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Abstract: Spectrum sensing is an important function in radio frequency spectrum management and
cognitive radio networks. Spectrum sensing is used by one wireless system (e.g., a secondary user) to
detect the presence of a wireless service with higher priority (e.g., a primary user) with which it has
to coexist in the radio frequency spectrum. If the wireless signal is detected, the second user system
releases the given frequency to maintain the principle of not interfering. This paper proposes a
machine learning implementation of spectrum sensing using the entropy measure as a feature vector.
In the training phase, the information about the activity of the wireless service with higher priority
is gathered, and the model is formed. In the classification phase, the wireless system compares
the current sensing report to the created model to calculate the posterior probability and classify
the sensing report into either the presence or absence of wireless service with higher priority. This
paper proposes the novel application of the Fluctuation Dispersion Entropy (FDE) measure recently
introduced in the research community as a feature vector to build the model and implement the
classification. An improved implementation of the FDE (IFDE) is used to enhance the robustness
to noise. IFDE is further enhanced with an adaptive method (AIFDE) to automatically select the
hyper-parameter introduced in IFDE. Then, this paper combines the machine learning approach with
the entropy measure approach, which are both recent developments in spectrum sensing research.
The approach is compared to similar approaches in literature and the classical energy detection
method using a generated radar signal data set with different conditions of SNR(dB) and fading
conditions. The results show that the proposed approach is able to outperform the approaches from
literature based on other entropy measures or the Energy Detector (ED) in a consistent way across
different levels of SNR and fading conditions.

Keywords: spectrum sensing; entropy; machine learning; signal processing

1. Introduction

This paper deals with the problem of spectrum sensing for coexistence of wireless
services in the same radio frequency spectrum bands. The rapid development of wireless
communication technologies has increased the need to use the radio frequency spectrum
in an efficient way. One of the solutions proposed in research literature to enhance the
utilization of radio frequency spectrum resources especially in frequency bands with low
spectrum usage is to allow the coexistence of one or more wireless services. One example
of this model is spectrum sharing where there is priority access for primary users (PU),
but secondary users (SU) can still access the radio frequency spectrum in an opportunistic
way if the PU signal is not present either in time or space. To determine the presence of the
PU in the radio frequency spectrum, various techniques have been proposed in literature
with spectrum sensing as one of the most common. Spectrum sensing is defined in [1]
as “Spectrum sensing is the task of obtaining awareness about the spectrum usage and
existence of primary users in a geographical area. This awareness can be obtained by using
geolocation and database, by using beacons, or by local spectrum sensing at cognitive
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radios”. In this paper, we focus on the implementation of local spectrum sensing, which can
be classified in blind spectrum sensing approaches, and knowledge-aided spectrum sensing
approaches [2]. The blind spectrum sensing approaches require no prior knowledge of
the PU signal characteristics, while the knowledge-aided spectrum sensing approaches
require a full or partial prior information about the signal characteristics (e.g., modulation,
data structure) of the PU signal. In this paper, we focus on a spectrum sensing approach to
improve its generalization. The approach proposed in this paper is “almost blind” as we
only use the duration of the PU signal to define the range of the hyper-parameter used in
the approach, but we do not employ other information on the PU signal (e.g., modulation
scheme or signal structure). One of the most common blind spectrum sensing approaches
is based on the ED because of its simplicity and computing efficiency, but it is known not
to be robust against the presence of noise [2].

The study presented in this paper proposes an implementation of spectrum sensing
using Machine Learning (ML) algorithms. The synergy of these two research areas have
received increased interest by the research community in recent years. ML is a way of
programming computers to optimize a performance criterion using example data. ML has
been increasingly used in the telecommunication network community for a variety of tasks
including traffic prediction, traffic analysis, resource management, network security, and
other tasks. A recent and extensive survey on the application of ML to telecommunication
is provided in [3], but the scope of ML in this study is limited to spectrum sensing. In this
context, ML creates a model of the PU signal directly from the collected data without prior
knowledge of the modulation scheme of the signal and then uses the model to detect the
presence or absence of the PU signal in the radio frequency spectrum. Then, the application
of ML to spectrum sensing is based on the consideration that, since the task of determining
the channel status is intrinsically a classification task, several authors have considered the
use of ML models as inference tools. A survey on the application of ML and its extension
to Deep Learning is provided in Section 2 of this paper, but it can be anticipated that
this study focuses on a specific implementation of ML for spectrum sensing based on the
application of entropy measures. A number of papers have applied entropy measures [4–6]
to spectrum sensing because of its robustness to the presence of noise and because it
reduces the dimensionality of the channel status evaluation problem. Spectrum sensing
may involve the processing of a large number of samples (e.g., the digital representation of
the signal in space), which can be reduced by applying feature extraction including the
application of entropy measures. Then, the approach proposed in this paper combines the
application of entropy measures with ML to the problem of spectrum sensing. In particular,
the proposed approach uses the recently introduced Dispersion Entropy (DE) [7] and its
variation FDE [8] instead of the Shannon entropy or Renyi entropy commonly used in
literature on this specific problem (see Related work in Section 2). FDE has demonstrated a
superior performance to Shannon entropy in various domains including the analysis of
non-stationary electromagnetic signals in [9] (for radio frequency fingerprinting) and [10]
(for analysis of electromagnetic discharge signals), but its application to spectrum sensing is
non existent to the knowledge of the authors. In addition, this paper proposes an improved
versions of the FDE to enhance the robustness to noise and fading effects. While most of the
studies, which are reviewed and described in research literature, evaluate the application
of entropy measures thorough simulations, this study evaluates the application of FDE and
its improved variants described in the rest of this paper: Improved Fluctuation Dispersion
Entropy (IFDE) and Adaptive Improved Fluctuation Dispersion Entropy (AIFDE) on a
data set of generated radar signals which are supposed to coexist in the 5.9 GHz band with
RLAN. The evaluation is performed for different values of Signal Noise Ratio (SNR) in dB
and for different fading conditions. The results presented in the Results Section 5 show
that the spectrum sensing implemented with FDE, IFDE, and AIFDE outperforms other
entropy measures and the ED in a coherent manner across the different SNRs and fading
conditions.

To summarize, this paper provides the following main contributions:
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• The implementation of spectrum sensing based on the combination of entropy mea-
sures with ML algorithms.

• The novel application of FDE to the spectrum sensing problem.
• An improvement of the FDE and DE to make it more robust to the presence of noise.
• The evaluation of the proposed approach on a data set of real signals in different SNR

and fading conditions.

The paper is composed by the following sections: Section 2 provides an overview of the
related work. Section 3 describes the overall methodology, the materials used, the ML
algorithms, and the related classification metrics. In particular, this section describes the
generation of the signals used in the empirical evaluation. Section 4 describes at length the
entropy measures, which have been used for the analysis with a particular focus on the
FDE and its improved versions. Section 5 presents the results, where the performance of
the different entropy measures and the baseline ED is given. Finally, Section 6 provides the
conclusions to this paper and potential future developments.

2. Related Work

Research literature on spectrum sensing in the last 10–15 years is quite extensive,
and it is not the intention of this section to report on all the possible implementations
of spectrum sensing in literature. Extensive surveys on spectrum sensing are available
in [1,11–13]. The focus of this section is to report on the application of entropy measures to
spectrum sensing, on the application of ML to spectrum sensing and the combination of
these two areas.

