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Abstract: The analysis of resting-state fMRI signals usually focuses on the low-frequency range/band
(0.01–0.1 Hz), which does not cover all aspects of brain activity. Studies have shown that distinct frequency
bands can capture unique fluctuations in brain activity, with high-frequency signals (>0.1 Hz) providing
valuable information for the diagnosis of schizophrenia. We hypothesized that it is meaningful to study
the dynamic reconfiguration of schizophrenia through different frequencies. Therefore, this study used
resting-state functional magnetic resonance (RS-fMRI) data from 42 schizophrenia and 40 normal controls
to investigate dynamic network reconfiguration in multiple frequency bands (0.01–0.25 Hz, 0.01–0.027 Hz,
0.027–0.073 Hz, 0.073–0.198 Hz, 0.198–0.25 Hz). Based on the time-varying dynamic network constructed
for each frequency band, we compared the dynamic reconfiguration of schizophrenia and normal controls
by calculating the recruitment and integration. The experimental results showed that the differences
between schizophrenia and normal controls are observed in the full frequency, which is more significant
in slow3. In addition, as visual network, attention network, and default mode network differ a lot from
each other, they can show a high degree of connectivity, which indicates that the functional network of
schizophrenia is affected by the abnormal brain state in these areas. These shreds of evidence provide a
new perspective and promote the current understanding of the characteristics of dynamic brain networks
in schizophrenia.

Keywords: frequency-specific; multilayer network; dynamic reconfiguration

1. Introduction

As a complex psychotic disorder, schizophrenia (SZ) usually occurs in adolescence
or adulthood and is related to abnormal integration between distal brain regions [1]. It is
considered a chronic and diverse genetic disease with abnormal perception, emotion, and
brain connections [2]. Clinically, it is emotional and cognitive dysfunction, accompanied
by symptoms such as hallucinations and delusions [1,3,4]. Therefore, SZ is increasingly
considered a disease caused by brain network dysfunction.

In functional magnetic resonance imaging (fMRI) studies, traditional brain network
construction methods are generally during the resting-state. Current dynamic network
analyses have confirmed that fluctuations in functional connections exist, which has at-
tracted increasing attention in the academic world [5,6]. Studies have shown that dynamic
network analysis can better detect fluctuations in the brain’s functional connections. For
example, Gifford and colleagues used a modeling method called the dynamic modular
organization to investigate better inter-group differences in dynamic community structure
in SZ [7]. Cui and colleagues also believe that dynamic functional connectivity can reflect
the time-varying characteristics of brain networks and capture the changes of network
topology and cognitive behavior over time [8]. The most common method of dynamic net-
work research is to use sliding window technology to divide blood oxygen level-dependent
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(BOLD) signals into shorter time intervals or windows and obtain functional brain networks
from each time interval [9,10]. These intervals provide more reliable results for the dynamic
analysis of SZ.

Dynamic reconfiguration of multilayer brain networks can be effective to analyze
SZ caused by cognitive impairment and is increasingly used to find abnormal neural ac-
tivities. Previous studies have revealed that low frequency is generally associated with
abnormal dynamic functional connections of the brain network. To illustrate, Debo Dong
and colleagues [11] comprehensively studied the dynamic reconfiguration of the dynamic
reorganization of resting-state functional connectivity (rsFC) in SZ when the brain fre-
quency was less than 0.1 Hz and found patients who showed consistently increased rsFC
variability in sensory and perceptual systems. Xiao Wang and colleagues believed there are
significant differences between slow4 and slow5’s SZ functional connectivity densities [12].
In conclusion, studies on the dynamic reconfiguration of multilayer brain networks will
provide evidence for further exploration of the mechanism of schizophrenia.

Previous studies on SZ’s multilayer dynamic brain network generally focused on low
frequency [12,13] because this frequency band is usually associated with the abnormal
dynamic functional connection of the brain network. Still, it cannot completely cover the
complex neural activities in the resting-state brain. Some research studies have shown
that brain regions in different frequency bands have different resting-state functional
connections. In other words, physiological signals in the same brain network may compete
or cooperate with each other in various frequency bands [1]. Recently, researchers have
found that the high-frequency band can also provide valuable information for the diagnosis
of SZ. For example, Gifford and colleagues found that the flexibility of a satisfactory score
is higher at 0.08–0.25 Hz, which supports the view that SZ involves dynamic brain network
changes [7]. Yu et al. and colleagues showed that considering different high-frequency
bands helps measure brain activity in SZ [14]. That is to say, frequency is closely related to
the study of SZ and the abnormal structure of large-scale brain networks.

Based on the above research, we assumed that the brain network connection of
SZ is frequency dependent. Therefore, we used the following five different frequency
bands to explore the changes between brain regions (full frequency (0.01–0.25 Hz), slow5
(0.01–0.027 Hz)), slow4 (0.027–0.073 Hz), slow3 (0.073–0.198 Hz) and slow2 (0.198–0.25 Hz).
A multilayer community detection algorithm is applied to identify the temporal community
and calculate recruitment, integration, and module allegiance [15]. These two indicators
reflect the dynamic interactions between and within different brain regions and quantify
community changes over time [8] (Figure 1). In conclusion, our purpose was to study the
dynamic reconfigurability of the brain network structure of SZ in different frequency bands
and provide new ideas for future research.

