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Basal cell carcinoma (BCC) is the most common human tumor. Mutations in the hedgehog (HH) receptor Patched (PTCH) are
the main cause of BCC. Due to their high and increasing incidence, BCC are becoming all the more important for the health
care system. Adequate animal models are required for the improvement of current treatment strategies. A good model should
reflect the situation in humans (i.e., BCC initiation due to Ptch mutations on an immunocompetent background) and should
allow for (i) BCC induction at a defined time point, (ii) analysis of defined BCC stages, and (iii) induction of BCC in 100% of
animals. In addition, it should be easy to handle. Here, we compare several currently existing conventional and conditional Ptch
knockout mouse models for BCC and their potential use in preclinical research. In addition, we provide new data using conditional

Ptchfo/flox mice and the K5-Cre-ERT*/~ driver.

1. General Aspects and Current
Therapies of BCC

L.1. Epidemiology. BCC is a tumor of the skin and the
most prevalent cancer in the Western world. Its incidence
is increasing worldwide. Retrospective studies show that the
increase in mainland Europe is approximately 1/100,000
persons per year and even 6/100,000 in the UK [1]. It is
estimated that the lifetime risk of developing BCC for a
child born in 1994 is 28% to 33% [2] and that young people
will suffer more and more from this tumor [3]. Risk factors
for BCC formation are exposure to ultraviolet radiation
(UV) or ionizing radiation (IR), immunosuppression, or a
genetic predisposition [4]. Due to their high and increasing
incidence, BCC are becoming an important issue for the
health care system [5]. In some countries, the cost of care for
BCC and other nonmelanoma skin cancers comprises 9% of
the costs for all cancers [6].

1.2. Histology. BCC are usually well differentiated and the
tumor cells appear histologically similar to basal cells of the
epidermis. BCC can be subdivided into two subgroups that
show either an indolent or an aggressive growth behavior.

The indolent-growth variants comprise nodular/micro-
nodular and superficial BCC. These subtypes occur in
21%/15% and 17% of cases, respectively, and thus are the
most common BCC variants [7]. Whereas nodular BCC con-
sist of nests of basaloid cells in the dermis, superficial BCC
are characterized by numerous small tumor nests attached to
the undersurface of the epidermis by a broad base. The more
aggressive tumors are less frequent and include infiltrative,
metatypical, morpheaform, or sclerosing BCC (for review see
[8]). Although BCC very rarely metastasize, they can result in
local tissue destruction due to invasion into deeper layers of
the skin, thereby causing significant morbidity [9].

1.3. Molecular Pathogenesis of BCC. BCC are thought to be
caused by uncontrolled activation of the hedgehog (HH)
signaling pathway. In the majority of cases, this is due
to inactivating mutations in the HH receptor and tumor
suppressor gene PTCH. PTCH mutations in BCC were first
observed in basal cell nevus syndrome (also known as nevoid
basal cell carcinoma syndrome or Gorlin-Goltz syndrome),
which is a rare familial autosomal-dominant disorder that
predisposes the affected individual to developing this tumor.
Only a minority of BCC are caused by activating mutations
in Smoothened (SMO) (reviewed in [9]).
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PTCH normally acts as an inhibitor of HH signaling
by repressing the function of SMO. Binding of the HH
ligand to PTCH or inactivating PTCH mutations suspend
this inhibition, which allows activation of SMO and results
in the formation of activator forms of the GLI zinc finger
transcription factors GLI2 and GLI3. Activation of GLI2 and
GLI3 leads to transcription of GLII. Thus, the expression
level of GLII is considered as a reliable indicator of the
pathway’s activity. Another HH target is PTCH itself, which
regulates its expression in a negative feedback (reviewed in
[10]). Indeed, nearly all BCC express GLI1 and PTCH, which
demonstrates the important role of aberrant HH signaling in
these tumors [11].

Several other signaling pathways are presumably involved
in BCC tumorigenesis. Mutations of the tumor suppressor
gene p53 have been shown in 40% of sporadic BCC [12]
and were correlated with aggressive behavior [13-15]. In
addition, activation of canonical Wnt/S-catenin signaling
seems to play a role in specific histological BCC subtypes.
These subtypes include early stages of superficial BCC [16],
pilomatricoma (a tumor of the hair follicle [17]) as well as
infiltrative BCC variants [18, 19]. Indeed, nuclear f3-catenin
is found in infiltrative BCC and in superficial BCC [18], but
only rarely in human nodular BCC [17, 18, 20]. BCC also
express activated AKT [21]. Finally, EGFR signaling seems
to be an essential in vivo requirement in HH-driven BCC
because EGFR signaling cooperates with the HH pathway to
induce genes (e.g., JUN, SOX9, and FGF19) critical for the
determination of the oncogenic BCC phenotype [22].

