase. B:

Eccentric contraction phase. C: Single repetition. D: Total time-under-tension.

https://doi.org/10.1371/journal.pone.0254164.g006
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Fig 7. Bland-Altman plots of agreement between algorithmically accelerometer derived and video recordings derived contraction-

specific phases of the leg press machine at 30% 1-RM with a velocity of 1 s per repetition. A: Concentric contraction phase. B:

Eccentric contraction phase. C: Single repetition. D: Total time-under-tension.

https://doi.org/10.1371/journal.pone.0254164.g007

Fig 8. Bland-Altman plots of agreement between algorithmically accelerometer derived and video recordings derived contraction-

specific phases of the leg press machine at 30% 1-RM with a velocity of 2 s per repetition. A: Concentric contraction phase. B:

Eccentric contraction phase. C: Single repetition. D: Total time-under-tension.

https://doi.org/10.1371/journal.pone.0254164.g008
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Fig 9. Bland-Altman plots of agreement between algorithmically accelerometer derived and video recordings derived contraction-

specific phases of the leg press machine at 30% 1-RM with a velocity of 6 s per repetition. A: Concentric contraction phase. B:

Eccentric contraction phase. C: Single repetition. D: Total time-under-tension.

https://doi.org/10.1371/journal.pone.0254164.g009

Fig 10. Bland-Altman plots of agreement between algorithmically accelerometer derived and video recordings derived

contraction-specific phases of the leg press machine at 30% 1-RM with a velocity of 8 s per repetition. A: Concentric contraction

phase. B: Eccentric contraction phase. C: Single repetition. D: Total time-under-tension.

https://doi.org/10.1371/journal.pone.0254164.g010
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Fig 11. Bland-Altman plots of agreement between algorithmically accelerometer derived and video recordings derived

contraction-specific phases of the leg extension machine at 80% 1-RM with a velocity of 1 s per repetition. A: Concentric

contraction phase. B: Eccentric contraction phase. C: Single repetition. D: Total time-under-tension.

https://doi.org/10.1371/journal.pone.0254164.g011

Fig 12. Bland-Altman plots of agreement between algorithmically accelerometer derived and video recordings derived

contraction-specific phases of the leg extension machine at 80% 1-RM with a velocity of 2 s per repetition. A: Concentric

contraction phase. B: Eccentric contraction phase. C: Single repetition. D: Total time-under-tension.

https://doi.org/10.1371/journal.pone.0254164.g012
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Fig 13. Bland-Altman plots of agreement between algorithmically accelerometer derived and video recordings derived

contraction-specific phases of the leg extension machine at 80% 1-RM with a velocity of 6 s per repetition. A: Concentric

contraction phase. B: Eccentric contraction phase. C: Single repetition. D: Total time-under-tension.

https://doi.org/10.1371/journal.pone.0254164.g013

Fig 14. Bland-Altman plots of agreement between algorithmically accelerometer derived and video recordings derived

contraction-specific phases of the leg extension machine at 80% 1-RM with a velocity of 8 s per repetition. A: Concentric

contraction phase. B: Eccentric contraction phase. C: Single repetition. D: Total time-under-tension.

https://doi.org/10.1371/journal.pone.0254164.g014
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Fig 15. Bland-Altman plots of agreement between algorithmically accelerometer derived and video recordings derived

contraction-specific phases of the leg press machine at 80% 1-RM with a velocity of 1 s per repetition. A: Concentric contraction

phase. B: Eccentric contraction phase. C: Single repetition. D: Total time-under-tension.

https://doi.org/10.1371/journal.pone.0254164.g015

Fig 16. Bland-Altman plots of agreement between algorithmically accelerometer derived and video recordings derived

contraction-specific phases of the leg press machine at 80% 1-RM with a velocity of 2 s per repetition. A: Concentric contraction

phase. B: Eccentric contraction phase. C: Single repetition. D: Total time-under-tension.

