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Genomic and transcriptomic alterations associated
with drug vulnerabilities and prognosis in
adenocarcinoma at the gastroesophageal junction
Yuan Lin1,8, Yingying Luo 2,8, Yanxia Sun 2,8, Wenjia Guo 2,3,8, Xuan Zhao2,8, Yiyi Xi2, Yuling Ma 2,

Mingming Shao2, Wen Tan2, Ge Gao 1,4✉, Chen Wu 2,5,6✉ & Dongxin Lin2,5,7

Adenocarcinoma at the gastroesophageal junction (ACGEJ) has dismal clinical outcomes,

and there are currently few specific effective therapies because of limited knowledge on its

genomic and transcriptomic alterations. The present study investigates genomic and tran-

scriptomic changes in ACGEJ from Chinese patients and analyzes their drug vulnerabilities

and associations with the survival time. Here we show that the major genomic changes of

Chinese ACGEJ patients are chromosome instability promoted tumorigenic focal copy-

number variations and COSMIC Signature 17-featured single nucleotide variations. We

provide a comprehensive profile of genetic changes that are potentially vulnerable to existing

therapeutic agents and identify Signature 17-correlated IFN-α response pathway as a prog-

nostic marker that might have practical value for clinical prognosis of ACGEJ. These findings

further our understanding on the molecular biology of ACGEJ and may help develop more

effective therapeutic strategies.
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In the past few decades, the incidences of adenocarcinoma at
the gastroesophageal junction (ACGEJ) are rapidly increasing
worldwide1,2. While it can be categorized as esophageal or

gastric adenocarcinoma3, ACGEJ has been treated as the latter in
Chinese hospitals because esophageal cancer in China is mostly
squamous-cell carcinomas4. Surgical resection is the standard
treatment for early-stage ACGEJ and for locally advanced or
unresectable tumors, pre- and post-operative chemotherapies are
often used5. Targeted therapies are only for patients with late-
stage metastatic HER2-positive tumors6, although Nivolumab, an
immuno-oncology agent targeting PD-L1, has showed encoura-
ging efficacy in patients with unresectable advanced or recurrent
HER2-negative ACGEJ7. The 5-year survival rates of this cancer
are 20−25%, lower than that of esophageal or gastric cancers.
Thus, it is urgent to apprehend molecular characteristics that can
serve as potential drug targets and (or) prognostic indicators.

In a previous study conducted in Caucasian patients by the
Cancer Genome Atlas (TCGA) project8, 65% of ACGEJ were
categorized as the chromosomal instability (CIN) subtype of
gastric cancer, characterized by preponderating focal copy-
number variations (CNVs) in the tumor genome. Somatic sin-
gle nucleotide variations (SNVs) and small insertions and dele-
tions (indels) significantly recur in TP53 and genome-wide single
base substitutions (SBSs) typically form a pattern known as Sig-
nature 17 in the Catalogue of Somatic Mutations in Cancer
(COSMIC)9,10. Signature 17 may be the footprint of an early
mutational mechanism initiating esophageal and gastric adeno-
carcinoma11, and its characteristic SBS, 5′-C[T > G]T-3′, has been
associated with poor survival of esophageal adenocarcinoma12.

Due to different genetic makeup and environments including
lifestyles, whether ACGEJ genomes in Chinese patients share the
above characteristics is unclear. Previous gastric cancer studies on
East Asian patients have each collected about 30 ACGEJ
samples13,14, probably too few to draw rigorous conclusions.
Moreover, previous studies did not provide enough information
on transcriptomic changes that could further their significant
findings on the genomic changes of ACGEJ. In the present study,
we have assembled a relatively large set of Chinese ACGEJ
patients and have sequenced genomes and transcriptomes of
matched tumor and adjacent normal tissue samples. By jointly
analyzing these data and comparing with the findings in Cauca-
sian patients, we show that ACGEJ in Chinese patients are also
dominated by CIN-associated focal CNVs and that Signature 17
activities correlate with multiple essential genomic and tran-
scriptomic changes of ACGEJ. Furthermore, we deliver a com-
prehensive profile of genetic alterations potentially vulnerable to
existing treatments, and identify genomic and transcriptomic
prognostic markers of potential clinical values. These findings
may improve current knowledge about ACGEJ and contribute to
its precision diagnosis and treatment.