Growth and progression of human BCC is also highly
influenced by the tumor microenvironment. For example,
tumor-associated macrophages are able to enhance the
invasive phenotype and angiogenesis [23]. Furthermore, a-
smooth muscle actin positivity of peritumoral fibroblast
tends to be greatest in infiltrative tumor areas [24]. In
addition, stromal cells of BCC produce high levels of
Gremlinl, which is a factor stimulating BCC growth by
antagonizing bone morphogenic protein-mediated repres-
sion of cell proliferation [25, 26]. Finally, EGFR ligands are
increased in the tumor stroma [27], which may influence
tumor intrinsic EGFR signaling (see above).

However, whereas all the above-mentioned factors may
influence the susceptibility to BCC or the BCC phenotype,
deregulation of HH signaling is the central abnormality in
all these tumors and seems to play the major role in its
formation [9].

1.4. Conventional Treatment Options of BCC. Surgical exci-
sion is currently by far the most commonly used treatment
of BCC. However, surgery can result in permanent tissue
damage and scarring, which is unwanted especially in facial
areas. In addition, surgery may be problematic if the tumor
is localized around the eye, mouth, or in close vicinity
of the cartilage of the nose and ears [9]. This has led
to less invasive treatment strategies such as photodynamic
therapy or application of imiquimod-containing creams.
Photodynamic therapy refers to a technique in which the
tumor is treated with a photosensitizing chemical in a cream
and is exposed to light several hours later [28]. Imiquimod
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is an immune response modifier, which stimulates the Toll-
like receptor 7 and increases the activity of natural killer
cell, macrophages, and the proliferation and differentiation
of B lymphocytes [29]. Another option is cryotherapy, which
destroys the skin lesion by application of extreme cold such
as compressed nitrous oxide [30]. Another agent for topical
application is 5-fluorouracil (5% cream), which leads to
tumor necrosis. Among the drawbacks of the latter agent is
the limited tissue penetration [31].

Although these therapies are associated with moderate
morbidity, the outcome is still considered to be unspecific. In
addition, these treatments sometimes have side effects such
as pain, scarring, and local skin reactions [31]. Together,
these data show that the availability of a simplified and
more effective treatment would contribute to lower the costs
related to this tumor.

1.5. Targeting the HH Signaling Pathway in BCC. The knowl-
edge about the genetic and molecular events involved in BCC
pathogenesis has enormously contributed to the establish-
ment of new treatment options. Very successful have been
strategies specifically targeting HH signaling. The first small-
molecule inhibitor of the HH pathway was the naturally
occurring compound cyclopamine that inhibits SMO activity
by direct binding [32]. Within the last few years, more potent
SMO inhibitors have been developed and are currently being
tested in phase I and II clinical trials [33]. Recently, the SMO
antagonist vismodegib (Erivedge, GDC-0449) has been
approved by the FDA for the treatment of metastasizing and
locally destructive BCC [34, 35]. However, although vis-
modegib shows both remarkable therapeutic and preventive
efficacy, the cumulative toxicity of this agent has led to dis-
continuation of therapy in a substantial fraction of patients
[35, 36]. Therefore, it will be necessary to develop strategies
that ameliorate some of the common toxicities of this
drug [35].

2. Mouse Models of BCC for Preclinical Studies

The establishment of new treatment strategies requires
adequate animal models. An ideal model should allow for
analysis or modulation of molecular events associated with
tumor initiation or tumor progression. It should also permit
to evaluate antitumor therapies useful to prevent, inhibit,
or even to induce regression of BCC in vivo. To fulfill
these requirements, an ideal animal model should allow for
analysis of BCC that have reached a defined BCC stage after
their initiation in 100% of animals.

Hitherto, several murine BCC models exist. These
include Ptch knockout mice and mice overexpressing Hh,
oncogenic Smo, Glil or Gli2 specifically in the skin using the
keratin (K) 5, 6, or 14 promoters. Depending on the gene and
the targeted cell type, the skin tumor subtypes range from
follicular hamartoma and trichoepithelioma to nodular or
invasive BCC [16, 37-45]. In addition, allografts from BCC-
bearing Ptch™~ p53~/~ mice or from Shh transgenics can be
grown in scid mice [43, 46]. Finally, the cell line ASZ001
generated from a BCC of an irradiated Ptch heterozygous
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mouse (see below) has been successfully implanted into nude
mice and used to study the effects of the EGFR-inhibitor
afatinib [22].

Since most human BCC arise due to PTCH mutations
and since the stromal microenvironment plays an important
role in formation and progression of this tumor (see section
“Molecular pathogenesis of BCC”), immunocompetent Ptch
mutant mice certainly represent the closest model to the
human condition.