The rationale to apply entropy measures to this specific problem is that classical
spectrum sensing techniques like the ED are particularly sensitive to the presence of noise
while entropy measures can provide robust spectrum sensing implementation as in [4],
where Shannon entropy in the frequency domain has been used. The reason why Shannon
entropy was applied in the frequency domain (through a Discrete Fourier Transform) is
because it is dependent on the signal power and is highly susceptible to noise uncertainty in
the time domain. Therefore, the entropy is calculated in the frequency domain. In fact, this
approach has been quite popular in literature since it has been applied to various spectrum
sensing scenarios and cognitive networks typologies (e.g., cooperative sensing, in combi-
nation with cyclostationary detectors) like [14,15]. Previous works adopted the Shannon
entropy measure in the time domain like [16] where a superior detection performance in
comparison to ED and cyclostationary detection techniques is also demonstrated. All the
papers cited until now are mostly based on simulations and none applies ML approaches
for spectrum sensing. In addition, most of the cited papers use Shannon entropy as entropy
measure. Some studies have also used other entropy measures. For example, the authors
in [6] have used Renyi entropy (a generalization of Shannon entropy) in the frequency
domain, and they have compared it with the ED showing the superior performance of
the Renyi entropy based approach. On the other side, the authors of [6] do not use a ML
approach as in this study. Another paper, which adopted Renyi and Shannon entropy in
combination with the Parzen window, is [5], where the performance of the proposed ap-
proach was applied to simulated data. The results show that the approach outperforms the
ED. In [5], the authors also do not use a ML approach. The Shannon entropy and the Renyi
entropy are used in this study for comparison with the proposed approach based on FDE.
We would like to highlight that the FDE is different from the entropy measures adopted in
the previous papers because it is based on the distribution of the patterns in the signal in
time rather than the distribution of the values of the signal. More details on the definition
of the FDE are provided in Section 4. The review presented so far is mostly focused on
non-cooperative spectrum sensing since this is the objective of this paper, but there are also
a number of studies where entropy measures are used in a cooperative design where the
wireless communication nodes cooperate among them to implement the spectrum sensing
function. For example, the authors in [17] have applied Shannon entropy in a cooperative
spectrum sensing design obtaining a higher detection performance than the ED. In another
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recent study [18], the authors have applied Shannon entropy measures to a cooperative
spectrum sensing implementation using USRP equipment. The results confirm the superior
detection performance on the application of the entropy measure in comparison to the ED.

From another point of view, there are many reported studies on the application of
ML and Deep Learning (DL) to spectrum sensing. A recent and extensive survey on the
application of ML and DL to spectrum sensing including wideband and/or cooperative
spectrum sensing is presented in [19]. In the next paragraph, we focus on some relevant
studies which may be related to this paper. In [20], the authors have compared different ML
algorithms including Gaussian Mixture Model (GMM), Support Vector Machine (SVM),
and K Nearest Neighbor (KNN) in a cooperative sensing scenario. The energy levels of the
signal in space are used for the classification and the results show that the ML approach is
able to outperform the classical cooperative sensing techniques. In a similar way, the au-
thors in [21] have applied SVM to spectrum sensing using the energy levels as features
in a cooperative spectrum sensing design. In [22], the authors present a new ML-based
cooperative spectrum sensing (CSS) model, which utilizes the methods of user grouping to
reduce cooperation overhead and effectively improve detection performance. The selected
ML algorithm is the SVM. Cognitive radio users are properly grouped before the coopera-
tive sensing process using energy data samples and an SVM model. Experimental results
showed that the proposed algorithms achieved their intended function and outperformed
conventional ML algorithms from literature in terms of security, energy consumption, and
sensing efficiency.

A recent paper, which also applied ML to spectrum sensing, is [3], where different ML
algorithms like multilayer perceptron, SVM, and Naive Bayes are applied to the energy
levels of the channel (simulated data are used). The results show that SVM using a Gaussian
kernel (a choice also adopted in this paper) outperforms the other algorithms. Entropy
measures are not used in [3] and the previously cited papers, but the energy levels (either
in the time or the frequency domain) are used. This study applies entropy measures
rather than the energy levels of the signal in space for classification demonstrating that
entropy measures provide a superior performance. On the other side, this study exploits
the findings of the previously cited ML papers to select the appropriate ML algorithms (e.g.,
SVM, Decision Tree, KNN). Another recent paper [23] applies ML to multiband spectrum
sensing where the challenge is to detect signals based on non-contiguous spectrum bands.
Different machine learning algorithms (neural networks, expectation maximization and
k-means) are applied to a multiband spectrum sensing technique for cognitive radios
with k-means obtaining the best results in terms of detection performance and computing
efficiency.

Recent papers have also started to apply DL to spectrum sensing. For example,
the authors of [24] have applied deep learning to spectrum sensing with different types of
noise using also real signals in addition to simulations. The application of deep learning is
seen to outperform “shallow” ML algorithms like decision tree, SVM, and KNN. In [25],
the authors apply deep Convolutional Neural Networks (CNN) to the spectrum sensing
problem in a cooperative setting and using the spectral representation of the signal as input
to the CNN. In [26], the authors apply DL in combination with spectrograms collected
from the field measurements to investigate the radar coexistence problem which is similar
to scenarios presented in this paper where radar signals are also evaluated. In both cases,
DL is able to outperform ’shallow’ ML algorithms regarding the detection accuracy but at
the cost of using considerable computing resources and time, which may be a problem in
the context where spectrum sensing should operate with a very fast detection and reaction
time and where the wireless devices may have limited computing capabilities. For this
reason, this paper uses only ’shallow’ ML algorithms.

There are very few studies which combined ML and entropy measures in literature.
One very recent paper [27] (published in 2021) implements a similar study to this

paper. The authors of [27] merge ML methods with the application of entropy measures. In
the study, differential entropy is compared with energy detection methods, demonstrating
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to outperform them. As in the study presented in this paper, the evaluation is performed
on real signals rather than a simulation. Contrary to this study, FDE is not used since
differential entropy is derived from Shannon entropy.

3. Materials and Methods
3.1. Overall Methodology

The overall methodology for the spectrum sensing implementation is presented in
Figure 1. The steps in the methodology are presented below.

In the initial step, the signals of the wireless service are collected, processed, and
normalized with mean = 0 and standard deviation = 1 for the application of entropy
measures. The signals are then segmented with a fixed segment size which is large enough
to include the signal of the wireless service even in the presence of disturbances (fading),
which may alter the shape of the signal. The segment size has been calculated to be equal
to 110 samples considering that the sampling frequency of the signal is 28 MHz, the radar
pulse duration of 1 microsecond, and the distortion of the pulse due to fading effects,
which significantly widen the original pulse signal. In addition, the length of the sample is
defined to be large enough for the application of the entropy measures while preserving a
relatively low computing time. Then, the entropy measures are calculated on the estimated
segments (both when the radar pulse is present or absent). The application of the entropy
measures generates a feature space on which the ML algorithms are applied. Since the
data set (even after the feature reduction due to application of entropy measures) can be
quite large and heavily unbalanced, an instance selection method is used to reduce the
size of the data set before the application of ML. The instance selection is based on similar
approaches in literature where ML is applied to spectrum sensing [28] where a two-step
approach is used to reduce the data set, which is given as input to the ML algorithm. Then,
a simple sorting algorithm based on the calculation of the feature itself (e.g., ED or FDE)
is used to select a subset of the overall feature space to a size NFS < NF where NFS is the
size of the obtained subset, and NF is the original size of the data set. The performance
of this simple data set reduction approach is evaluated in Section 5, where different data
sets of different sizes of NFS are compared. The feature space is divided into a training
set and a testing set, where the training set is 2/3 of the overall set and 1/3 is used for
the testing phase. In other words, a 3-fold approach is used where the three partitions are
created. The process of the creation of the training and testing set is repeated 10 times so
that 30 folds are generated to mitigate the risk of over-fitting and to improve generalization
of the results. See also Section 3.3.1 for details. The ML processing is applied a number
of times to select the optimal values of the hyper-parameters using a grid approach and
the choice of the ML algorithm. The probability of detection Pd is used as a performance
metric for the optimization process. The results of this optimization process are shown in
Section 5. Once the optimal values of the hyper-parameters are selected for each entropy
measure, the different techniques are compared using the probability detection Pd and the
probability of false alarms Pf (see Section 3.3.2 for the definition of these metrics).