Results
CIN-associated focal CNV is the major feature of ACGEJ
genomic alterations. We performed whole-genome sequencing
(WGS) on ACGEJ tumor samples containing ≥60% of cancer cells
(Supplementary Fig. 1a) and matched blood samples from 124
Chinese patients (mean coverage 61x and 31x, respectively) and
identified 2,558,269 SNVs and 1,258,899 indels. The tumor
mutation burden (TMB) ranged from 0 to 13.1 (median 1.8) per
megabase (Mb). The most significantly mutated gene was TP53
(FDR q ≤ 0.05) with coding mutations found in 71.0% (88/124)
samples. To increase the detection power, we combined the
reported coding-region mutations data of 151 ACGEJ
samples8,15,16 with our data and found that TP53 was the only
gene recurrently mutated in ≥10% of samples (Supplementary

Table 1). CNVs overlapped with a median of 7.8% of the tumor
genome and 8.4% of the coding region, respectively (Supple-
mentary Fig. 2a) and the jagged layout of genome-wide CNV
distributions (Fig. 1a) indicates widespread focal CNVs. Protein-
coding genes subject to CNVs were 5.7 times (median) more than
those altered by non-silent SNVs/indels (Fig. 1b). These results
suggest that focal CNVs are the major genomic alterations of
ACGEJ in Chinese patients.

Since 65% of TCGA ACGEJ samples were deemed CIN and
CIN is a common source of CNVs in cancer genomes associated
with metastasis, therapeutic resistance, and immune evasion17,18,
we investigated the prevalence of CIN in our samples. We found a
published CIN gene signature (CIN70)19 significantly over-
expressed in tumors compared with adjacent normal tissues
(P= 0.001; Fig. 1c) and whole-genome doubling (WGD), a
known precursor to CIN20, in 59.7% (74/124) of our ACGEJ
genomes. We also found other genomic abnormalities suggestive
of CIN including chromothripsis (n= 77, 54 with WGD),
kataegis (n= 74), and complex structural variations (SVs) such
as translocations (median 141.5 per ACGEJ genome) and
inversions (median 257.5 per tumor genome) (Supplementary
Data 1, 2). The expression levels of CIN70 were significantly
higher in WGD than in non-WGD tumor genomes (median 0.50
versus 0.28, P= 2.15e-5) and significantly correlated with the
number of chromosomal arm and gene level CNVs (Spearman’s
ρ= 0.30 and 0.27, P= 6.60e-4 and 0.003, respectively) (Fig. 1d).
ACGEJ genomes with WGD also had more gene level CNVs than
those without WGD (median 609.5 versus 312, P= 8.01e-4). The
median ploidy of WGD genomes was 3.1 and they had a
significantly larger proportion of autosomal genome losing
heterozygosity than non-WGD genomes (39% versus 25%, P=
2.43e-6), indicating frequent single-copy losses after WGD.
Together, these results suggest the abundant CNVs observed in
our ACGEJ genomes were associated with CIN.

The genomic regions of significantly recurrent CNVs (FDR
q ≤ 0.1, in ≥10% samples) harbored 25 oncogenes or tumor
suppressor genes (TSGs) knowingly affected by CNVs21,22