https://doi.org/10.1371/journal.pone.0254164.g016
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Fig 17. Bland-Altman plots of agreement between algorithmically accelerometer derived and video recordings derived

contraction-specific phases of the leg press machine at 80% 1-RM with a velocity of 6 s per repetition. A: Concentric contraction

phase. B: Eccentric contraction phase. C: Single repetition. D: Total time-under-tension.

https://doi.org/10.1371/journal.pone.0254164.g017

Fig 18. Bland-Altman plots of agreement between algorithmically accelerometer derived and video recordings derived

contraction-specific phases of the leg press machine at 80% 1-RM with a velocity of 8 s per repetition. A: Concentric contraction

phase. B: Eccentric contraction phase. C: Single repetition. D: Total time-under-tension.

https://doi.org/10.1371/journal.pone.0254164.g018
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systematically collect important, otherwise missing, information of clinical relevance. This

information could, if available to health care professionals, be used to monitor, adjust or com-

plement training and/or rehabilitation interventions. Additionally, such an accelerometer-

derived algorithmic approach could help to standardize resistance exercise reporting.

Fig 19. Boxplot of normalized errors of contraction-specific phases for both resistance exercise machines.

https://doi.org/10.1371/journal.pone.0254164.g019

Table 3. Comparison of repetition velocities between metronome and participants.

Intensity [% 1-RM] Machine Metronome repetition velocity [s] Actual repetition velocity [s] Median (SD) U p value
30 Leg Extension 1 1.58 (0.89) 616 0.000���

30 Leg Extension 2 2.12 (1.04) 435 0.000���

30 Leg Extension 6 5.93 (1.24) 252 0.000���

30 Leg Extension 8 7.98 (2.02) 430 0.000���

30 Leg Press 1 1.5 (0.63) 252 0.000���

30 Leg Press 2 2.1 (0.69) 82 0.000���

30 Leg Press 6 5.84 (1.35) 340 0.000���

30 Leg Press 8 7.82 (2.58) 910 0.000���

80 Leg Extension 1 1.72 (0.56) 340 0.000���

80 Leg Extension 2 2.05 (0.7) 82 0.000���

80 Leg Extension 6 5.84 (0.88) 82 0.000���

80 Leg Extension 8 7.69 (1.02) 82 0.000���

80 Leg Press 1 1.46 (0.57) 166 0.000���

80 Leg Press 2 2 (0.61) 0 0.000���

80 Leg Press 6 5.68 (1.51) 522 0.000���

80 Leg Press 8 7.56 (2.19) 616 0.000���

n = 27 participants

���� Denotes: p< 0.001

https://doi.org/10.1371/journal.pone.0254164.t003
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Limitations

Two Nexus 6P smartphones with built-in 3-axis accelerometer BMI160 (Robert Bosch GmbH,

Stuttgart, Germany) were used in this study. Note that the operating system, Android (Open

Handset Alliance, Maintain View, USA), is a non-real time operating system. Therefore, accel-

erometer-measured data values can be delayed, resulting in incorrect timestamps, or, in other

instances, dropped because the device is busy [26]. Dropping or making timestamps equidis-

tant might also have contributed to the introduction of small random temporal errors.

Because smartphone accelerometers measure proper accelerations, contraction-specific

phases of dynamic resistance exercises can validly and reliably be extracted from accelerometer

data. However, temporal segments without proper acceleration cannot unequivocally be

assigned to any contraction-specific phases, because they could belong to isometric contrac-

tions or dynamic, constant-velocity contractions. Therefore, in a real-world scenario, our algo-

rithmic approach could be used, whereas for isometric contractions or constant velocity

movements, caution is required.

Future research

Using smartphone accelerometers, one could imagine that volitional muscular failure should

be detectable as the force-velocity relationship postulates slower velocities with increasing

force generation [24]. Therefore, towards total exhaustion, velocity will decrease and should be

significantly different when compared the e.g. the first repetition.
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