The spectrum sensing scenario chosen to evaluate the proposed approach is related to
the coexistence of the weather radars with WLAN/RLAN. This is a well known problem
both in the regulatory and research communities in addition to (obviously) the weather
radar community [29]. In Europe, most weather radars are operating at C-band (5600–
5650 MHz band), sharing the same frequency band with Radio Local Area Network
(RLAN) and Wireless Local Area Network (WLAN). Since the World Radiocommunication
Conference in 2003 (WRC-03), the primary allocation for Wireless Access Systems including
WLAN/RLAN and WLAN was set in the bands of 5.150–5.350 and 5.470–5.725 GHz.
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Figure 1. Overall methodology for the spectrum sensing implementation.

3.2. Materials

On the basis of (WRC-03), weather radars and WLAN/RLAN are expected to coexist
in the same radio frequency bands due to the conditions defined in ECC/DEC/(04)08 and
ETSI in [30]. Then, the WLAN/RLAN is required to implement the Dynamic Frequency
Selection (DFS) specified in [30] (i.e., ED) to detect the radar signals and avoid the usage of
the corresponding identified radars channels by WLAN/RLAN. Then, one of the objectives
of the study presented in this paper is to evaluate alternative implementations of the DFS
in addition to the ED. Note that this is a research study, and it does not imply in any way
that the authors propose this solution (at the moment of writing this paper) to regulatory
and standardization bodies.

The proposed approach is applied to the specific problem of spectrum sensing for
weather radar signals because the study presented in this paper was part of a project on
radar coexistence with WLAN/RLAN. The proposed approach could be generalized to
other types of signals where an incumbent wireless service or PU user must be detected
by a secondary user or a wireless services which must coexist in the same frequency band.
The FDE is based on the fluctuations of the elements of the time series and the optimal
performance is obtained when the FDE (and its variants IFDE and AIFDE) is applied in the
time domain. Then, the proposed approach can be adapted to most of the signals of the
spectrum sensing problems because the approach will detect the sudden change in the time
series (i.e., the digitized signal in space collected by the radio frequency receiver) when the
signal to be sensed appears above the noise floor. For the pulse radar signals considered in
this study, the proposed approach in this paper is particularly suitable because of the sharp
fluctuations in the time domain, but it may have the worst spectrum sensing performance
when the signal is not pulse like (e.g., a ramp up signal).

In addition, another potential disadvantage of the approach proposed in this paper
is related to the additional computations which must be performed in comparison to
simple methods like the ED: the application of FDE with O(N) computing complexity as
reported in [8], the averaging step in IFDE, the selection of the optimal hyper-parameters
in FDE, IFDE and/or the estimate of the standard deviation for AIFDE. Then, the proposed
approach in this study is less suitable when the signal to be sensed is significantly long (i.e.,
large N).

The test bed for the generation of the radar signals is based on the radar test signal
defined in [30] on which the evaluation of the proposed approach is performed as described
in Figure 2. This is a conducted test bed connected with RF cables. The entire set-up was
properly calibrated and the loss of the RF equipment (e.g., RF cables, adapters) was
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recorded and considered in the measurement and data collection phases. The test bed is
composed of the following elements:

• Agilent E8267D PSG Vector Signal Generator: this signal generator was used to create
a simulated radar signal with the following settings which are based on the radar test
signal defined in [30] sampling frequency: 40.00 MHz, pulse width: 1 microsecond,
the first Pulse Repetition Frequency (PRF1): 800 Hz, the second PRF (PRF2) is 1200 Hz.
The number of pulses for each PRF is 18. This configuration creates a sequence of
pulses with one pulse lasting 1 microsecond, one pause lasting 1.25 ms, one pulse
lasting 1 microsecond, and one pause lasting 0.833 ms. A total of 1920 radar pulses
were generated plus the pauses. The carrier frequency for the train of radar pulses is
set to 5650 MHz in the PSG Vector Signal Generator since this is the frequency where
most of the interferences take place in Europe [29].

• The RF channel emulator based on the NI-VST (Vector Signal Transceiver by National
Instruments) PXIe-5645R which was extended with additional fading models and
configurations. The channel emulator implements the Tapped Delay Line (TDL)
model based on the standard 3GPP TR 38.901 version 14.0.0 Release 14 standard (page
66 to 70) [31].

• Tektronix RSA 306A Real-Time Spectrum Analyzer with 40 MHz of bandwidth, which
is used to collect the signal output from the RF channel emulator. A sampling fre-
quency of 28 MHz is used to be well within the limits of the Real-Time Spectrum
Analyzer.

The digital output from the Real-Time Spectrum Analyzer was collected and recorded
in a Personal Computer (PC) for further processing using MATLAB. The recorded digital
output is in the time domain in In-phase and Quadrature (IQ) components. Since some
entropy measures (e.g., Shannon entropy and Renyi entropy) are applied in the frequency
domain, the IQ data in the time domain are also transformed to the frequency domain using
Fast Fourier Tranform (FFT). Only the magnitude component of the frequency domain
representation was used for detection since the use of the phase component resulted in a
degraded performance.

Agilent E8267D PSG
Vector Signal Generator

NI PXIe-5645 Vector 
Signal Transceiver

(Channel Emulator)

Tecktronix RSA 306A
Real Time Spectrum 

Analyzer

RF RF

Data 
Collection 

with PC

TTL

Figure 2. Test bed for the generation of the signals and data collection.

The channel emulator implements five different TDL models which are defined in
detail in [31]: three models (TDL-A, TDL-B, and TDL-C) for Non Line of Sight (NLOS) sce-
narios and two models (TDL-D and TDL-E) for Line of Sight (LOS) scenarios. The models
include both Rician and Rayleigh fading conditions.

Figure 3 shows the impact of the TDL-A model on the radar pulse. Figure 3a shows the
representation of the radar pulse in the time domain. Figure 3b shows the representation of
the radar pulse in the frequency domain. It can be seen that the fading condition introduces
a distortion in the shape of the pulse, which can negatively impact the detection of the
pulse in the implementation of the spectrum sensing function. The presence of noise (e.g.,
Additive White Gaussian Noise (AWGN)) can further negatively impact the detection
performance as shown in Section 5.
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Figure 3. Image of the Weather Radar bursts in fading conditions based on the TDL-A model of [31].