3. Ptch Knockout Mouse Models for BCC

3.1. Spontaneous Ptch Mutations in Mice. Two spontaneous
Ptch mutant animals have been described. The spontaneous
recessive mutation “mesenchymal dysplasia” (mes) is caused
by a deletion of 32 bp in the C-terminal cytoplasmic domain
of Ptch [47]. Ptc1™*/™® mice are viable and show increased
proliferation and hyperplasia of the basal cell layer [48].
However, in spite of these skin anomalies Ptc1™/¢ mice do
not develop BCC even after exposure to radiation [49].

The PtchIDI1 is a mutation caused by an aberrant
recombination event while producing a Ptch null allele
for the generation of Ptch™'* mice (see below). The
Ptch1P'! locus presumably results in a weak Ptch allele [50].
Ptch1P'"PM animals are sterile, but otherwise appear normal
[50].

3.2. Conventional Ptch Knockout Mice. So far, two different
conventional Ptch knockout mouse models for BCC have
been described. These are the Ptch™°'? and Ptch™°® strains,
in which exons 1 and 2 or exons 6 and 7, respectively, are
deleted in the germline [51, 52]. Homozygous Ptch"'"!2
and Ptch™”" embryos die around embryonic day
9.5 due to heart and neural tube closure defects. Het-
erozygous Ptch™'** and Ptch"®"* animals survive and
show increased susceptibility to spontaneous formation of
rhabdomyosarcoma, medulloblastoma, and tiny epidermal
hyperproliferations. To induce BCC, Ptch™'** animals are
usually exposed to UV three times per week for up to several
months [53-55]. After 12 months of chronic UV exposure,
all Ptch™"*" mice develop lesions with histologic features
of human BCC. Of these lesions, 44% can be classified
as superficial, 13% have histologic features of nodular or
infiltrating human BCC and 43% have features of trichoblas-
toma [53]. Chronic UV exposure also results in macroscopic
tumors. Of these visible tumors, approximately 20% are BCC
or trichoblastomas (tumors with follicular differentiation
that share many histologic features with BCC), 30% are
squamous cell carcinoma (SCC) or keratoacanthomas (SCC-
like tumors), and 50% are fibrosarcomas or fibromas [53].
The situation is somewhat different when inducing BCC-
like lesions by IR. As shown by Aszterbaum et al. [53], a
single dose of 1-4 Gy applied at 2 months of age results
in microscopic trichoblastoma-like tumors in all Ptch™'%*
mice after 1 year. Another study performed by Mancuso et al.
revealed that a dose of 3-4 Gy applied to adult Ptch"*"*
mice at the age of 2-3 months leads to nodular BCC-like
lesions in 21-47% of animals, and in infiltrative lesions in

5-12% [45]. IR exposure never results in fibrosarcomas or
SCC [45, 53]. Particularly BCC in the IR-induced model
further progress into an aggressive phenotype [45]. Immune
surveillance was not impaired in either model [53].

On the molecular level, formation of IR-induced nodu-
lar BCC requires Ptch heterozygosity in conjunction with
mutations in other molecules such as p53 [45]. Moreover,
the progression into an aggressive phenotype seems to
be associated with biallelic loss of Ptch [45]. This might
be different from human BCC, which in most cases lack
aggressiveness [56] and which frequently show loss of het-
erozygosity at the PTCH locus on chromosome 9q22 already
at the nonaggressive stage [57-59]. Thus, it remains to be
resolved whether loss of the wildtype Ptch allele in irradiated
mice indeed triggers BCC aggressiveness or whether it is
just a secondary event due to general irradiation-induced
genomic instability.

These differences to human BCC and the fact that BCC
in irradiated Ptch heterozygous mice develop at undefined
time points and in indefinite areas of the exposed skin
render this animal model may complicate the examination
of early molecular processes involved in the initiation of
BCC. However, these mice are a great tool to evaluate
new treatment options of microscopic, macroscopic, and
aggressive BCC that are caused by Ptch mutations along
with additional irradiation-dependent mutations. Indeed,
irradiated Ptch™'** knockouts have been used in several
preclinical studies (Table 1), which are described in the
following section.

To study the effects of the Hh inhibitor cyclopamine
[60], BCC have been induced in Ptch"'¥* animals by UV
exposure 3 times per week from age 6 to 32 weeks. After
this time, approximately 50% of the mice had developed
one or more macroscopic BCC. For the following 20 weeks
the animals were treated with cyclopamine that significantly
reduces tumor growth [60]. Regression of microscopic BCC
after Hh inhibition has also been shown in skin punches
of UV-irradiated Ptch™'** mice, which were kept in cell
culture for 6 days and treated for the last 4 days with the small
molecule inhibitor of Hh signaling CUR61414 [61].