(Fig. 1e) including CCNE1, RICTOR, VEGFA, ERBB2, FGFR2,
BCL2L1, CDK6, ERBB3, MET, CDH1, ARID1A, APC, and
CDKN2B that had correlated copy-number and expression
changes (Spearman’s ρ ≥ 0.3, FDR q < 0.002) (Supplementary
Fig. 2b). CNVs of these 13 genes are potential ACGEJ drivers, of
which CCNE1 and ERBB2 amplifications occurred most fre-
quently (n= 35 and 24; 28.2% and 19.4%, respectively) and
significantly co-existed (n= 13, 10.5%; P= 0.004). We found
genomic and transcriptomic evidence suggesting an association
between the dysfunction of CCNE1 and CIN. ACGEJ with
CCNE1 copy number gains (n= 67, 54.0%) had more CNVs at
both chromosomal arm level (median 21 versus 14, P= 3.20e-5)
and gene level (median 618 versus 251, P= 8.88e-5), and were
more likely to undergo WGD (P= 4.28e-4) than ACGEJ without
CCNE1 gains (n= 57, 46.0%) (Fig. 1f); these associations
remained significant after adjusting for TP53 mutation status
(P < 0.02). The expression levels of CCNE1 were highly correlated
with CIN70 activities (Spearman’s ρ= 0.53, P= 3.93e-10) and
significantly elevated in WGD tumor samples (fold change=
1.21, P= 0.011) (Fig. 1g). Consistently, CCNE1 amplification has
been associated with WGD in TCGA pan-cancer analyses23,24

and CCNE1 overexpression has been shown to induce CIN
phenotypes in various cancer cells25,26.

COSMIC Signature 17 is the characteristic ACGEJ mutational
signature. We next examined the mutation spectra of our ACGEJ
genomes to characterize the mutational signature and found 5′-C
[T > G]T-3′ was the most common somatic SBS across the
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genomes (Fig. 2a). When fitted to reported COSMIC mutational
signatures, this SBS becomes a major component of Signature 17.
We also found recurrent activities of COSMIC Signatures 1, 3, 5,
and 8 (Fig. 2b). In the ACGEJ genomes of our patients, 52.3%
(257,673/493,106) of Signature 17 attributed SNVs were located
at intergenic regions. We searched for potential cancer-driving
regulatory elements in these regions and found Signature 17
SNVs in 75.3% (314/417) of significantly mutated CTCF binding
sites27 (Supplementary Data 3). Because oncogenic SNVs at

CTCF binding sites have been linked to CIN27–29, we then
investigated correlations between Signature 17 and CIN-
related genomic alterations. Signature 17 activities were higher
in ACGEJ genomes with TP53 coding mutations or WGD or
chromothripsis than in genomes without these features (P=
0.002, 0.006, and 0.009, respectively) and were positively corre-
lated with TMB and the number of chromosomal arm level CNVs
(Spearman’s ρ= 0.26 and 0.32, P= 0.004 and 2.57e-4, respec-
tively; Fig. 2c, d).
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We further investigated Signature 17-correlated transcriptomic
changes. Since the underlying mutational process represented by
Signature 17 has not been well established, we sought for genes
whose expressions are correlated with Signature 17 activities and
assessed the enrichment of these genes in cancer hallmark
pathways and gene signatures (see Methods). Among pathways
and gene signatures differentially expressed between our tumor
and adjacent normal samples (FDR q ≤ 1e-4), the CIN70 gene
signature was enriched with genes positively correlated with
Signature 17 activities (e.g., TPX2, NEK2, and KIF4A). Addition-
ally, the mitotic cell-cycle, mitotic spindle, E2F targets, and G2M
checkpoint pathways were also enriched with genes positively
correlated with Signature 17 (e.g., MYBL2, KIF15, and CCNE1),
suggesting elevated cell proliferation of tumors with high
Signature 17 activities. Immunity-related pathways including
allograft rejection, interferon (IFN)-α or IFN-γ response, and the
IL6-JAK-STAT3 signaling were down-regulated in tumor samples
and they were enriched with Signature 17 negatively correlated
genes (e.g., CXCR3, A2M, and FGL2), suggesting suppressed
immune response in Signature 17-high tumors. We also found
the oxidative phosphorylation and glycolysis pathways were,
respectively, enriched with Signature 17 negatively and positively
correlated genes (e.g., CLDN3, NDUFA4L2, and UQCRC2),
suggesting metabolic remodeling in Signature 17-high tumors
(Fig. 2e).