3.3. Machine Learning Algorithms and Classification Metrics
3.3.1. Machine Learning Algorithms

The following machine learning algorithms have been used to evaluate the perfor-
mance of the detection process.

• SVM is a supervised learning model with the related learning algorithms that classify
data by creating a hyperplane or set of hyperplanes in a high- or infinite-dimensional
space, to distinguish the samples belonging to different classes. Various kernels
have been tried and the one providing the best performance was the Radial Basis
Function (RBF) kernel, where the values of the scaling factor γ must be optimized
together with the parameter C [32].

• KNN is an approach to data classification that estimates how likely a data point is to
be a member of one class or another depending on what group the data points nearest
to it are in. The KNN is an example of a lazy learner algorithm, meaning that it does
not build a model using the training set until a query of the data set is performed.
The main hyperparameter in KNN is the K factor, which must be optimized for the
specific classification problem. The type of distance metric used to calculate the
’nearest’ must also be chosen carefully.

• Decision tree is a predictive modeling approaches where a decision tree (as a predictive
model) analyzes the observations about an item (represented in the branches) to reach
conclusions about the item’s target value (represented in the leaves). In this case, we
use classification trees where leaves represent class labels and branches represent
conjunctions of features that lead to those class labels. The hyper-parameter chosen
for optimization is the maximum number of branches NB at each split. The option in
which the algorithm trains the classification tree learners without pruning them was
chosen.

3.3.2. Detection Metrics

The classification metrics adopted on this paper are adopted on the basis of two con-
siderations. The first consideration is that they are commonly used in literature to evaluate
the performance of the spectrum sensing algorithm [4,6,15]. The second consideration is
they are derived from the binary hypothesis test, which is used to find out the presence of
the PU or incumbent signal: H0 is the noise in the absence of a PU/incumbent signal and
H1 indicates the presence of a PU/incumbent signal as defined in the following equations:

H0 → xi = u(i), i = 1, . . . , N (1)

H1 → xi = s(i) + u(i), i = 1, . . . , N (2)

where s(i) is the PU/incumbent signal, u(i) is the noise and i = 0, 1, 2, . . . , N, is the sample
size under analysis. Then, H0 indicates the absence of a PU/incumbent signal, and H1
indicates the presence of a PU/incumbent signal.

Then, the following evaluation metrics are defined:
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• The detection probability Pd refers to the numbers of correct detections (PU is present)
over the total number of sensing operations. Another definition of Pd is the probability
of deciding H1 when H1 is true.

• The probability of false alarm Pf refers to the number of times that the PU is falsely
detected over the total number of sensing operations. Another definition of Pf is the
probability that the decision is H1 when H0 is true.

4. Entropy Measures

In the rest of this section, X = xi, xi+1, . . . , xN is the time series under analysis, which
represents the window of the data of the signal collected in the spectrum sensing process
(e.g., in our study, the window of data are set to a length of 110 samples). The Shannon
entropy and Renyi entropy are also applied to the spectral domain representation XF of
X using the Discrete Fourier transform (DFT), which is represented with the following
equations:

XF(k) =
N

∑
i=1

x(i)W(i−1)(k−1)
n (3)

where
WN = e(−2π j)/N (4)

where WN is one of the N roots of unit.

4.1. Shannon Entropy

The Shannon entropy is defined as follows:

SE = −
N

∑
i

p(xi)log(p(xi)) (5)

where p(xi) is the probability p(x = xi).
Note that, in this paper, the Shannon entropy measure is applied to the spectral

domain representation (amplitude only) |XF| of the signal X as it provides a superior
performance in spectrum sensing [4].

4.2. Renyi Entropy

The Renyi entropy of order o is defined in the following Equation (6):

RE =
1

1− o
log

(
N

∑
i

p(xi)
o

)
(6)

where p(xi) is the probability p(x = xi). The limit for o −→ 1 is the Shannon Entropy
defined above. In this paper, we adopt the values of o = 2, 3, 4 as this is the range of values
used in literature [6].

As in the case of Shannon entropy, the Renyi entropy measure is applied to the spectral
domain representation (amplitude only) |XF| of the signal X because it provides a superior
performance in spectrum sensing [6].

4.3. Dispersion Entropy

DE was recently introduced in [7] and refined in [8], and it addresses the potential
weakness of Permutation Entropy (PE) where the mean value of amplitudes and differences
between amplitude values are not considered in its definition. In DE, the initial series
X = xi, xi+1, . . . , xN (the window of the data of the signal collected in the spectrum sensing
process) is mapped to c classes. While this mapping can be implemented with various
linear or nonlinear approaches, the authors in [7] propose to use Normal Cumulative
Distribution Function (NCDF) to map X to the c classes. This mapping function (called
MF in the rest of this paper) has been extended in [8] to other functions. Then, the initial
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time series X is transformed to another time series U with U = ui, ui+1, . . . , uN . To make a
comparison with the performance of DE in the spectral domain, the DE can also be applied
to XF presented in Section 4. In both cases of DE and FDE and the subsequent improved
variants IDE and IFDE introduced in this study, the mapping between the original signal
X (xi) and U (ui) can be implemented in different ways: using a simple linear function or
more sophisticated functions like the sigmoid, the hyperbolic tangent sigmoid function,
the normal continuous distribution function and so on. Depending on the structure of the
time series, the choice of the mapping function can produce better or worst results for the
spectrum sensing detection. Then, the choice of the mapping function becomes another
hyper-parameter to be optimized in the implementation of DE and FDE together with m
and c (the delay parameter is set to 1 for the reasons described before, which are to avoid
the risk of bypassing relevant samples for spectrum sensing). In this paper, we use the
same mapping functions MF described in [8].

The following terminology for the mapping functions is used in the rest of this paper:

• ‘LM’ (linear mapping);
• ‘NCDF’ (normal cumulative distribution function);
• ‘TANSIG’ (tangent sigmoid);
• ‘LOGSIG’ (logarithm sigmoid);
• ‘SORT’ (sorting method).

An additional transformation is performed on U where dispersion patterns are gener-
ated from sequences of U with embedding dimension m and delay d as in the following
formula (note that it is adopted a similar notation to [8]):

um,c
i = uc

i , uc
i+d, . . . , uc

i+(m−1)d, i = 1, 2, . . . , N − (m− 1)d. (7)

Then, each time series um,c
i is mapped to a dispersion pattern πv0v1...v(m−1), where

uc
i = v0, uc

i+d = v1, . . . , ui+(m−1)d = vm − 1. The number of possible dispersion patterns is
equal to cm, since um,c

i has m elements, and each can be one of the integers from 1 to c. This
equality does also impose a condition on the values of the hyper-parameters c, m, and d
used in the analysis since cm <= N with d = 1 as in the case of this study because no delay
is used to avoid the risk of missing relevant signal samples indicating the presence of the
signal in space to be sensed.

For each cm dispersion patterns πv0v1...v(m−1), the relative frequency is obtained as
follows:

p(πv0v1...v(m−1)) =
#
{

i|i <= N − (m− 1)d, um,c
i ∈ πv0v1...v(m−1)

}
N − (m− 1)d

(8)

where # has the meaning of cardinality and ∈ has the meaning ’has type’ in this context.
Then, by applying the Shannon definition of entropy to the dispersion patterns, the final
value of the DE is calculated with the following equation:

DE(x, m, c, d) = −
cm

∑
π=1

p(πv0v1...v(m−1)) · log(p(πv0v1...v(m−1))) (9)

The MATLAB implementation of DE provided by the authors of [7] was used in
this paper.