2. Materials and Methods
2.1. Participants

The data were selected from the UCLA Consortium for Neuropsychiatric Phenomics
LA5c Study project, and the UCLA Institutional Review Board approved the study. The
data were obtained via a public database, open fMRI (https://openfmri.org/dataset/ds0
00030/, accesssed on 1 September 2020). Our study comprised 82 subjects, including
42 schizophrenia patients (SZ) and 40 normal controls (NC). There was no significant
difference in age and gender between the NC and SZ (T-test). It is worth noting that 42 SZ
in 82 subjects participated in the evaluation of SAPS. Specific demographic characteristics
are shown in Table 1.

https://openfmri.org/dataset/ds000030/
https://openfmri.org/dataset/ds000030/
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Figure 1. Schematic overview of analysis strategy. The resting-state fMRI data preprocessing re-
sults were first divided into 90 brain regions using the existing standard brain profile in the AAL 
template. Each brain region represented a node in the network. The brain’s physiological signals 
are decomposed into five frequency bands. The sliding window technique divides the time series 
into shorter time intervals. The functional connections within each layer are estimated using 
Pearson correlation. They connect the same nodes in adjacent periods and build a multilayer net-
work for each participant. The dynamic community structure is detected by maximizing the mul-
tilayer modular quality function. We calculated the module allegiance matrix, recruitment, and 
integration to analyze the difference between NC and SZ. 
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Figure 1. Schematic overview of analysis strategy. The resting-state fMRI data preprocessing results
were first divided into 90 brain regions using the existing standard brain profile in the AAL tem-
plate. Each brain region represented a node in the network. The brain’s physiological signals are
decomposed into five frequency bands. The sliding window technique divides the time series into
shorter time intervals. The functional connections within each layer are estimated using Pearson
correlation. They connect the same nodes in adjacent periods and build a multilayer network for each
participant. The dynamic community structure is detected by maximizing the multilayer modular
quality function. We calculated the module allegiance matrix, recruitment, and integration to analyze
the difference between NC and SZ.

Table 1. Demographic and clinical characteristics.

Characteristic SZ NC Statistical Test

Number of subjects 42 40 –
Age (years) 35.19 ± 8.37 32.25 ± 8.81 P = 0.125

Sex (male/female) 30/12 25/15 P = 0.396
SAPS 30.67 ± 22.26 – –

Note: The values are denoted as mean ± standard deviation.

2.2. Imaging Acquisition and Preprocessing

All subjects underwent structural and functional MRI scans on a 3-T scanner with a
32 channel head coil at the China University of Electronic Science and Technology. Soft
foam and earplugs were used to fix the subjects’ head and reduce scanning noise during the
scanning process. They were asked to stay relaxed, open their eyes, and avoid intentional
thinking activities. Resting-state fMRI data were collected using a sequence of T2*-weighted
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echo-planar imaging (EPI). The parameters are as follows: repetition time (TR) = 2 s, echo
time (TE) = 30 ms, slice thickness = 4 mm, slices = 34, flip angle = 90◦, field of view (FOV)
= 192 mm, and matrix = 64 × 64. The resting-state fMRI scan lasted a total of 304 s. For
the structural scan, a T1-weighted high-resolution anatomical scan was collected with the
following parameters: slice thickness = 1 mm, slices = 176, repetition time (TR) = 1.9 s, echo
time(TE) = 2.26 ms, matrix = 256 × 256, and field of view (FOV) = 250 mm.

Data preprocessing was carried out by the DPABI toolbox (http://rfmri.org/dpabi,
accessed on 1 September), the first ten volumes of the signal were discarded, and the
data of the other 142 time points were preprocessed as follows: (1) slice timing correction;
(2) realignment; (3) normalization: the image space was standardized to the Montreal
Neurological Institute (MNI) head anatomy template and resampled with 3 × 3 × 3 mm3

voxels [16]. (4) Filtering: considering the frequency-specific, five frequency bands are
divided here: full frequency (0.01–0.25 Hz), slow5 (0.01–0.027 Hz), slow4 (0.027–0.073 Hz),
slow3 (0.073–0.198 Hz), and slow2 (0.198–0.25 Hz) [17]; (5) Smoothing: the images were
spatially smoothed using a Gaussian filter with a full-width at half-maximum (FWHM)
of 6 mm [18]; (6) the covariates were removed, and the brain was divided into 90 regions
using the automatic anatomical marker template (AAL) [19] and residual time-series were
extracted for each voxel.

According to the time series extracted by the AAL template, we divided brain re-
gions into five functional networks [20]: somatosensory/motor and auditory network
(SMN), visual network (VN), attention network (AN), default mode network (DMN) and
limbic/paralimbic and subcortical network (LSN).

2.3. Formatting of Mathematical Components

After the above processing, each subject was divided into five frequency bands. The
sliding time window is divided for each frequency band, and the time series is divided
into smaller time intervals. According to Leonardi and Van De Ville [21], the minimum
window size that can be used in dynamic network studies is 1/ fmin ( fmin denotes the
minimum frequency of the data included). Here, we select the minimum value of the
whole frequency band (0.01 Hz) as the frequency for dividing the time window. Hence, the
window length we used was 100 s (50 TRs). Each window was shifted 2 s (1 TR), resulting
in 93 overlapping windows.

To better consider the changes in network organization over time, we introduced a
multilayer network model [22]. We connected nodes in one time window to themselves in
adjacent time windows to represent time dependence. The supra-adjacency matrix of an
f-layered multilayer network can be expressed as:

A =

 A1 · · · H1 f
...

. . .
...

H f 1 · · · A f

 (1)

where Aα is the intra-layer network adjacency matrix of layer α, 1 ≤ α ≤ f . Hkl is a
diagonal matrix and a square matrix corresponding to the inter-layer connection matrix
between layers k and l.