Ptch™'¥" animals have also been used to analyze the
antitumoral effects of a-difluoromethylornithine (DFMO)
[62]. DEMO is a potent inhibitor of cutaneous ornithine
decarboxylase, which is expressed in BCC and is known to
promote tumor formation [69, 70]. To analyze its antitu-
moral effects, Ptch™®'¥" animals were irradiated with UV
3 times per week for 32 weeks [62]. Thereafter, the tumor-
bearing animals obtained DFMO in the drinking water for
20 weeks. The results show that DMFO reduced the number
of visible BCC and diminished BCC-like microscopic lesions.
Furthermore, a reduction of Ptch, Glil, Gli2, and Gli3
expression in nontumor-bearing skin of these animals was
evident [62].

A fourth study analyzed the antitumoral activity of the
retinoid tazarotene [55]. Retinoids are ligands of the retinoic
acid receptor (RAR) and the retinoid X receptor (RXR) and
show tumor-suppressive capacity in several tumor entities
[71]. Tazarotene was topically applied to the skin of 1.5 or
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TasBLE 1: Ptch knockout mouse models for preclinical BCC treatment studies.
BCC model ?r/fgiit?(ffcc Treatment Reference
Ptch™"* uv Cyclopamine [60]
Ptch™'¥* skin punches uv CUR61414 [61]
Ptch™¥* uv a-difluoromethylornithine (62]
Ptch"'¥* IR/UV Tazarotene (55]
Tazarotene, ATRA,
Ptch™" uv AGN195813, AGN194204, [63]
AGN194310
neol2/+ Celecoxib, sulindac,
. . 64

Ptch IR/UV MF-tricyclic [64]
Ptch™o¥+ uv Green/black tea [54]
Ptch™"?* K14-Cre-ER IR and conditional

. CUR61414 [65]
ps3flifl p53 ablation
Ptch™"?* K14-Cre-ER IR and conditional ltraconazole (66]
p53fl/fl p53 ablation
Ptch™"?* K14-Cre-ER IR and conditional Vitamin D3 (67]
ps3flifl p53 ablation
Ptch/ X ERT 2~ conditional Prch Calcitriol [68]

ablation

UV: ultraviolet radiation; IR: ionizing radiation.

2.5 months old Ptch"°'** mice for 5 consecutive days/week.
Two weeks after onset of treatment, that is, at the age of
2 or 3 months, BCC were induced by exposure to UV (3
times/week) or IR (once), respectively. In order to examine
the growth of microscopic BCC, skin biopsies of the UV-
treated group were taken at the ages of 7, 9, and 11 months,
whereas those of the IR-treated group were taken at the age
of 10 months. Tazarotene treatment reduced the number
and size of microscopic BCC after UV or IR exposure
and also prevented formation of macroscopic BCC in IR-
exposed animals at the age of 16 months [55]. A follow-
up study showed that tazarotene also inhibited the number
and size of preexisting microscopic BCC lesions [63]. For
this purpose, animals were exposed to IR at 2 months of
age and the tazarotene treatment was started 5 months
later for additional 5 months. Efficacy was also shown
for other retinoid-related agents such as ATRA (pan-RAR
agonist), AGN195813 (RAR« agonist), or AGN194204 (pan-
RXR agonist), however, to a lesser extent [63].

In a next study, the antitumoral effects of cyclooxygenases
(COX) inhibitors have been analyzed [64]. COX inhibitors
belong to nonsteroidal anti-inflammatory drugs, which are
thought to prevent the formation of SCC in humans [72].
The COX inhibitors sulindac (nonspecific COX inhibitor),
MEF-tricyclic (COX2-specific inhibitor) or celecoxib (COX2-
specific inhibitor) were administered starting at the age of 6
weeks and BCC were induced 2 weeks later by exposure to
UV (3 times/week, continued until the age of 12 months) or
IR (once). At the age of 9 months, the burden of microscopic
BCC was reduced by 35% in celecoxib-treated animals and
by 50-60% in sulindac- or MF-tricyclic-treated mice [64].

In just another study, Ptch"'¥" mice were utilized

to assess the effect of tea on BCC formation [54]. The

rational for this experiment was the observation that green
tea may protect against photocarcinogenesis [73]. Green or
black tea was added to the drinking water of Ptch™'**
mice beginning from the age of 46 days. UV exposure (3
times/week) was started 2 weeks later. However, neither
number nor size of BCC was reduced 5 or 7 months after
initial UV exposure [54].