4.4. Fluctuation Dispersion Entropy

A variation of the DE was introduced in [8] where only the differences between
adjacent elements of dispersion patterns are considered. Such fluctuations are termed
fluctuation-based dispersion patterns. To make a comparison with the performance of FDE
in the spectral domain, the DE can also be applied to XF presented in Section 4 in addition
to X.
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In this case, the patterns have dimension (m− 1) where each of their elements changes
from (−c + 1) to (c− 1). Then, the number of fluctuation-based dispersion patterns be-
comes (2c− 1)(m−1), which imposes a limit on the values of the c and m parameters because
(2c− 1)(m−1) < N. This variation of DE is called FDE in the rest of this paper. In FDE,
the dispersion pattern 1, 3, 4 is equivalent to 2, 4, 5 and in a similar way 1, 1, 1 is equivalent
to 3, 3, 3. One example on the application of FDE is provided here. If there is a signal x = 3,
4.5, 6.2, 5.1, 3.2, 1.2, 3.5, 5.6, 4.9, 8.4 and we have m = 3, c = 2 and d = 1, we have 32 potential
fluctuation dispersion patterns ((−1, −1), (−1, 0), (−1, 1), (0, −1), (0, 0), (0, 1), (1, −1),
(1, 0), (1, 1)). With two classes and related values 1, 2 the original signal x is transformed to
(1, 1, 2, 2, 1, 1, 1, 2, 2, 2). Then, a sliding window of size m = 3 is used to estimate the
differences between adjacent elements of dispersion patterns, which produces ((0, 1), (1, 0),
(0, −1), (−1, 0), (0, 0), (0, 1), (1, 0), (0, 0)). Finally, the number of each fluctuation-based
dispersion pattern is counted.

The rationale for the application of FDE to the problem of spectrum sensing is that the
detection of the PU signal in space is more related to the fluctuations of the signal rather
than the distribution of the dispersion patterns as in other domains (e.g., specific patterns
in an electrocardiogram). Then, FDE can be well adapted to this problem of spectrum
sensing. This initial assumption will be validated by the results presented in Section 5.

4.5. Improved Fluctuation Dispersion Entropy

The fluctuations in the time series on which the FDE is implemented may be sensible
to the presence of noise. In this specific context of spectrum sensing, an improvement of
the FDE is proposed where the U series is created not directly from X but from another
representation Y where yi = ∑k=i+SFDE

k=i−SFDE
(xk) and the overline symbol y represents the mean.

In plain words, U is created from Y, which is in turn created as an average of X on a segment
of size SFDE. This additional operation, which can (and is) be easily integrated in the DE
and FDE definition, basically implements a simple smoothing filter, which can improve the
robustness of FDE against the noise, and it is particularly suited to the specific problem
of spectrum sensing where the noise may significantly degrade the performance of the
detector. For an analysis of smoothing filters using averaging, the reader can refer to [33].
The potential trade-off is that this operation may remove the discriminating features which
are used for spectrum sensing in this context or for classification in other domains where
FDE is applied. This trade-off will be discussed more in detail in Section 5. Then, SFDE
becomes another hyper-parameter in the application of FDE to spectrum sensing with a
range, which should be significantly less than the length of the signal to be detected (i.e.,
the radar pulse in this case) but also greater than m. This the reason why the approach
proposed in this paper is not fully “blind spectrum sensing” because the range of SFDE is
between m and smaller than the size of the pulse in ideal conditions (which is 28 samples
for a radar pulse of 1 microsecond sampled at 28 MHz). Note that this technique can
be applied both to FDE but also to DE. The derivations of FDE and DE applying this
technique are called respectively Improved FDE (IFDE) and Improved DE (IDE) in the rest
of this paper.

To overcome the presence of another hyperparameter SFDE (beyond m and c) which
should also be tuned, an adaptive technique to select the optimal value of SFDE is presented
in this study. The technique is based on the consideration that the presence of noise in
spectrum sensing changes the standard deviation of the signal in space. Then, the proposed
technique calculates the value of SFDE on the basis of the standard deviation of the signal
itself. This is a simple calculation, which is not computing intensive. In the adaptive
technique, SFDE is directly correlated with the standard deviation, and it is matched to
the range of the standard deviation calculated on the range described before (between
m and the length of the PU signal). In a practical application, it can be calculated in a
training phase or directly on a large number of received signals. The application of this
adaptive technique to IFDE and Improved Dispersion Entropy (IDE) generates other two
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variations of FDE and DE called in this paper AIFDE and Adaptive Improved Dispersion
Entropy (AIDE).

The results shown in Section 5 demonstrate that the technique is quite effective: even
if it does not provide the exact optimal value of SFDE in all fading scenarios or noisy
scenarios, it identifies an optimal value of SFDE which provides a detection performance
better than the large majority of the fixed values of SFDE and effectively removes (if the
technique is adopted) the need to estimate one hyper-parameter (i.e., the value of SFDE).

Note that IDE, IFDE, AIDE, and AIFDE are only applied to the time domain and the
related definition on the spectral domain is not provided here for this reason.

5. Results
5.1. Hyper-Parameter Optimization

The aim of this section is to evaluate the impact of the hyper-parameters defined in
the previous sections of this paper (e.g, m,c SFDE) on the detection performance of the
spectrum sensing function.

As described before, the optimal values were identified using a grid approach across
the folds and the maximum occurrence of the hyper-parameters values in the resulting
histogram. While the number of hyper-parameters may seem large, there are some con-
straints on the range allowed for the hyper-parameters. The hyper-parameters m and c
are constrained by the size of the window of analysis in spectrum sensing: in DE cm < N
while in FDE and IFDE (2c− 1)(m−1) < N. For the mapping function MF, five different
functions are evaluated. The value of SFDE can be effectively replaced with the adaptive
technique in most scenarios.

Then, this section is focused on the evaluation of the impact of the hyper-parameters
described in Table 1 with a grid approach. The results of the evaluation are presented in the
form of graphs and figures where the impact of one hyper-parameter or the set of hyper-
parameters is shown while the values of the other hyper-parameters are kept constant.

Because the optimization process can be quite time-consuming, it is performed on
a reduced size of the initial data set using the instance selection process described in
Section 3. The selected data set was reduced to 0.02 of the initial data set. This size was
chosen because it still contains a relevant number of samples (around 10,000 samples),
but it also has a degree of unbalance between the labels indicating the presence of the
pulse radar or the absence of it (pulse radars were present roughly on a ratio of 1 to 5 in
the reduced data set). The evaluation of the impact of the different sizes of the data set
is shown later in this section. The optimization results are obtained using the Decision
Tree (DT) algorithm. An evaluation of the performance of the different ML algorithms is
provided later in this section.

Table 1 provides a summary on the identified hyper-parameters and the range of
values on which the optimization was performed.

The first result presented in this section is the impact of the values of the m and c
hyper-parameters, which is shown in Figure 4 and related subfigures for different fading
models (e.g., TDL-B) and different values of SNR in dB. Because of the large quantity of
results to present, only the values of SNR = −12, −8, −4.0 dB are shown. As demonstrated
in subsequent figures, these values of SNR are the most relevant for the evaluation of the
impact of the hyper-parameters. The graphs are obtained using the FDE.