Similarly, assessing the enrichment of Signature 17-correlated
genes in a set of marker genes for CD8+ T, γδ T, and natural
killer (NK) cells30 revealed decreased cytotoxic cell activities in
Signature 17-high tumors (Fig. 2e). We estimated the fractions of
ten immune cell types to total cells in ACGEJ and adjacent
normal samples using our bulk RNA sequencing data and found
CD8+ T and NK cells present (>0%) in 97.6% (120/123) and
98.4% (121/123) tumor samples, respectively, but the most
prevalent immune cell types in tumors were immune suppressive
regulatory T cells (Treg, median 5.49%). Signature 17 activities
were negatively correlated with the faction of CD8+ T cells
(partial Spearman’s ρ=−0.16, P= 9.95e-6). Compared with
normal samples, tumor samples had significantly increased
fractions of CD8+ T (1.46–1.80%, P= 0.006) and NK cells
(0.80–1.37%, P= 3.65e-13), and decreased fractions of neutro-
phils (4.28–3.07%, P= 5.44e-6) (Fig. 2f). Although the propor-
tions of M1 and M2 macrophages both increased (1.52–4.76%
and 1.60–2.79%, P= 1.96e-20 and 4.04e-5, respectively), the M1/
M2 ratio was significantly higher in tumor than in normal
samples (1.70 versus 0.71, P= 1.15e-13). However, immune
checkpoint genes including IDO1, HAVCR2, PDCD1LG2, CD274,
CTLA4, and TIGIT were significantly up-regulated in tumor
samples (fold change >1.30, FDR q ≤ 1.0e-5). These results
collectively point to an immunosuppressive microenvironment
of ACGEJ, which is even worse in Signature 17-high tumors.

Comparative analysis on major genomic alterations of our
patients and TCGA patients. We compared clinically relevant
characteristics of ACGEJ samples collected by this study (n=
124) and by TCGA (n= 105). Due to the controlled access of
TCGA Level 1/2 data, we downloaded Level 3 data and applied
the same downstream analyses. The patients enrolled in this study
were slightly younger than TCGA patients (median 65 and 66
years, respectively, P= 0.050) and exhibited more advanced
(stage III or IV) ACGEJ (72 and 41 patients, respectively, P=
0.021). While two cohorts shared similar sex distributions, the
TCGA cohort was more ethnically diverse. Eighty-eight ancestry-
known TCGA patients contain 78 Caucasians, nine Asians, and
one African American. Five TCGA ACGEJ samples were likely
microsatellite instable, while no such samples were identified in
our cohort. Disregarding these samples, the TMB of the rest of
TCGA ACGEJ (n= 100) was still higher than that of ours
(median 2.68 and 1.84, respectively). The recurrence rates of
functional mutations (annotated as oncogenic or likely oncogenic
by OncoKB21) in TP53, PTEN, ARID1A, CDKN2A, and KRAS
appeared to be significantly higher in TCGA patient cohort than
in our patient cohort. We did not find CDKN2A and KRAS
mutations in our samples but detected 4.0% of LIPF mutations
absent in TCGA samples (Supplementary Table 2).

Our samples were not significantly different from TCGA
samples in the number of chromosomal arm level CNVs (median
17 for both) or gene level CNVs (median 423.5 and 370,
respectively). High correlations of the cohort-level recurrences of
arm level CNVs (Fig. 3a) indicated similar arm level CNV
patterns across two cohorts. The genome-wide distributions of
focal CNV regions were also similar in terms of recurrences and
amplitudes (Fig. 3b). We assessed the overlaps between
significantly recurrent focal CNVs (FDR q < 0.25) across two
cohorts and found 46.4% of focal amplifications and 50.8% of
focal deletions identified from our samples had ≥50% overlap
with those identified from TCGA samples. We then searched for
CNV driver genes in highly recurrent focal CNV regions
identified in either cohort; any two regions identified from
different cohorts and reciprocally overlapping at ≥50% of both
their sizes were merged into one big region and considered shared
by both cohorts. In these regions, we found 28 genes with highly
correlated copy-number and expression changes (Spearman’s ρ ≥
0.3, FDR q < 0.05) in respective cohorts (Fig. 3c). Homologous
deletions or amplifications of these genes, which might drive
ACGEJ, occurred mostly at comparable frequencies between two
cohorts (Fig. 3d), except for more frequent CCNE1 and BCL2L1
amplifications in our samples (P= 0.016 and P= 0.007,
respectively).