Ptch"™'** mice were also used to analyze the effects
of itraconazole, vitamin D3, or CUR61414. Similar to
CURG61414, the antifungal compound itraconazole and
vitamin D3 derivatives have been shown to inhibit Hh
signaling, probably by interaction and inhibition of SMO
[61, 66, 74]. In order to accelerate BCC carcinogenesis in
these studies, Ptch™°'?" mice were crossed to K14-Cre-ER
p53fl/fl mice and p53 was deleted in the Ptch™'?* K14-Cre-
ER p53fl/fl offspring at the age of 6 weeks by injection of
100 ug tamoxifen on 3 consecutive days. Two weeks later, the
animals were exposed once to IR. This resulted in visible BCC
at the age of 5-6 months. CUR61414 was applied topically
twice daily to BCC on the dorsal skin 5 days a week for up
to 42 days. This decreased the tumor size by 60%, which was
accompanied by inhibition of Gli] expression in tumor tissue
[65]. The same was shown for itraconazole. When applied
orally twice daily for 18 days, itraconazole led to a significant
suppression of tumor growth, which was reversible after drug
withdrawal [66]. The treatment with vitamin D3 was also
effective. Although an impact on tumor size has not been
mentioned by the authors, vitamin D3 blocked proliferation
and Hh signaling in visible BCC when applied topically 5
days/week for 30 days [67].

Altogether, these data show that conventional Prch
knockout mice are an extremely valuable tool to analyze
the efficacy of new anti-BCC drugs. Still there might be
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a few drawbacks when using irradiated Ptch"’~ animals.
First, the onset of tumor formation is variable, with tumors
arising at different time points and different sites after
exposure to radiation [45]. This may complicate studies,
which address the use of drugs in small precursors as
opposed to progressed tumors. Second, due to the mode
of BCC induction by exposure to IR or UV, the molecular
mechanisms responsible for BCC formation are probably
very heterogeneous. This heterogeneity may also be reflected
by the spectrum of skin tumor, which comprises nodular,
superficial as well as infiltrative BCC subtypes, trichoblas-
tomas, and also SCC [45, 53]. These characteristics of
irradiated Ptch™”~ mice may hamper the evaluation of new
treatment strategies designed for targeting specific BCC
subtypes.

3.3. Conditional Ptch Knockout Mice. With respect to timing
of BCC initiation and to investigate defined BCC stages,
conditional Ptch knockout mice may be a more suitable
model. Conditional knockouts also allow for induction of
the Ptch mutation in specific cell lineages, which is important
when seeking for, for example, the identification of the cell of
origin of BCC [44, 75].

To our knowledge five different conditional Ptch
knockout mouse strains have been generated up to date. Of
these, only one has been used in a preclinical study targeting
BCC [68].

3.3.1. Conditional Ptch Knockout Mice Targeting Exons 1, 2,
or 3 of the Pich Gene. In Ptch™”™° mice, exon 3 is flanked
by loxP sites [76]. The deletion of exon 3 is expected to
lead to a premature stop codon and thus to a truncated
Ptch protein. Indeed, embryos with a homozygous deletion
of Ptch exon 3 display developmental defects and die at
embryonic day 9.5. This is similar to conventional Ptch
knockouts, in which the homozygous germline mutation
results in embryonal lethality between embryonic day 9.0
and 10.5 [51, 52]. In adult Ptch™”"° mice, BCC can be
induced with tissue-specific Cre drivers. For example, BCC
arise in conditional Krt6aCrePtch"®"*° mice after activation
of the Krt6a promotor by topical application of retinoic
acid (RA) [44]. Expression of Krt6aCre results in a loss
of Ptch in 40% of interfollicular basal cells and outer root
sheath cells of multiple hair follicles. Within 4 weeks, 25%
of animals develop basal cell invaginations and after 12
additional weeks 100% of mice suffer from BCC, which
show high Hh signaling activity. However, since the Krt6a
promotor is also permanently active in the companion cell
layer, untreated Krt6aCrePtch"*®"¢® mice develop epidermal
hyperproliferations by 9 to 12 months and suffer from
hair loss. These hyperproliferations are associated with hair
follicles or sebaceous glands and do not progress to BCC.

BCC in Ptch™™ mice can also be induced using
the skin-specific K14Cre or the MxCre mouse. The latter
strain is transgenic for a Cre recombinase controlled by the
interferon-inducible promoter Mx.1. Besides heamatopoetic
cells, liver, spleen, kidney, lung, gastric epithelium, and other
tissues [77], the Mx.1 promotor is also active in basal cells

of the skin [78]. K14Ptch1”® mice (derived from a cross
of K14Cre and Ptch™™ mice) develop BCC within 3-4
weeks after birth. In MxPtch1®* animals, BCC occur 8-10
weeks after activation of the MxCre by intraperitoneal injec-
tion of the immune stimulator polyinosinic-polycytidylic
acid (poly(I:C)) on 3 consecutive days. However, due the
widespread activity of the Mx.I promotor, activation of
MxCre in Ptch"™ mice also ablates Ptch in other organs.
This result in B- and T-cell defects, thymic atrophy, increased
numbers of myeloid progenitors, and loss of osteoblasts [78].
Due to these defects, this model is rather unsuitable for
preclinical studies using anti-BCC drugs.