The results show that the impact of the choice of m and c is relevant, and it may vary
across different fading conditions and values of SNR. One common trend, which can be
extracted from the presented results, is that a higher value of c (the number of classes)
usually supports a higher detection accuracy (e.g., a higher value of Pd). On the other side,
we remind that the value of c is bound to an upper limit as described before, and such
limits cannot be increased further. Similar considerations can be proposed for m. Then,
an evaluation of the results shows that the combination of m = 3 and c = 4 provides in
most cases the optimal detection accuracy measured with Pd, in particular for higher values
of SNR expressed in dB. For this reason, the values of m = 3 and c = 4 will be used in the
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rest of this paper. A potential reason why these values are optimal is that a relative large
number of classes (c = 4) supports a better classification between the cases of presence or
absence of signal.

Table 1. Identification and description of the main hyper-parameters used in this study including their optimal values and
the range where the optimization was performed.

Hyper-Parameters of the
Machine Learning
Algorithms

Parameters

SVM RBF scaling factor γ = 25 (range: 21 to 210), C factor = 28 (range: 21 to 210)

KNN K = 1 (range: 1 to 10), Distance metric = Euclidean Distance (choices: Chebychev, Euclidean,
Minkowski)

Decision Tree NB = 8 (range: 2 to 12), Split Criterion = Gini’s diversity index (choices: Gini Index and
Cross-Entropy)

Hyper-parameters of the
entropy measures

DE embedding dimension m = 3 (range 2, 3, 4), number of classes c = 4 (range 2, 3, . . . , 9). Mapping
function equal to TANSIG with range (LM, NCDF, TANSIG, LOGSIG, SORT).

IDE and AIDE
embedding dimension m = 3 (range 2, 3, 4), number of classes c = 4 (range 2, 3, . . . , 9), averaging
parameter SFDE = 8 or adaptive calculation of SFDE. Mapping function equal to TANSIG with range
(LM, NCDF, TANSIG, LOGSIG, SORT).

FDE embedding dimension m = 3 (range 2, 3, 4), number of classes c = 4 (range 2, 3, . . . , 9). Mapping
function equal to TANSIG with range (LM, NCDF, TANSIG, LOGSIG, SORT).

IFDE and AIFDE
embedding dimension m = 3 (range 2, 3, 4), number of classes c = 4 (range 2, 3, . . . , 9), averaging
parameter SFDE = 9 or adaptive calculation of SFDE. Mapping function equal to TANSIG with range
(LM, NCDF, TANSIG, LOGSIG, SORT).

Then, the impact of the mapping functions between the initial time series X (or |XF|
if the frequency domain amplitude is used) and U were evaluated in a similar way to
the previous results. The results are shown in Figure 5 and related sub-figures, and they
are obtained using the FDE with m = 3 and c = 4 and the optimal values of the other
hyper-parameters shown in Table 1. The results are calculated for different fading models
(e.g., TDL-B) and different values of SNR in dB. Due to the large quantity of results to
present, only the values of SNR = −12,−8,−4.0 dB are shown. The results show that the
best detection performance is obtained with the TANSIG mapping function especially with
relatively high values of SNR in dB (i.e., 0 dB and−4 dB) across the different fading models.
The NCDF function also obtains a very good performance in particular for lower values of
SNR in dB (i.e., −8 dB and −12 dB). The reason why the TANGSIG and NCDF mapping
functions obtain a higher Pd than the other mapping functions like the linear mapping
(LM) or the sorting algorithm (SORT) is related to the consideration that TANSIG is able to
capture in a more efficient way the nonlinearities in the signal in the presence of fading
effects or noise. In other words, the greater slope of TANSIG and NCDF in comparison to
the linear mapping LM means that they show a greater response to a small deviation in the
signal in space (i.e., the fluctuations). Therefore, the ML algorithm can better distinguish
between small variations in the signal, and it can generate a much more nonlinear response,
which supports a more effective classification.



Entropy 2021, 23, 1611 14 of 24

SNR(dB)=0

TDL-A TDL-B TDL-C TDL-D TDL-E

TDL model

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
d

m=2,c=4

m=2,c=5

m=2,c=6

m=2,c=7

m=2,c=8

m=2,c=9

m=3,c=2

m=3,c=3

m=3,c=4

m=4,c=2

m=4,c=3

(a) SNR = 0 dB.

SNR(dB)=-4

TDL-A TDL-B TDL-C TDL-D TDL-E

TDL model

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
d

m=2,c=4

m=2,c=5

m=2,c=6

m=2,c=7

m=2,c=8

m=2,c=9

m=3,c=2

m=3,c=3

m=3,c=4

m=4,c=2

m=4,c=3

(b) SNR = −4 dB.

SNR(dB)=-8

TDL-A TDL-B TDL-C TDL-D TDL-E

TDL model

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

P
d

m=2,c=4

m=2,c=5

m=2,c=6

m=2,c=7

m=2,c=8

m=2,c=9

m=3,c=2

m=3,c=3

m=3,c=4

m=4,c=2

m=4,c=3

(c) SNR = −8 dB.

SNR(dB)=-12

TDL-A TDL-B TDL-C TDL-D TDL-E

TDL model

0

0.1

0.2

0.3

P
d

m=2,c=4

m=2,c=5

m=2,c=6

m=2,c=7

m=2,c=8

m=2,c=9

m=3,c=2

m=3,c=3

m=3,c=4

m=4,c=2

m=4,c=3

(d) SNR = −12 dB.

Figure 4. Impact of m and c values for the different fading models and different values of SNR in dB.
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Figure 5. Impact of the mapping functions for different fading models and different values of SNR in dB.

As described in Section 3, the approach proposed in this paper is not only based on
the application of DE and FDE but also on their improved versions IDE and IFDE where
the transformation from X to U includes an averaging step (calculated on the basis of the
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parameter SFDE) for the neighbors of the selected sample i. In addition, the definitions
of IDE and IFDE were further improved with an adaptive step where SFDE is adaptively
calculated to obtain the AIDE and AIFDE. Then, an initial evaluation is done to see how
AIDE and AIFDE perform in comparison to IDE and IFDE for a range of SFDE values. The
next set of figures (Figure 6 and related sub figures) show the impact of the parameter
SFDE on the detection performance. The results presented in the figures are generated
using IFDE and by averaging the differences between the maximum value of Pd obtained
at each SNR for an optimal value of SFDE and the Pds obtained for a fixed value of SFDE
(represented by a specific bar in the bar graph).

In addition, the performance with AIFDE is also presented in Figure 6 and related
sub figures using a line over-imposed on the bar graph. It can be seen that the approach
based on AIFDE is able to outperform the application of IFDE with fixed values of SFDE in
most cases and across the different fading models (in particular for TDL-A, TDL-B, and
TDL-E). For the TDL-C and TDL-D fading models, AIFDE is able to outperform IFDE for
the majority of the fixed values of SFDE even if SFDE values equal to 8 or 9 provide an
excellent detection performance as well. On the other side, the adoption of AIFDE allows
for avoiding the task to select the optimal value of the SFDE hyper-parameter.
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(c) TDL-C.
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(d) TDL-D.
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Figure 6. Sum of the differences for Pd from the optimal value (across all the values of SNR considered
in the study) for different window sizes SFDE using IFDE. The line indicates the sum of the differences
for the adaptive method (i.e., AIFDE) to show the comparison with the different values of the window
size SFDE. Each figure represents a different channel propagation model (i.e., TDL from [31]).