We then compared the impacts of potentially functional
alterations (i.e., oncogene amplification, TSG homologous dele-
tion, and functional mutations in both) at the pathway level. In

Fig. 1 Featured ACGEJ genomic and transcriptomic changes. a Frequencies of CNVs detected in 124 ACGEJ samples, with gains in red and losses in blue.
Bars represent non-overlapped 1-million-base-pair windows along the genome. b Bar plot comparing the number of genes altered by CNVs and SNVs/
indels in each of 120 ACGEJ genomes with both types of alterations. The y-axis indicates the ratio of CNVs to SNVs/indels minus 1. Only deletions,
amplifications, or non-silent coding mutations are counted. Most samples (102/120, 85%) show a preponderance of CNVs over SNVs/indels. c GSEA
analysis comparing CIN70 activities in ACGEJ samples and adjacent normal tissue samples. The plot shows overexpressed CIN70 in ACGEJ samples, the
normalized enrichment score (NES) and the P value. d Associations between CIN70 activities and the WGD status (+ and − indicating 74 and 50 tumor
genomes with and without WGD, respectively; two-sided Wilcoxon rank-sum test), the number of chromosomal (Chr.) arm or gene level CNVs
(Spearman’s correlation tests) in ACGEJ samples. e GISTIC2.0 identified recurrent focal CNVs in 124 ACGEJ genomes, with 25 potential CNV drivers
annotated on the plot. f Box and bar plots comparing chromosomal (Chr.) arm level CNVs, gene level CNVs, and the frequencies of WGD in tumor
genomes with and without CCNE1 copy number gains (n= 67 and 57, respectively; two-sided Wilcoxon rank-sum tests). g Associations between CCNE1
expression levels and CIN70 activities (Spearman’s correlation test) or WGD status (two-sided Wilcoxon rank-sum test) in ACGEJ samples. Box plots in
(d, f, g) show the median (central line), the 25–75% interquartile range (IQR) (box limits), the ±1.5 times IQR (Tukey whiskers), and all data points, among
which the lowest and the highest points indicate minimal and maximal values, respectively.
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Fig. 2 Genomic and transcriptomic features associated with COSMIC Signature 17. a Mutational spectra of our ACGEJ samples. Different colors
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both cohorts, we found recurrent perturbations (>10% samples)
to the cell-cycle, receptor tyrosine kinases (RTK)/RAS, PI3K,
MYC, TGF-β, and NOTCH signaling pathways, and to genome
integrity related genes (e.g., TP53, MDM2, and ERCC2), with

different rates (Fig. 3e). In addition, MAPK signaling (e.g., KRAS,
MAP2K1), immune signaling (e.g., HLA-A/B), the SWI/SNF
chromatin remodeling complex (e.g., ARID1A, SMARCA4),
chromatin histone modifiers (e.g., EP300, KMT2C), and the
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homologous recombination pathway (e.g., BRCA1, TP53BP1)
were recurrently perturbed in the TCGA cohort but not in ours.
Despite different genomic perturbation rates, the activities of
these pathways or gene sets in our tumor samples and TCGA
samples, as quantified by Gene Set Variation Analysis (GSVA)31

scores using normalized and batch corrected gene expression
data, were similar with no statistically significant difference. So
were the estimated fractions of different immune cell types.
Together, these results suggest that our patient set and TCGA
patient set had similar genomic alterations with some differences.