2.4. Multilayer Community Detection

The community detection algorithm provides a method called “module”, which can
decompose the network into dense node groups. Here, we use a multilayer community
detection algorithm called Genlouvain to identify the brain community of each partic-
ipant [23,24]. It divides the communities in the multilayer network by optimizing the
multilayer modular quality function Q and getting the information about the nodes. It can
be defined as:

Q =
1

2µ ∑ ijlr
{(

Aijl −γl Bijl

)
δlr + δijωjlr

}
δ(gil , gjr

)
(2)

http://rfmri.org/dpabi
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where µ is the total edge weight of the network and δ(gil , gjr
)

is 1 if nodes belong to the
same community and 0 otherwise [25]. Aijl represents the adjacency matrix between node i
and node j in layer l, γl is the structural resolution parameter of layer l and element Bijl
represents the component of layer l matrix corresponding to the optimized zero model. The
element ωjlr gives the connection strength from node j of layer r to node j of layer l, which
is called “inter-layer coupling parameter”. Here, we set the structure resolution parameter
and the inter-layer coupling parameter to the default value of 1 [8,26,27].

We used the Genlouvain MATLAB toolbox [23,24] to calculate the community alloca-
tions. This community assignment represents the evolution of assumed functional modules
in the brain network over time. In addition, the algorithm is a generalized greedy-like
algorithm [28], whose output may change at each run due to the random nature of the
optimized partition function. Therefore, we repeat the detection algorithm 50 times, and
then take the average of these measures as the final estimate value.

2.5. Dynamic Network Statistics
2.5.1. Module Allegiance

In the module allegiance matrix P, each element Pij represents the probability that node
i and node j are assigned to the same community during the whole scanning process [29].
The matrix P consists of N × N and is the number of brain regions (In this study, N = 90).
Pij can be written as follows:

Pij =
1

OT

O

∑
o=1

T

∑
t=1

ak,o
i,j (3)

where O is the number of iterations of the multilayer community detection algorithm, T
is the number of layers. For each optimization O and layers T, if they are in the same
community network, the value of module loyalty is 1 (the values on the main diagonal of
the matrix are all 1); otherwise, it is 0.

2.5.2. Recruitment and Integration

Recruitment: We use the module allegiance matrix to evaluate the dynamic role of
cognitive systems in task execution [15]. According to the above module allegiance matrix,
recruitment and integration are calculated. Recruitment is defined as the probability that
its region and the region from the same system appear in the community together. For
node i in the community network S, the recruitment is specifically expressed as follows:

RS
i =

1
ns

∑
j∈S

Pij (4)

where nS is the number of nodes in network S. Pij represents the number of times that
nodes i and j are assigned to the same module.

Integration: Integration is defined as the probability that its region will co-appear in
the community with regions from other systems. For node i in the community network S,
the integration can be written as follows:

IS
i =

1
N − nS

∑
j/∈S

Pij (5)

where N is the total number of brain regions.

2.6. Statistical Analysis

An independent sample T-test was used for statistical tests to quantify the differences
in integration and recruitment between NC and SZ. For each metric, we averaged the
metrics obtained from the network. Spearman’s correlation was used to assess the corre-
lation between SZ and SAPS scale scores. The Benjamini and Hochberg error discovery
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rate (BH_FDR) method was used to calibrate all the results, and the threshold value for the
significant difference was set to <0.05.

3. Results
3.1. Group Comparisons of the Whole-Brain Level at Different Frequencies

In this part, we average the recruitment and integration of the whole brain region of
each subject and discuss the dynamic difference between brain networks in full frequency
and slow5, slow4, slow3 and slow2. See Table 2 for the specific number of modules As
shown in Figure 2A, there was no significant difference in the integration between the
two groups, but the recruitment decreased significantly in full frequency (T(80) = −2.600,
P = 0.011) and slow3 (T(80) = −3.090, P = 0.003) (Figure 2B).

Table 2. The number of modules in full frequency (0.01–0.25 Hz), slow5 (0.01–0.027 Hz), slow4
(0.027–0.073 Hz), slow3 (0.073–0.198 Hz), and slow2 (0.198–0.25 Hz).