In addition to Ptch™®™° mice, other conditional Ptch
knockout mouse models targeting Ptch exons 1, 2, or 3

exist. In the Ptch19‘ mouse model, the Ptch exon harboring
the first ATG of the Ptch gene and exon 2 are flanked by
loxP sites [79]. According to the provided data and to the
precise nomenclature (see [80]), the exon containing the first
ATG equates exon 1B. Therefore, the floxed region in the
Ptch1”“ mouse model additionally contains the alternative
first Ptch exons 1 and 1A [80]. After Cre-mediated excision
of these exons, the resulting Ptch1*"2"*? embryos display
the same phenotype as homozygous embryos derived from
conventional knockouts. However, embryonic and neonatal
lethality is also observed in some Ptch19 mice, which
probably results from Ptch misexpression due to the insertion
of a lacZ gene.

The Ptch1”“ mouse model is similar to a third Ptc17-2"
conditional mouse model described by Taniguchi and col-
leagues, which likewise allows for the ablation of the exons
1B, 1, 1A, and 2 [81]. Finally, one recent publication
described Ptchlneo(fl)Ex2(fl) mice, which develop BCC-like
lesions after activation of the Cre recombinase K5Cre*PR1
by RU486 or of Lgr5-EGFP-IHRES-creER™ by tamoxifen
[75]. Although not explicitly mentioned by the authors, we
assume that exon 2 is targeted in Ptchineo(fl) Ex2(fl) animals.

Due to alternative splicing of Ptch exons, the above-
mentioned animal models may be somewhat leaky when it
comes to a complete deletion of all Ptch transcript variants.
As shown by Shimokawa et al. [80], the first Ptch exons 1B, 1
and 1A as well as exons 2-5 can be subjected to alternative
splicing. Furthermore, an alternative first exon 1C exists,
which is located more than 9 kb upstream of exon 2 and can
be spliced into exon 2 or 3 of the Ptch transcript [80]. This has
also been shown by Nagao et al. [82, 83], who used a different
numbering for the alternative first exons and who named the
most upstream exon 1A [82, 83]. Although the role of the
various Ptch splice variants is not completely understood,
they are expressed in specific tissues and can modulate Hh
signaling to various extents [80, 82, 83].

According to Nagao et al., Ptch exons 6 to 9 are not
subjected to alternative splicing [83]. Therefore, targeting
this region is beneficial in order to obtain a complete loss of
regular Ptch transcripts.

3.3.2. Conditional Ptch Knockout Mice Targeting Exons
8 and 9 of the Ptch Gene. We have recently described
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FIGURE 1: Features of BCC in Ptch/™//"*ERT2*~ and Ptch’"*/"*K5-Cre-ER mice. Ptch/™//"** animals were bred with the mouse lines
ERT2 or K5-Cre-ER". The respective Ptch /*/*ERT2"~ and Ptch’"™/*K5-Cre-ERT mice were backcrossed to Ptch/'*/* mice to obtain
Ptch/" /™ ERT2*'~ and Ptch’"*/"*K5-Cre-ERT mice. ERT2 or K5-Cre-ER” was activated by one intramuscular (i.m.) injection of 100 ug
tamoxifen as described recently [20, 85], or by intraperitoneal injections of 1 mg tamoxifen (10 ug/uL in sterile ethanol/sun flower oil 1:25)

for 5 consecutive days (see [88]), respectively. Genotyping of the Ptch!™, Ptch™, ERT2, and K5-Cre-ER alleles was performed as described
recently [20, 84, 85]. All mice used in the study were handled in accordance with the German animal protection law. (a) shows the appearance

and histology of skin from control and tamoxifen-treated Ptch/"*/"®* ERT2*~ mice and (b) shows that of control and tamoxifen-treated

Ptch/f* K5 _Cre-ERT mice.

Ptch’" knockout mice (available at http://www.jax.org/:
B6N.129-Ptch1™ ™ /1 Stock 012457) permitting the

conditional ablation of exons 8 and 9 by introduction of

loxP sites into the introns 7 and 9. Ptch/"7* mice are

born at the expected Mendelian ratio and are viable and
fertile. Neither the loxP sites nor the neomycin resistance
cassette in intron 9 disturb the normal splicing of the Ptch

mRNA derived from the Ptch/™ allele [84]. As reported
by our group, the excision of exons 8 and 9 can be carried
out very effectively, thereby generating the Ptch? allele
[20, 84-86]. This results in an aberrant Ptch transcript with
exon 7 spliced into exon 10 and leads to a frameshift and
a premature stop codon. The postulated truncated protein
consists of 341 instead of 1093 aminoacids and lacks the
sterol sensing domain, the second extracellular loop, and the
C-terminus. Due to the lack of appropriate Ptch antibodies,
we were not able to detect this protein, but the phenotype

of Ptch®™# embryos indicates a complete loss of Pich

function. Indeed, all homozygous Ptch®”* mutants die

before embryonic day 10 in utero. Ptch®™" mice survive

and develop malformations at incidences similar to those
observed in conventional Ptch knockout mice on the same
genetic background [20, 85].