Genomic alterations indicate potential vulnerability to existing
therapeutic agents. The lack of specific and effective drugs for
ACGEJ treatments is largely due to our limited knowledge on the
genomic characteristics of this disease. Thus, we screened our
ACGEJ samples for genomic alterations predicting vulnerabilities
to therapeutic agents approved by FDA or NCCN, currently in
clinical trials, or supported by evidence from pre-clinical assays or
case reports32. This analysis revealed 488 alterations in 67 genes
with potential responses to 66 classes of 93 drugs (Supplementary
Data 4). We predicted the genetic vulnerabilities of 105 TCGA
ACGEJ samples with the same approach (Supplementary Data 5).
For cytotoxic chemotherapeutic agents, we predicted that 96 of
our patients would respond to six classes of drugs, including
Anthracyclines, Gemcitabine, Mytomycin C, Temozolomide,
Platinum agents, and Vinblastine (Fig. 4a). Anthracyclines,
Gemcitabine, and Mytomycin C might have substantially higher
response rates in our patients (71.0−73.4%, 88–91 of 124) than in
TCGA ACGEJ patients (49.5−57.1%, 52–60 of 105) (Fig. 4a). The
vulnerabilities of our patients to the three drugs were predicted
mainly based on coding mutations in TP53. Anthracyclines has
also been tested in a clinical trial as an inhibitor of TOP2A33,
which was amplified in 11.3% (14/124) of our patients. We found
significantly more frequent CIN-related genomic alterations (i.e.,
WGD, chromothripsis, and kataegis) in patients predictively
responsive to any of the three drugs (n= 91) than in other
patients (P= 2.00e-5, 0.035, and 2.00e-5, respectively) (Fig. 4b),
consistent with a previous report that CIN-type gastric cancer is
sensitive to adjuvant chemotherapy34.

For targeted therapeutic agents (Fig. 4c, d), 19.4% (24/124) of
our patients had ERBB2 amplification and therefore could benefit
from FDA approved ERBB2 inhibitors, including Trastuzumab,
Pertuzumab, Neratinib, Lapatinib, and Ado-Trastuzumab Emtan-
sine. Of the 100 patients without ERBB2 amplifications, 89 had
other genomic alterations likely druggable by 59 classes of agents.
Specifically, we predicted that WEE1, CDK4/6, and PARP
inhibitors would be effective for 70, 42, and 27 of our patients,
respectively, and together they could cover 93.3% (83/89) of our
patients without ERBB2 amplification. Among potentially
actionable gene alterations found in all 124 patients (Fig. 4c),
the TP53 mutations in 88 patients were the major contributors to
the predicted efficacy of WEE1 inhibitors. While only 19 patients
had CDK4/CDK6 alterations, other alterations such as CDKN2A/
CDKN2B deletions or CCND1 amplifications in another 29
patients might also render them vulnerable to CDK4/6 inhibitors.
Using the RNA sequencing data of paired ACGEJ and adjacent
normal tissue samples of each patient, we found that 85.2% (404/
474) of the predictively targetable gene alterations had corre-
sponding expression changes (Supplementary Data 6). Recurrent
inconsistency (>10 samples) was only found for FGF3 and FGF4
amplifications (in 13 and 14 samples, respectively), potentially
affecting the predicted response rates of two FGFR inhibitors
Lucitanib and Dovitinib.

We compared the classes of targeted therapeutic agents with
≥20% predicted response rates in our 89 patients and 85 TCGA

ACGEJ patients that had no ERBB2 amplifications (Fig. 4d) and
found that of the eight guideline or clinical-trial drug classes (i.e.,
WEE1, CDK4/6, PARP, FGFR, PI3K, AKT, AURKA-VEGF, and
MTOR inhibitors), WEE1 and FGFR inhibitors had higher
whereas others had lower response rates in our patients than in
TCGA patients. Since CCNE1 was recurrently amplified, over-
expressed, and often co-amplified with ERBB2 in our tumor
samples, we took a special interest in druggable CDK2 whose
activity is regulated by Cyclin E1 produced by CCNE1. The
predicted response rate to existing CDK2 inhibitors was 29.8%
(37/124) in all our patients and 24.7% (22/89) in our patients
without ERBB2 amplifications, compared with 16.2% (17/105)
and 15.3% (13/85) in TCGA ACGEJ patients, respectively.