NC SZ

0.01–0.25 Hz Slow5 Slow4 Slow3 Slow2 0.01–0.25 Hz Slow5 Slow4 Slow3 Slow2

5.2 6.4 6 7.4 4.6 5.8 7 4.8 5.4 4.6

7.6 5.4 7 6.6 7.2 6.6 6 6.8 7.6 5.4

6.6 6.2 6.2 5.8 6.2 5.2 7.6 6.2 6.4 4.8

6 8.6 6.2 5.4 5.2 6.4 7 7 5.6 6

7 7.8 6.8 7.6 6.2 6.2 6.2 6 6.4 4.6

6.6 5 4.6 6.8 5.2 6 6 6 6.8 4.4

7 7.8 7.4 7.8 6.8 6 6 5.2 7.8 5.8

5.8 4.8 6.4 8.2 6.8 5.2 7.6 7.4 5 4.8

5.8 7.4 6 7 5.8 5.6 5.4 5.4 6.2 7

7.4 7.6 7.4 6.4 6.4 7.2 7 6.4 7.8 6.8

6.2 6.8 7 7.2 5.4 6.6 4.2 6.4 6.2 4.8

6 7 5.4 6.6 4.8 5.2 6.4 3.6 6.8 5

7.4 6 7.2 8.2 5.6 6 5.8 5.2 5.8 6

7.4 7.4 7 5.8 7.8 6.4 5.2 6.2 7.6 5.6

6.8 6.2 8.2 6.2 5.8 7.4 6.6 7.2 9.4 7

7.2 6 7.2 4.8 6.4 6.4 6.4 7 7.2 5

7.4 7.2 6.8 7.2 7.6 8 5.6 7 9 4.8

7.8 8.6 7.6 5.4 7 6.6 6 5.6 5.4 7

6.4 6.6 8 6.2 6.2 6.4 6.8 6.8 7.6 5.2

6.2 6.8 6.2 7.8 5.2 7.2 8.6 6.8 7 4.2

6 5.8 5.6 6.4 6.8 7.6 5.2 7.2 6.4 6.4

7 5.8 5.2 7.4 6.2 5.6 5.2 4 6.4 5.4

7 5.2 5 4.8 5.2 6.2 6.2 7.4 8.2 6.2

5.8 7.4 7.2 5 7.6 7.8 6.4 6.6 6 6.2

6.2 7 5.2 7.6 7.2 5 6.6 5.4 5.8 6.6

5.4 5.8 5.4 7.4 6.2 6.6 7.6 6.8 8 4.8

7.8 7.2 7.4 7.4 4.4 7.8 7.2 6.8 6.2 4.6

6.8 6.8 6.4 7.6 6.8 6 5.8 5.6 7.4 6.8

7.6 6.6 7 5.8 5.4 6.2 5.2 5.6 6 6.8

5.6 6.6 8.2 6.6 4.8 6.8 7 7 6.4 6.6

6.6 6.4 7.2 7.4 7.4 5.6 6.4 4.6 9.2 4.6
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Table 2. Cont.

NC SZ

0.01–0.25 Hz Slow5 Slow4 Slow3 Slow2 0.01–0.25 Hz Slow5 Slow4 Slow3 Slow2

5.6 7.6 5.4 6.6 6.2 6.2 7 8 6.4 4.6

7 6.8 5.4 6.2 5.2 7 7.4 5.2 5.4 5.2

6.2 7.6 6.6 7.2 6.4 6.2 7.2 6.4 7.2 6.8

7 7.8 7.4 7.6 7.2 6.2 7.4 7.6 5.4 5.4

6.4 6.2 4.8 5.2 5 6.6 7.4 7.2 7.6 6

6.6 9.6 7.8 8.4 6 7.4 7.4 6.8 6.8 4.6

7.2 8.6 8 7 5.6 6.8 6.8 7 7.8 4

6.8 7.2 8.2 6.6 6 6.8 6.6 7.4 7.8 4.6

5.6 7.8 6 5.8 7 6.8 8.2 6.4 7 4.4

\ \ \ \ \ 6.2 6.2 5 8.4 6.6

\ \ \ \ \ 8 6.8 8 8.2 5.6
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Figure 2. The difference of recruitment and integration from full frequency (0.01–0.25 Hz), slow5
(0.01–0.027 Hz), slow4 (0.027–0.073 Hz), slow3 (0.073–0.198 Hz), and slow2 (0.198–0.25 Hz) in the
whole brain level between NC and SZ. (A) Integration. (B) Recruitment. Asterisk indicates pairwise
group differences; * represents p < 0.05; ** represents p < 0.01.

3.2. Group Comparisons of RSN Level at Different Frequencies

According to the AAL template, we divide 90 brains into five functional networks
in the preprocessing. Here, we will study the differences in functional networks of SZ in
five frequency bands. As shown in Figure 3A, by comparing the integration between NC
and SZ, we found no significant difference in the 0.01–0.25 Hz and slow2, slow4, slow5.
However, in slow3, the VN results showed a significant increase (T(80) = 2.263, P = 0.026).
As shown in Figure 3B, the recruitment results showed a significant difference in the
0.01–0.25 Hz and slow3.In 0.01–0.25 Hz, the recruitment of VN (T(80) = −2.840, P = 0.006)
and AN (T(80) = −2.392, P = 0.019) decreased. In slow3, except for SMN, the recruitment
of the other four RSNs are significant. Among them, the recruitment of VN (T(80) = −4.101,
P = 0.000) and AN (T(80) = −3.577, P = 0.001) decreased significantly. The recruitment of
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DMN (T(80) = −2.178, P= 0.032) decreased, while that of LSN (T(80) = 2.456, P = 0.016)
increased. The specific brain network information is shown in Table 3.
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P = 0.205 
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AN 
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P = 0.707 

T = 0.109 
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P = 0.264 

DMN T = −1.010 
P = 0.316 

T = 0.455 
P = 0.651 

T = 0.048 
P = 0.962 

T = −0.564 
P = 0.574 

T = 1.394 
P = 0.167 

LSN T = −1.610 
P = 0.111 

T = −0.041 
P = 0.967 

T = 1.457 
P = 0.149 

T = −0.576 
P = 0.566 

T = 1.031 
P = 0.305 

Recruitment 

SMN T = −0.783 
P = 0.436 
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Figure 3. The difference of integration and recruitment from full frequency (0.01–0.25 Hz), slow5
(0.01–0.027 Hz), slow4 (0.027–0.073 Hz), slow3 (0.073–0.198 Hz), and slow2 (0.198–0.25 Hz) in the
RSN level between NC and SZ. (A) Integration. (B) Recruitment. Asterisk indicates pairwise group
differences; *** represents p < 0.001, ** represents p < 0.01, * represents p < 0.05.

Table 3. Integration and Recruitment of brain networks in full frequency (0.01–0.25 Hz), slow5
(0.01–0.027 Hz), slow4 (0.027–0.073 Hz), slow3 (0.073–0.198 Hz), and slow2 (0.198–0.25 Hz).