All the results shown so far in this section are based on a data set, which is reduced
to a size of 0.02 of the initial data set with the instance selection method described in
Section 3. Then, we evaluated the performance of the instance selection algorithm in
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relation to the baseline with the whole data set using Pd as the metric. Ideally, the instance
selection algorithm should be able not only to minimize the size of the data set but also
to maintain or improve the detection performance. The Pd trend in comparison to the
SNR for the TDL-A fading model (the other fading models show a similar result and they
are not displayed for space reasons) is shown in Figure 7 for AIFDE for different sizes
of the data set reduced by the instance selection algorithm. We note that the algorithm
is able not only to reduce the data set (and therefore the classification time) but also to
improve the detection performance and robustness to noise. The same results shown in
Figure 7 are described more in detail and clarity for specific values of SNR in Figure 8a for
SNR = −4 dB and Figure 8b SNR = −8, which confirm the previous statements since it can
be seen that smaller data sizes enhance the detection performance. The reason why the
instance selection algorithm is able to improve the detection performance in this particular
case of spectrum sensing is because this simple algorithm mostly excludes samples where
the signal is absent. For example, in the case of the ED, the energy of the data window of
the signal in space is higher than the energy of the data window when the signal is absent.
Then, the machine learning algorithm will operate on a reduced data set where the data
model has a higher population ratio of samples where the signal is present than when it
is not present, and the detection of the signal will be more effective. The trade-off of the
application of this pre-processing step is that it requires additional computing resources.

We note that this approach is not new in the context of spectrum sensing because a similar
pre-processing step has already been adopted in literature with similar results [17,28,34].
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Figure 7. Pd with different sizes of the data sets reduced from the initial data set through the instance
selection process. AIFDE was used.
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Figure 8. Bar graphs of the Pd with different sizes of the data sets reduced from the initial data set
through the instance selection process for SNR = −4 dB and SNR = −8 dB. AIFDE was used.

The performance of IFDE and IDE was compared with the application of the basic
definition of FDE and DE both in the time domain and the spectral domain to evaluate in a
quantitative way the improvement in detection performance of IFDE and IDE.

Figure 9 and related sub figures show the Pd and Pf for different values of SNR in dB
and the fading models TLD-A and TDL-B (for reasons of space, the results of the other
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fading models are not presented, but they provide similar results). It can be seen that
the IFDE and IDE for selected values (here it is represented only the IFDE and IDE in the
time domain) of SFDE significantly outperform FDE and DE both in the time domain and
spectral domain. In particular, it can be noticed that the detection performance of FDE
and DE in the time domain is better than the frequency domain (while the opposite is true
in the case of SE and RE). A potential reason for this result is that the dispersion patterns
related to the presence of the signal in space (in comparison to the absence of signal) are
more visible in the time domain even in the presence of Gaussian noise rather than in
the spectral domain. For this reason, in the rest of this paper, the IFDE and IDE (and its
adaptive variants AIFDE and AIDE) are only calculated in the time domain.

The results in Figure 9a,b (for Pd) and Figure 9c,d (for Pf ) also show that the perfor-
mance of FDE is slightly better than its counterparts DE (and similarly for IFDE and IDE).
This is particularly visible for FDE and DE in both fading models TDL-A and TDL-B in
Figure 9a,b, and it is slightly visible for IFDE and IDE in particular for the TDL-B model
in Figure 9b. This is due to the reason that the FDE and IFDE are focused on the analysis
of the fluctuations (i.e., differences) between subsequent samples which is more effective
in the detection of the presence of the PU signal over the noise floor in comparison to the
analysis of the dispersion patterns from DE and IDE.
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Figure 9. Results for the comparison of IFDE and IDE against FDE and DE on the basis of Pd and Pf
across different TDL models and different levels of SNR.

Finally, we perform a comparison of the different ML algorithms identified in Section 3.
The results for different values of SNR and for the different fading models are shown in
Figure 10. It can be seen that DT outperforms the other ML algorithms like KNN and SVM.
This is why DT is used to generate the results presented in this section.

This last result completes the evaluation of the impact of the hyper-parameters for the
detection performance in the spectrum sensing function. The next sub-section compares
the detection performance of the proposed approach with the approaches proposed in
literature based on the ED and other entropy measures.
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Figure 10. Pd for different machine learning algorithms. AIFDE is used.

5.2. Comparison with Other Approaches from Literature

Once the values of the optimal hyper-parameters (at least in the majority of the fading
scenarios) have been selected as described in the previous section, a comparison with the
methods used in literature is performed. In particular, we compare the results obtained
with AIFDE, AIDE, IFDE, IDE (for two different values of the window SFDE) with the ED
(which is the baseline detector used in spectrum sensing) and the other entropy measures
used in literature for spectrum sensing: Shannon entropy [4,16] and Renyi Entropy of order
o = 2, 3 and 4 [6]. The results are shown in Figure 11 (for Pd) and Figure 12 (for Pf ) and
related subfigures for different values of SNR in dB and for the five adopted fading models:
TDL-A, TDL-B, TDL-C, TDL-D, TDL-E.

It can be seen that AIFDE, AIDE, IFDE, IDE are generally able to outperform sig-
nificantly the baseline ED, Shannon entropy, and Renyi entropy detectors in a coherent
manner across the five adopted fading models, and they are generally more robust in the
presence of noise. All the entropy measures provide better results against the ED across
all the fading models and the different levels of SNR in dB. In general, the AIFDE and
IFDE (blue and green line with triangular markers) are able to obtain the optimal detection
performance over the approaches based on the other entropy measures with a significant
gain in dB (e.g., 3 dB for AIFDE in comparison to SE and 8 dB for AIFDE in comparison
to ED for PD = 0.7). Only in the case of the TDL-D fading model, it can be seen from
Figures 11d and 12d that SE and RE outperform AIFDE, AIDE, IFDE, and IDE for high
values of SNR (i.e., SNR > −6 dB) even if AIFDE, AIDE, IFDE, and IDE are more robust
in the presence of noise. The potential reason for this behavior is that the averaging step
introduced in IDE, IFDE, AIDE, and AIFDE can improve the robustness of the algorithm in
the presence of noise, but it can decrease the contribution of the discriminating features in
the detection process for this specific type of fading model. Still, AIFDE, AIDE, IFDE, and
IDE are significantly better than the ED even in the TDL-D fading model. As described
before, the reason for such improvement is that the FDE and its variants IFDE and AIFDE
focus on the fluctuations of the time series, which are more evident in the spectrum sensing
problem, where the objective is to detect the presence of the signal in space in comparison
to the case where the signal is absent. To clarify better the performance of the approach
proposed in this paper with the different approaches proposed in literature, Table 2 shows
the specific values of Pd and Pf obtained for the values of SNR = −12 dB and SNR = −8 dB
for the five different fading models TDL-A,TDL-B, TDL-C, TDL-D, and TDL-E.

The better performance of the approaches based on the IDE, IFDE, AIDE, and AIFDE
measures has the price of increasing the computing time needed to calculate the related
entropy measures. An estimate of the computing time necessary to generate the feature
matrix for the subsequent application of ML shows that the application of AIFDE and
AIDE is roughly four times the time needed by the ED, the application of IFDE and IDE is
roughly 3.5 times needed by the ED, and the application of Shannon entropy and Renyi
entropy are roughly 1.2 the times needed by the ED.
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Figure 11. Results for the comparison of PD across different TDL models.