Unfortunately, 11 of our patients had no potentially druggable
gene alterations. The tumor genomes of these patients had
significantly lower TMB (median 1.87 versus 0.06 per Mb, P=
1.81e-4), fewer CNVs at the chromosomal arm level (median 1
versus 17, P= 7.84e-6) and the gene level (median 0 versus 490,
P= 6.10e-6) and less frequent WGD (2/11 versus 72/113, P=
0.007) than the tumor genomes of other patients (Fig. 4e). Based
on the hematoxylin and eosin (H&E)-stained histopathological
images of these 11 patients’ tumor samples (Supplementary
Fig. 1b), we estimated that the range of their tumor cell contents
were 60−95%, which eliminated the possibility of normal tissue
contamination.

We performed in vitro experiments to assess the vulnerabilities
of cell lines with predicted druggable gene alterations to
corresponding therapeutic agents. We tested six chemotherapeu-
tic agents and five targeted therapeutic agents on eight cell lines
with different predictive vulnerabilities (Supplementary Fig. 3;
Supplementary Data 7) and the results were in line with the
predictions (Fig. 4f). For chemotherapeutic agents, cells with
oncogenic mutation in NF1 were significantly more sensitive to
Vinblastine and cells with oncogenic mutations in ATM and
ERCC4 were slightly more sensitive to Cisplatin than those
without corresponding mutations. For targeted therapeutic
agents, cells with CCNE1 amplifications were highly responsive
to CDK2 inhibitor Roniciclib. Cells with oncogenic mutations in
DNA repair genes BRCA2, ATM, ATR, CHEK2, and FANCA were
more sensitive to PARP inhibitor Olaparib and cells with
oncogenic mutations in TP53 or BRCA1 were more sensitive to
WEE1 inhibitor MK-1775 than those without corresponding
mutations. Cells with CDK4/6 or FGF3/4 amplifications showed
only slightly but significantly higher sensitivity to CDK4/6
inhibitor LEE011 or FGFR inhibitor Dovitinib, respectively, than
those without corresponding gene amplifications (Fig. 4f).

Featured genomic and transcriptomic changes are correlated
with survival in patients. Since tumor genomic and tran-
scriptomic alterations may determine the clinical outcomes of
patients, we analyzed the connections between key genomic and
transcriptomic changes of ACGEJ and survival time in patients
(see Methods). Regarding genomic changes, both TMB and gene
level CNVs were significantly correlated with survival time:
patients with low TMB (< 3.45 per Mb) or more gene level CNVs
(≥382) in ACGEJ had short survival time (both log-rank P=
0.030) compared with patients with high TMB (≥3.45 per Mb) or
less gene level CNVs (<382) in ACGEJ, and the hazard ratios
(HRs) of low TMB and more gene level CNVs for death adjusted
for age, sex, and tumor stage were 7.70 (95% confidence interval
(CI)= 1.02–58.26) and 2.79 (95% CI= 1.05–7.42), respectively
(Fig. 5a, b). Given that the TMB and gene level CNVs were
moderately correlated in our patients (Spearman’s ρ= 0.32, P=
2.50e-4), we further classified patients into two groups, the low-
TMB high-CNV group (n= 31) versus others (n= 52), and the
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first group showed significantly shorter survival time than the
second group (log-rank P= 0.001), with an adjusted HR of 4.61
(95% CI= 1.80–11.80) (Fig. 5c). Incorporating TMB with gene
level CNVs led to a bigger HR than considering the latter alone,
suggesting the two genomic alterations may combinedly affect
ACGEJ survival time. We also found a significant correlation
between Signature 17 activities (≥17.1% or <17.1%) in ACGEJ