Characteristic 0.01–0.25 Hz Slow5 Slow4 Slow3 Slow2

Integration

SMN T = −1.277
P = 0.205

T = 0.478
P = 0.634

T = 0.171
P = 0.865

T = −0.246
P = 0.807

T = 0.073
P = 0.942

VN T = 1.012
P = 0.314

T = 0.279
P = 0.781

T = 2.263
P = 0.026 *

T = 0.522
P = 0.603

T = 0.522
P = 0.603

AN T = −0.781
P = 0.437

T = 0.639
P = 0.525

T = 0.378
P = 0.707

T = 0.109
P = 0.914

T = 1.124
P = 0.264

DMN T = −1.010
P = 0.316

T = 0.455
P = 0.651

T = 0.048
P = 0.962

T = −0.564
P = 0.574

T = 1.394
P = 0.167

LSN T = −1.610
P = 0.111

T = −0.041
P = 0.967

T = 1.457
P = 0.149

T = −0.576
P = 0.566

T = 1.031
P = 0.305

Recruitment

SMN T = −0.783
P = 0.436

T = 1.761
P = 0.082

T = −0.677
P = 0.501

T = −0.196
P = 0.845

T = 0.889
P = 0.377

VN T = −2.840
P = 0.006 **

T = −0.701
P = 0.485

T = −4.101
P = 0.000 ***

T = −0.830
P = 0.409

T = −0.272
P = 0.787

AN T = −2.392
P = 0.019 *

T = 0.07
P = 0.945

T = −3.557
P = 0.001 ***

T = −1.266
P = 0.209

T = 0.195
P = 0.846

DMN T = −1.123
P = 0.265

T = 1.352
P = 0.180

T = −2.178
P = 0.032 *

T = 0.390
P = 0.698

T = −0.803
P = 0.424

LSN T = −0.713
P = 0.478

T = 1.489
P = 0.140

T = 2.456
P = 0.016 *

T = −0.431
P = 0.668

T = 0.163
P = 0.871

Asterisk indicates pairwise group differences; *** represents p < 0.001, ** represents p < 0.01, * represents p < 0.05.

3.3. Group Comparisons of RSN to RSN Integration at Different Frequencies

After proving the abnormality of SZ at the RSN level, we are still interested in the
details between networks. To further investigate the group differences between SZ and NC
in five functional networks, we decomposed these values into the RSN × RSN matrix of
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mean module allegiance. The results showed that the SZ recruitment is lower than that of
NC in the full frequency. In slow3, only the recruitment of SZ with LSM is higher than that
of NC, and the other modules are lower than that of NC. In addition, we also observed that
both SZ and NC prefer to arrange nodes in their functional network rather than through the
whole system; that is, they have the characteristics of high recruitment and low integration
(Figure 4).
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Figure 4. Matrix of module allegiance in NC and SZ. (A) full frequency (0.01–0.25 Hz). (B) slow3
(0.073–0.198 Hz). P represents the mean value of module allegiance. The main diagonal represents
the recruitment coefficient, and the upper/lower triangle represents the integration coefficient.

After knowing that the integration of VN is obvious, we still study which pair of networks
has a significant difference in integration. In slow3, it is found that the integration between VN
and AN (t (80) = 3.429, P = 0.001) (Figure 5A), VN and DMN (t (80) = 3.000, P = 0.004) (Figure 5B)
is more obvious in the five brain networks of RSN to RSN after FDR correction. Moreover, the
scores of SZ are higher than NC. The specific RSN to RSN integration information is shown in
Table 4. (All information values can be viewed in Table 5).
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Figure 5. Group differences of integration for each pair of RSN to RSN in slow3 (0.073–0.198 Hz).
(A) the integration between Visual network(VN) and Attention network(AN). (B) the integration
between Visual network(VN) and Default mode network(DMN). Asterisk indicates pairwise group
differences; *** denotes p < 0.001, ** denotes p < 0.01.
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Table 4. RSN-to-RSN integration scores with significant differences in slow3 (0.073–0.198 Hz).

RSN1 RSN2 NC (SD) SZ (SD) P (FDR)

Visual network (VN) Attention network (AN) 0.194 (0.055) 0.235 (0.055) 0.000
Visual network (VN) Default mode network (DMN) 0.212 (0.049) 0.240 (0.036) 0.001

Table 5. RSN-to-RSN integration scores in full frequency (0.01–0.25 Hz), slow5 (0.01–0.027 Hz), slow4
(0.027–0.073 Hz), slow3 (0.073–0.198 Hz), and slow2 (0.198–0.25 Hz).

Frequency RSN1 RSN2 NC (SD) SZ (SD) P (FDR)

0.01–0.25 Hz

visual network (VN) somatosenery/motor and
auditory network (SMN) 0.258 (0.115) 0.267 (0.132) 0.731

visual network (VN) attention network (AN) 0.168 (0.082) 0.183 (0.062) 0.367

visual network (VN) default mode network (DMN) 0.201 (0.071) 0.213 (0.055) 0.774

visual network (VN) limbic/paralimbic and subcortical
network (LSN) 0.165 (0.069) 0.180 (0.056) 0.312

Slow5

visual network (VN) somatosenery/motor and
auditory network (SMN) 0.348 (0.110) 0.344 (0.126) 0.858

visual network (VN) attention network (AN) 0.292 (0.088) 0.295 (0.069) 0.839

visual network (VN) default mode network (DMN) 0.321 (0.078) 0.329 (0.068) 0.639

visual network (VN) limbic/paralimbic and subcortical
network (LSN) 0.294 (0.067) 0.307 (0.089) 0.469

Slow4

visual network (VN) somatosenery/motor and
auditory network (SMN) 0.311 (0.119) 0.299 (0.108) 0.613

visual network (VN) attention network (AN) 0.210 (0.075) 0.215 (0.071) 0.706

visual network (VN) default mode network (DMN) 0.254 (0.069) 0.260 (0.069) 0.666

visual network (VN) limbic/paralimbic and subcortical
network (LSN) 0.232 (0068) 0.236 (0.071) 0.774

Slow3

visual network (VN) somatosenery/motor and
auditory network (SMN) 0.271 (0.074) 0.271 (0.071) 0.552

visual network (VN) attention network (AN) 0.194 (0.055) 0.235 (0.055) 0.000

visual network (VN) default mode network (DMN) 0.212 (0.049) 0.240 (0.036) 0.001

visual network (VN) limbic/paralimbic and subcortical
network (LSN) 0.220 (0.052) 0.215 (0.043) 0.797