Table 2. Comparison of the approaches: detailed values of Pd and Pf for SNR = −12 dB and SNR = −8 dB.

Approach Pd (SNR = −12 dB) Pd (SNR = −8 dB) Pf (SNR = −12 dB) Pf (SNR = −8 dB)

TDL-A

ED 0.0083 0.08 0.9916 0.919

Shannon entropy 0.00447 0.5322 0.955 0.4677

Renyi entropy o = 2 0.0255 0.5162 0.975 0.50

Renyi entropy o = 3 0.028 0.4953 0.975 0.504

Renyi entropy o = 4 0.0156 0.4104 0.984 0.589

IDE (SFDE = 8) 0.4229 0.7515 0.577 0.248

IDE (SFDE = 9) 0.2984 0.735 0.714 0.264

AIDE 0.2854 0.742 0.701 0.2578

IFDE (SFDE = 8) 0.4322 0.826 0.567 0.1694

IFDE (SFDE = 9) 0.365 0.823 0.634 0.1706

AIFDE 0.3958 0.827 0.604 0.1729

TDL-B

ED 0.001 0.1125 0.9989 0.8875
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Table 2. Cont.

Approach Pd (SNR = −12 dB) Pd (SNR = −8 dB) Pf (SNR = −12 dB) Pf (SNR = −8 dB)

Shannon entropy 0.0029 0.5489 0.973 0.451

Renyi entropy o = 2 0.021 0.516 0.98 0.4833

Renyi entropy o = 3 0.019 0.464 0.98 0.535

Renyi entropy o = 4 0.012 0.401 0.998 0.598

IDE (SFDE = 8) 0.294 0.752 0.705 0.247

IDE (SFDE = 9) 0.302 0.723 0.6975 0.276

AIDE 0.42 0.741 0.575 0.258

IFDE (SFDE = 8) 0.38 0.801 0.619 0.1937

IFDE (SFDE = 9) 0.455 0.8 0.577 0.1963

AIFDE 0.425 0.806 0.585 0.187

TDL-C

ED 0.0078 0.1567 0.992 0.843

Shannon entropy 0.0023 0.4953 0.976 0.5047

Renyi entropy o = 2 0.0177 0.467 0.982 0.5328

Renyi entropy o = 3 0.0093 0.414 0.986 0.5854

Renyi entropy o=4 0.005 0.344 0.9948 0.6557

IDE (SFDE = 8) 0.38 0.768 0.6135 0.2318

IDE (SFDE = 9) 0.28 0.793 0.7198 0.2068

AIDE 0.2755 0.786 0.7245 0.2135

IFDE (SFDE = 8) 0.397 0.838 0.6026 0.1615

IFDE (SFDE = 9) 0.421 0.824 0.5781 0.1745

AIFDE 0.4828 0.826 0.5172 0.174

TDL-D

ED 0.013 0.232 0.988 0.768

Shannon entropy 0.010 0.366 0.990 0.634

Renyi entropy o = 2 0.007 0.309 0.993 0.691

Renyi entropy o = 3 0.003 0.216 0.997 0.784

Renyi entropy o = 4 0.006 0.207 0.994 0.793

IDE (SFDE = 8) 0.180 0.535 0.820 0.465

IDE (SFDE = 9) 0.226 0.494 0.774 0.506

AIDE 0.209 0.485 0.791 0.515

IFDE (SFDE = 8) 0.226 0.561 0.774 0.439

IFDE (SFDE = 9) 0.197 0.513 0.803 0.488

AIFDE 0.221 0.528 0.779 0.472

TDL-E

ED 0.010 0.105 0.990 0.895



Entropy 2021, 23, 1611 21 of 24

Table 2. Cont.

Approach Pd (SNR = −12 dB) Pd (SNR = −8 dB) Pf (SNR = −12 dB) Pf (SNR = −8 dB)

Shannon entropy 0.021 0.488 0.979 0.513

Renyi entropy o = 2 0.019 0.481 0.981 0.519

Renyi entropy o = 3 0.004 0.412 0.996 0.588

Renyi entropy o = 4 0.005 0.419 0.995 0.581

IDE (SFDE = 8) 0.336 0.667 0.664 0.333

IDE (SFDE = 9) 0.262 0.694 0.738 0.306

AIDE 0.233 0.689 0.767 0.311

IFDE (SFDE = 8) 0.392 0.682 0.608 0.318

IFDE (SFDE = 9) 0.357 0.731 0.643 0.269

AIFDE 0.368 0.737 0.632 0.263
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Figure 12. Results for the comparison of Pf across different TDL models.
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6. Conclusions

This paper proposed the recently introduced Dispersion entropy and Fluctuation
Dispersion entropy measures to the problem of spectrum sensing. In particular, a new
improved definition of Dispersion entropy and Fluctuation Dispersion entropy is applied
to enhance the robustness against noise, which are called respectively IDE and IFDE.
The improvement is based on the introduction of an averaging step introduced in the
data conversion. Because the IDE and IFDE introduce a new hyper-parameter, the study
presented in this paper proposes an adaptive variation of IDE and IFDE (respectively called
AIDE and AIFDE), where the value of the hyper-parameter is automatically estimated from
the standard deviation of the signal. This variation of DE and FDE is particularly suited to
the problem of spectrum sensing where the presence of noise or disturbance like fading can
negatively impact the classification performance. The approach is applied to radar signals
generated in the laboratory with a hardware platform implementing the channel emulator
to generate different fading conditions. The results of the proposed approach are compared
with the ED and other entropy measures commonly used in literature for spectrum sensing:
Shannon entropy and Renyi entropy. The results show that IDE, IFDE, AIDE, and AIFDE
are able to outperform (in terms of detection probability Pd and false alarm probability Pf )
the ED with a large margin and the Shannon entropy and Renyi entropy with a significant
margin across the five different fading conditions and for different conditions of SNR.
The price for the improved performance of IDE, IFDE, AIDE, and AIFDE is a slightly higher
computing time in the implementation of the spectrum sensing function.

The approach proposed in this paper is particularly suitable for the implementation
of spectrum sensing for pulse like signals because the FDE, IFDE, and AIFDE will exploit
the fluctuations of the signal in space against the noise floor. It may be less suitable for
signals with non-pulse shape (e.g., a ramp shaped signal) because the fluctuations will be
less evident. In addition, the additional computations needed to implement the spectrum
sensing approach (estimate of FDE, averaging step in IFDE or estimate of the optimal hyper-
parameters) may generate a negative performance impact with signals of long duration.
Future developments will analyze the proposed approach with these latter types of signals
and investigate methods to mitigate these weaknesses.
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The following abbreviations are used in this manuscript:

AIFDE Adaptive Improved Fluctuation Dispersion Entropy
AIDE Adaptive Improved Dispersion Entropy
AWGN Additive White Gaussian Noise
DE Dispersion Entropy
DT Decision Tree
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IFDE Improved Fluctuation Dispersion Entropy
IDE Improved Dispersion Entropy
KNN K Nearest Neighbor
NCDF Normal Cumulative Distribution Function
PRF Pulse Repetition Frequency
RBF Radial Basis Function
RE Renyi Entropy
SE Shannon Entropy
SNR Signal to Noise Ratio
SVM Support Vector Machine
TDL Tapped Delay Line
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