For the induction of BCC, Ptch/"™/" mice can be
crossed to Rosa26CreERT2 mice (hereafter ERT2 mice) that
express a tamoxifen-inducible Cre recombinase under the
control of the ubiquitously active ROSA26 promoter [87].
Activation of ERT2 by a single intramuscular (i.m.) injection
of 100 ug tamoxifen results in BCC in 100% of animals.

Microscopically, BCC precursors are visible 45 days after
tamoxifen induction. The tumors are fully developed by day
90 (Figure 1(a)) [85]. After that time, the tumors start to
regress, which is becoming obvious 200 days after tamoxifen-
treatment [20]. All BCC in this model have features of the
human nodular subtype and are noninvasive. As indicated
by abundant GliI and Ptch expression, they are characterized
by strong Hh signaling activity [20, 85]. The tumors develop
preferentially on ears and tails and are very rarely detected
in hairy skin. The reason for this preference is unknown
but may involve a better blood circulation in ears and tails,
resulting in elevated tamoxifen concentrations after im.
application (discussed in [85]).

This shows that in Ptch/"*/"* ERT2*/~ mice BCC can
be induced very easily and reliably by one single injection
of tamoxifen. Furthermore, in this model, where all mice
show full developed BCC 90 days after activation of ERT2,
specific antitumor treatments can be commenced at specific
time points after tumor induction and at a defined age of the
animals.

As indicated in Table 1, we recently examined the
antitumor effects of calcitriol, which is the physiologically
active form of vitamin D3 [68]. Calcitriol treatment was
started either immediately or 60 days after BCC initiation.
The treatment was continued until day 90, when all mice
were sacrificed. The study revealed that BCC growth was
significantly inhibited in mice treated from days 0 to 90, but
not in those treated from days 60 to 90 [68]. These data show
that conditional Ptch/"*/* ERT2*/~ mice are particularly
useful to study the preventive or curative effects of a specific
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FIGURE 2: Ptch recombination and expression in Ptch™f*ERT2Y~ and Ptch™f°*K5-Cre-ERT mice. (a) The efficiency of loxP
recombination at the Ptch locus in DNA derived from tail skin from untreated and tamoxifen treated mice was determined by allele-specific
real-time PCR as described in [85]. (b) Ptch transcripts in different tissues were analyzed by RT-PCR. The transcripts derived from the

Ptch’"* and the Ptch®™ locus (the latter equates to the floxed Ptch locus after Cre-mediated excision) were analyzed by semiquantitative
RT-PCR as described in [85]. In the skin, untreated Ptch/®//"*ERT2"~ mice only expressed Ptch" transcripts and the normally occurring
Ptch™"® transcript lacking exon 10. In contrast, untreated Ptch/"//"*K5-Cre-ERT mice expressed Ptch® transcripts and Ptch™ transcripts
lacking exon 10 (asterisk) in the skin.

TasLE 2: BCC formation in Ptch/™f* /1 ERT2*/~ and Ptch/"™/**K5Cre ERT*™ mice.

Genotype Age at tamoxifen application n Age range (days) Mice with BCC Healthy
Ptch! /TSl R/~ — 13 56-293 0 13
*prch! ¥/l flox o/~ 42-56 days 10 93-365 10 0
Ptch!" /™ K5CreERT*~ — 14 87-172 12 2
Ptch!™"*K5CreERT~ — 14 200-246 14 0
Ptch!™/"* K5CreERTY~ 55-82 days 9 132-170 9 0

“Data already published in [85].

anticancer drug. This is due to the reliable BCC initiation ~ of ERT by 4-hydroxy-tamoxifen (the active metabolite of
and progression to early precursors (after 45 days) and fully tamoxifen) is ~10-fold less efficient than that of ERT2 [89].
developed (after 90 days) tumors. Therefore, a cumulative dose of 5 mg has been used to acti-