Slow2

visual network (VN) somatosenery/motor and
auditory network (SMN) 0.313 (0.055) 0.311 (0.061) 0.856

visual network (VN) attention network (AN) 0.294 (0.035) 0.297 (0.054) 0.759

visual network (VN) default mode network (DMN) 0.284 (0.041) 0.290 (0.044) 0.458

visual network (VN) limbic/paralimbic and subcortical
network (LSN) 0.269 (0.042) 0.280 (0.051) 0.271

3.4. Group Comparisons of Node Level at Different Frequencies

In addition to the results on the whole brain and RSN levels, we also compared the
differences in integration and recruitment at the node level between the NC and SZ. When
controlling for multiple comparisons using FDR correction, for integration, in 0.01–0.25 Hz,
no significant node differences were observed (Figure 6A); in slow3, they were significantly
different in four RSNs modules with a total of sixteen brain regions (Figure 6A). Specifically,
the SMN has eight regions. The VN has three regions. The DMN has two regions, and
LSN has three regions (Table 6). For recruitment, in 0.01–0.25 Hz, there were found two
RSNs modules with a total of six brain regions (Figure 6B). Specifically, the VN has four
regions, and LSN has two regions; in slow3, there were thirty-three brain regions in five
RSNs modules that were significantly different (Figure 6B). Specifically, the SMN module
has one region. The VN has four regions, AN has thirteen regions, DMN has five regions,
and LSN has ten regions. The specific node information is shown in Table 7.
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Figure 6. Difference between the NC and SZ in node vulnerability at full frequency (0.01–0.25 Hz)
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Table 6. Brain map of regions with significant differences on integration in slow3 (0.073–0.198 Hz).

Frequency Network Name Abb ROI NC (SD) SZ (SD) P
(FDR)

Slow3

SMN

Rolandic_Oper
ROL.L 17 0.289 (0.053) 0.245 (0.053) 0.001

ROL.R 18 0.279 (0.041) 0.243 (0.053) 0.011

Insula
INS.L 29 0.300 (0.055) 0.258 (0.062) 0.015

INS.R 30 0.300 (0.055) 0.260 (0.060) 0.015

Heschl
HES.L 79 0.283 (0.049) 0.244 (0.052) 0.011

HES.R 80 0.280 (0.044) 0.244 (0.048) 0.011

Temporal_Sup
STG.L 81 0.286 (0.051) 0.253 (0.055) 0.036

STG.R 82 0.284 (0.049) 0.243 (0.047) 0.000

VN
Lingual

LING.L 47 0.212 (0.053) 0.248 (0.050) 0.015

LING.R 48 0.208 (0.052) 0.239 (0.054) 0.045

Fusiform_R FFG.R 56 0.241 (0.058) 0.288 (0.047) 0.000

DMN Cingulum_Ant
ACG.L 31 0.297 (0.052) 0.260 (0.052) 0.015

ACG.R 32 0.297 (0.054) 0.263 (0.052) 0.032

LSN

Amygdala_R AMYG.R 42 0.272 (0.056) 0.233 (0.046) 0.011

Temporal_Pole_Mid
TPOmid.L 87 0.280 (0.052) 0.248 (0.046) 0.028

TPOmid.R 88 0.294 (0.058) 0.247 (0.041) 0.000
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Table 7. Brain map of regions with significant differences on recruitment in full frequency
(0.01–0.25 Hz) and slow3 (0.073–0.198 Hz).

Frequency Network Name Abb ROI NC (SD) SZ (SD) P
(FDR)