Although the Ptch/"™/1* ERT2*/~ BCC model is very ~ vate K5-Cre-ER" in 10-weeks-old Ptch/"™//"** K5-Cre-ER”
easy to handle (i.e., application of one single dose of  animals. Untreatele tCthlox/ﬂox K5-Cre-ERT mice served as
tamoxifen) and is solid with respect to induction of a specific ~ controls. All P tch!*//* K'5-Cre-ERT mice developed BCC
BCC subtype (i.e., 100% of animals develop the nodular ~ on tails and ears after tamoxifen injection (Figure 1(b)). They
subtype 90 days after BCC induction), it also may have some  also suffered from BCC in hairy skin. Importantly, BCC also
disadvantages. Due to the ubiquitous expression of ERT2, the  developed in Ptch/"*/"* K5-Cre-ERT untreated control
i.m. application of even a low dose of tamoxifen may cause ~ mice. Some control mice even suffered from complete hair
Ptch deletion in other cell lineages or tissues. Even though  loss (Figure 1(b)). Histological examination revealed that
we have not found any evidence for Ptch-ablation in other 86% of the controls (12/14) have developed BCC at the age
organs than the epidermis and the injected muscle [20, 85],  of 87172 days (Table 2). After 200-246 days, all control mice
we now have crossed Ptch/"/"°* animals to K5-Cre-ERT  have developed tumors even without K5-Cre-ER” activation
mice, which express the tamoxifen-inducible ER” selectively (Table 2, Figure 1(b)). The leakiness of K5-Cre-ERT was
in cells of the basal layer of the skin [89-92]. Activation  also demonstrated on molecular level. Thus, the amount



of recombined Ptch alleles in DNA isolated from skin
derived from untreated controls was up to 83% (n = 5,
mean 62%). This was almost identical to tamoxifen-treated
Ptch/¥/f1o% K5_Cre-ERT animals (amount of recombined
Ptch allels 91%, n = 6) (Figure2(a)). Consistent with

these data, untreated Ptch/"*/"°* K5-Cre-ERT mice also
showed high expression of Ptch™ transcripts in the skin
(Figure 2(b)).

This is considerably different to untreated Ptch/'™ o
ERT2"~ mice, which do not develop any skin tumors
within up to 293 days (n = 13) (Table 2), and which do
not show recombination at the floxed Pich locus in the
absence of tamoxifen. Thus, whereas the recombination is
89% in tamoxifen-treated mice (n = 4), it is only 0.6% in
untreated Ptch/// ERT2*/~ animals (n = 7) and Ptch®
transcripts were never detected in any of the examined tissues
(Figure 2(a)).

Although BCC in both the Ptch/™/"* ERT2*/~ and
Ptch/¥/f1¥ k5_Cre-ERT model are identical based on his-
tology and also at the level of Hh signaling activity (i.e.,
BCC of both models express Glil and Ptch), K5-Cre-ER" is
highly leaky resulting in BCC formation even without Cre
activation. Therefore, K5-Cre-ERT should not be used in
combination with Ptch/"™/!® mice if exact timing of BCC
induction is of interest. However, since leakiness of CreER
lines can differ between conditional mouse strains [93] it
remains to be elucidated whether K5-Cre-ER" leakiness is
also seen in other conditional Ptch models.

4. Conclusion

BCC is the most common cancer in humans. Due to their
high and increasing incidence, the improvement of current
treatment options and the development of new treatment
approaches are of great importance. Based on the essential
role of HH signaling in formation of BCC, targeting this
pathway is currently being put forward (for a review on
36 HH inhibitory compounds see [94]). The preclinical
evaluation of these anti-BCC drugs requires good animal
models. General requirements for such a model are a close
relationship to the human situation (i.e., BCC caused by Ptch
mutations on an immunocompetent background), reliable
induction of BCC, defined BCC growth, and easy handling.
We have compared several Ptch knockout mouse models
suitable for preclinical studies. So far, most studies have been
conducted in UV- or IR-exposed conventional heterozygous
Ptch knockout mice. Whereas UV-exposure leads to both
superficial and nodular BCC and several other tumors, IR-
exposure results in nodular and infiltrative BCC. Although
the UV- or IR-related BCC models are valuable tools to
analyze the antitumoral response of BCC, the responsiveness
of defined BCC stages (i.e., early-stage or fully developed)
or subtypes (e.g., nodular or superficial) in these models is
hard to analyze due to heterogeneous BCC growth. For this
purpose, conditional inactivation of Ptch by inducible and
cell-specific Cre drivers may be advantageous. Five different
conditional Ptch knockout mouse strains are currently
available. However, preclinical studies on anti-BCC drugs

Journal of Skin Cancer

have only been carried out in one of them. As revealed
by this study, conditional Ptch ablation indeed enables the
investigator to accurately induce BCC at a defined time
point. In addition, conditional Ptch ablation results in a
homogeneous BCC histology, which may be due to omission
of irradiation. Therefore, conditional Ptch knockout mice are
a valuable tool to study the curative or preventive effects of a
certain drug on defined BCC subtypes and stages.

Abbreviations

Ptch: Patched
BCC: Basal cell carcinoma.
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