0.01–0.25 Hz

VN

Lingual_L LING.L 47 0.743 (0.143) 0.634 (0.169) 0.037

Occipital_Sup
SOG.L 49 0.769 (0.114) 0.676 (0.145) 0.037

SOG.R 50 0.769 (0.118) 0.661 (0.158) 0.037

Fusiform_R FFG.R 56 0.534 (0.247) 0.371 (0.219) 0.037

LSN Cingulum_Mid
DCG.L 33 0.287 (0.131) 0.200 (0.097) 0.037

DCG.R 34 0.281 (0.122) 0.199 (0.106) 0.037

Slow3

SMN Insula_L INS.L 29 0.456 (0.116) 0.395 (0.110) 0.048

VN

Lingual_L LING.L 47 0.610 (0.129) 0.477 (0.143) 0.001

Occipital_Inf_L IOG.L 53 0.494 (0.157) 0.405 (1.173) 0.048

Fusiform
FFG.L 55 0.312 (0.166) 0.232 (0.112) 0.040

FFG.L 56 0.349 (0.176) 0.233 (0.115) 0.004

AN

Frontal_Mid
MFG.L 7 0.421 (0.960) 0.355 (0.093) 0.010

MFG.R 8 0.429 (0.088) 0.357 (0.075) 0.002

Frontal_Inf_Oper
IFGoperc.L 11 0.384 (0.112) 0.328 (0.093) 0.048

IFGoperc.R 12 0.375 (0.107) 0.317 (0.086) 0.031

Frontal_Inf_Tri
IFGtriang.L 13 0.434 (0.091) 0.357 (0.098) 0.003

IFGtriang.R 14 0.423 (0.095) 0.345 (0.086) 0.002

Frontal_Inf_Orb
ORBinf.L 15 0.394 (0.085) 0.346 (0.088) 0.048

ORBinf.R 16 0.399 (0.101) 0.334 (0.082) 0.011

Parietal_Inf
IPL.L 61 0.365 (0.101) 0.297 (0.068) 0.004

IPL.R 62 0.369 (0.106) 0.317 (0.067) 0.034

Angular
ANG.L 65 0.365 (0.101) 0.313 (0.074) 0.034

ANG.R 66 0.372 (0.099) 0.316 (0.082) 0.023

Temporal_Inf_L ITG.L 89 0.309 (0.093) 0.260 (0.089) 0.048

DMN

Frontal_Sup_Medial
SFGmed.L 23 0.442 (0.096) 0.385 (0.078) 0.017

SFGmed.R 24 0.446 (0.091) 0.387 (0.081) 0.011

Cingulum_Post_L PCG.L 35 0.340 (0.111) 0.287 (0.081) 0.048

Temporal_Mid
MTG.L 85 0.341 (0.108) 0.268 (0.076) 0.004

MTG.R 86 0.324 (0.112) 0.258 (0.072) 0.010

LSN

Cingulum_Mid DCG.L 33 0.270 (0.107) 0.184 (0.074) 0.001

DCG.R 34 0.267 (0.101) 0.189 (0.073) 0.002

Hippocampus
HIP.L 37 0.396 (0.075) 0.479 (0.099) 0.001

HIP.R 38 0.389 (0.080) 0.483 (0.105) 0.001

ParaHippocampal
PHG.L 39 0.395 (0.071) 0.468 (0.103) 0.003

PHG.R 40 0.389 (0.074) 0.470 (0.106) 0.002

Amygdala
AMYG.L 41 0.392 (0.082) 0.466 (0.108) 0.005

AMYG.R 42 0.386 (0.089) 0.469 (0.108) 0.003

Temporal_Pole_Mid
TPOmid.L 87 0.324 (0.085) 0.423 (0.131) 0.002

TPOmid.R 88 0.336 (0.099) 0.409 (0.123) 0.017

3.5. Correlation between Network Measures and SAPS Scores

In order to further understand whether integration and recruitment are related to the
severity of SZ, we investigated the association between Scale for Assessment of Positive
Symptoms (SAPS) and indicators. In the slow3, based on the Spearman correlations, we



Brain Sci. 2022, 12, 727 13 of 18

found there was a negative correlation between the average recruitment score and the SAPS
score in the whole brain level (r = −0.305; p = 0.05) (Figure 7A). In RSN level, there was
a negative correlation between the AN and SAPS score (r = −0.305; p = 0.05) (Figure 7B).
In node level, there were significant negative correlation between four nodes: inferior
frontal gyrus, triangular part (IFGtriang. L) (r = −0.378; p = 0.014), inferior frontal gyrus,
triangular part (IFGtriang. R) (r = −0.338; p = 0.029)) and SAPS score (Figure 7C), middle
front gyrus (MFG. L) (r = −0.365; p = 0.017), middle frontal gyrus (MFG. R) (r = −0.319;
p = 0.04) (Figure 7D).
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4. Discussion

To study the frequency-specific dynamic reconfiguration in SZ, we use a sliding time
window to construct multilayer brain networks for each band, respectively. Recruitment
and integration are introduced to study the differences between NC and SZ. The results
showed that compared with the NC, the dynamic reconfiguration of the whole brain in
the full frequency of SZ decreased. A more significant decrease is shown in slow3, which
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means the dynamic reconfiguration of the multilayer brain network of schizophrenia has
frequency specificity. These findings may provide a new perspective for explaining the
underlying pathological mechanism of SZ.

4.1. Reduced Recruitment in SZ Patients

In terms of whole-brain, the recruitment of SZ decreased significantly in the frequency
bands of 0.01–0.25 Hz and slow3. Our results showed that the recruitment ability of SZ
is reduced, which affects the cognitive ability of patients. Moreover, this decline can be
explained by flexibility. Studies have shown that the dynamic brain network reconfigura-
tion of SZ shows higher flexibility [7–9]. In a survey of the genetic risk of dynamic brain
network reconfiguration in SZ, this higher flexibility was taken as a manifestation of the
lack of organization and stability in the patient’s network module organization [9]. These
will lead to instability in SZ.

In addition, at the whole-brain level of the slow3, recruitment is negatively correlated
with the SAPS score. This imbalance indicates that the frequency band may regulate the
dynamic abnormality of SZ, and the network is disintegrated in these patients, which
reduces the alliance preference within the system and the communication between the
systems. Besides, SAPS is mainly used to evaluate the positive symptoms of schizophrenia,
including hallucinations, delusions, and other symptoms. The higher the SAPA score, the
more serious the SZ illness and the worse the SZ cognitive ability.

4.2. Abnormal Brain Networks/Regions of Dynamic Reconfiguration in SZ Patients at slow3

Our results also compared several groups of dynamic network reconfiguration at the
RSN level. Firstly, for visual network (VN), we found that the recruitment decreased, and
the integration increased at the slow3. The evidence of continuous fusion shows that the
collection and transmission of high-frequency visual information may contribute to the
bottom-up information integration of the brain [1]. According to previous studies, the re-
duced activation of the region in the visual magnetic plasma path is associated with deficits
in motor processing in SZ [30]. Furthermore, visual stimulation has been proved to increase
the correlation between functionally related regions and decrease the correlation between
unrelated regions simultaneously [31]. In addition, we found that LING and FFG nodes
were remarkably correlated in the slow3, indicating that these nodes were more sensitive
to the severity of SZ. Lying between the calcarine sulcus, the LING, alone with the FFG [32]
next to it, is directly connected to limbic/paralimbic and subcortical network (LSN) [33,34].
The study of SZ found that the LING is a brain region supporting visual memory [35],
and the FFG is related to the identification of facial information or other objects [36,37].
JY Jung and colleagues [34] found abnormal filtering of irrelevant information in visual
cortices and altered functional connectivity between the frontoparietal network and visual
cortices in SZ. Damage to this area can lead to visual memory dysfunction and visual edge
disconnection syndrome. Based on these findings, we believe that the abnormal state of the
visual cortex will affect the cognitive function of SZ and lead to a mental defect.

Secondly, for attention network (AN), we find that the recruitment falls off at the
slow3, but the integration between attention networks and visual networks is more pro-
nounced. Some studies have shown that the reorganization of brain network modules
might contribute to attention processing [38], and visual processing and attention deficit
are the main causes of disability in SZ [39]. As a part of the attention network, MFG plays a
vital role in the dynamic network changes involved in attention processing. Some studies
have shown that changing the critical node MFG of SZ affecting the time-varying brain
network will reconfiguration brain network modules [40]. Penghui and colleagues found
that the MFG interconnected network in the left hemisphere of SZ plays a leading role in
visual and attention network topology [38]. In other words, MFG will promote the network
connection between the attention network and other regions to improve the ability of
continuous attention. We also found notable differences in recruitment between node MFG
and IFG, and there was a negative correlation with SAPA scores. The regions of MFG and



Brain Sci. 2022, 12, 727 15 of 18

IFG are usually related to decision making, action inhibition, and conflict monitoring [41].
In SZ, the IFG plays a crucial role in executive functions such as cognitive inhibition and
semantic and linguistic functions [42,43] and is associated with language production and
linguistic working memory [44]. We believe that the impairment of brain function in these
regions will affect the impairment of the functional cortical network. The resulting brain
dysfunction may lead to abnormal clinical and cognitive measures [45].

Thirdly, for the default mode network (DMN), we find that the recruitment decreased
at the slow3. In addition, our results also indicate the importance of visual network and
default mode network in the relationship between dynamic brain networks. DMN, as a
distributed network of brain regions [46], and has a high degree of functional connectivity.
In SZ, DMN is usually over-activated and over-connected, leading to cognitive impairment,
hallucination, and delusions [47]. Susan and colleagues [47] suggest that the uniqueness
of neuropsychiatric disorders may reflect the interaction between DMN and other brain
networks. Researchers have also found that the DMN regularly disintegrates into many
components in the resting-state, which can act synchronously with the sensorimotor and
attention networks [5]. Therefore, we believe that the DMN is easily connected with other
brain regions in dynamic reconfiguration.

Finally, for limbic/paralimbic and subcortical network (LSN), we find that the recruit-
ment of node DCG and AMYG in slow3 are significantly correlated. DCG is a significant
component of the limbic system and is associated with memory and spatial orientation [48].
This indicates that the decrease in connectivity strength between DCG brain regions in
psychiatric patients may affect brain memory. AMYG is nestled in the medial temporal
lobe, located anterior to the hippocampus [49]. As a part of the limbic system, AMYG is
an all-cortical region involved in emotional processes, learning, and memory. The AMYG
plays an essential role in social information processing, particularly in associating emotional
salience to sensory stimuli [50] through connections with multiple brain regions such as the
prefrontal cortex, motor, and sensory regions [51,52]. We believe that the abnormal associa-
tion between the limbic system and other systems may lead to the pathophysiology and
symptomatology of SZ. Ho and colleagues demonstrated that amygdala orbitofrontal func-
tional connectivity decreased in schizophrenic patients in the study of resting functional
connectivity [49].

4.3. Frequency-Specificity of Multilayer Brain Networks in SZ Patients

Our results showed that the dynamic reconfiguration of multilayer brain networks
of SZ is different in full frequency. Moreover, the difference in slow3 is more evident than
that in full frequency, and some information which is not observable in the full frequency
band can even be observed. Therefore, we speculate that the brain network reconstruction
of schizophrenia is related to frequency. Previous studies have indicated that higher low-
frequency signals may improve the stability of supervisory regulation during the processing
of information and high-frequency signals, and frequency band information should be
considered in future studies on SZ [1]. Additionally, previous studies on SZ focused on
low-frequency (0.01–0.1 Hz) [12,14], which may ignore the information on high-frequency
dynamic weighted functional connectivity. Recent neuroimaging studies have also shown
that high-frequency (>0.1 Hz) fMRI signals also alter spontaneous neural activity [53].

We suggest that functional integration between brain regions may occur in a specific
frequency domain based on these results. Research Indicators (recruitment and integration)
are also more observable in specific frequency domains. Suril R. Gohel’s and colleagues’
results show that the functional integration between brain regions measured by BOLD
signal correlation occurs over a wider frequency band than was examined in previous
studies. This functional integration between brain regions within the same network is
specific to one frequency band [54]. This is consistent with our results and may provide
new ideas for future SZ research.

By studying the characteristics of each frequency band, we found that the slow3 was
more pronounced for SZ. At the same time, Wang and colleagues obtained higher accuracy
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in slow3 by using the hierarchical sparse learning method to diagnose schizophrenia (SZ)
in resting-state functional magnetic resonance imaging (rs-fMRI) [3]. Besides, Zuo and
colleagues analyzed the classification weight distribution and concluded that slow3 had
the best classification performance while slow2 had the worst [4]. It is considered that the
signals in slow3 and slow2 mainly reflect white matter signals and high-frequency physio-
logical noise, while the signs in slow4 and slow5 mainly reflect gray matter signals [55].
Therefore, we believe that slow3 has a specific research value. This proved our conjecture.

5. Conclusions

This study analyzed the dynamic reconfiguration of multilayer brain networks in SZ
and normal controls at different frequencies. We found that SZ showed differences in full
frequency, which was more significant in slow3. The functional integration between brain
regions in SZ was more likely to occur in specific frequency domains. We also found that the
recruitment of SZ was significantly abnormal. The decrease in the visual network (VN) and
dynamic functional connectivity strength of the attention network (AN) in SZ can decrease
the internal links in patients. And this may explain why the RSN level mainly occurred
in VN and AN. However, the integration abnormalities in SZ at the RSN level primarily
focus on VN. This may be because the collection and transmission of high-frequency visual
information contributes to the bottom-up information integration of the brain. In the
future, our results may provide potential implications for exploring the neuropathological
mechanisms of SZ.
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