and survival time in patients (log-rank P= 0.022; Fig. 5d). The
HR of high Signature 17 activity for ACGEJ death was 3.94 (95%
CI= 1.38–11.28) adjusted for age, sex, tumor stage, TMB, and
gene level CNVs, indicating Signature 17 activity is an indepen-
dent prognostic factor. Figure 5e shows a multivariate Cox model
comparing the relative impacts of featured genomic alterations
and other non-genomic factors such as for age, sex, and tumor
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stage. We next evaluated the survival associations of ACGEJ
transcriptomic changes, specifically, aberrant activities of cancer
hallmark pathways or gene signatures quantified by GSVA scores.
Patients with low GSVA scores of the IFN-α response pathway
(<−0.2256) showed significantly shorter survival time (log-rank
P= 0.004; Fig. 5f) than those with high scores (≥−0.2256). The
HR of high IFN-α response for ACGEJ death was 0.25 (95% CI=
0.09–0.66) adjusted for age, sex, and tumor stage. Because down-
regulated IFN-α response pathway was significantly correlated
with high Signature 17 activities (Fig. 2e), we then focused ana-
lysis on this pathway and further identified two relevant genes,
Interferon Induced Protein 44 (IFI44) and IFI30 Lysosomal Thiol
Reductase (IFI30), whose high expressions (≥3.22 or ≥28.13
Transcripts Per Million, TPM) were significantly correlated with
long survival time (log-rank P= 6.57e-5 and 0.043, respectively;
Fig. 5g, h), with respective adjusted HRs of 0.23 (95% CI=
0.09–0.60) and 0.28 (95% CI= 0.09–0.84).

We then investigated the survival associations of these
genomic/transcriptomic alterations in TCGA patients with
ACGEJ or non-ACGEJ CIN-type gastric cancer (n= 184) in
the same way (see Methods). The results showed that TCGA
patients with low TMB (<1.73 per Mb) or high Signature 17
activities (≥48.5%) had significantly shorter survival time (log-
rank P= 0.039 and 0.034, respectively) than those with high
TMB (≥1.73 per Mb) or low Signature 17 activities (<48.5%); the
HRs of low TMB and high Signature 17 activity being 1.78 (95%
CI= 0.98–3.22) and 2.61 (95% CI= 1.26–5.38), respectively
(Supplementary Fig. 4a, b). Patients with high IFN-α response
(≥−0.4892) or high IFI30 expression (≥10.80 TPM) in tumors
had significantly long survival time (log-rank P= 0.019 and
0.020, respectively), with the HRs of 0.46 (95% CI= 0.27–0.79)
and 0.51 (95% CI= 0.28–0.93), respectively (Supplementary
Fig. 4c, d). These results were consistent with the findings in our
patient set. However, in TCGA patients, few gene level CNVs
(<42) and high IFI44 expression (≥12.09 TPM) were associated
with short survival time (log-rank P= 0.026 and 0.023), with the
HRs of 2.45 (95% CI= 1.21–4.97) and 1.76 (95% CI=
1.07–2.88), respectively (Supplementary Fig. 4e, f), which were
inconsistent with the results in our patients. We also assessed
the survival associations of IFI44 and IFI30 expressions using
the gene expression data of gastric cancer patients registered in
the Gene Expression Omnibus (GEO). Low IFI44 expression
was consistently and significantly correlated with short survival
time (log-rank P= 0.004, HR= 0.75, 95% CI= 0.61–0.91;
Supplementary Fig. 4g), while low IFI30 expression was
marginally correlated with short survival time (log-rank P=
0.055, HR= 0.84, 95% CI= 0.71–1.00; Supplementary Fig. 4h).

Discussion
ACGEJ is on the rise worldwide, but its molecular characteristics
have never been independently profiled and reported, which is
impeding clinical treatment and drug development of this
malignancy. In the present study, we have assembled and com-
prehensively analyzed the genome and transcriptome data of
totally 124 ACGEJ samples exclusively collected from Chinese
patients. The results have indicated that, like Caucasian patients,
the ACGEJ genomes of our patients were dominated by CIN-
promoted tumorigenic focal CNVs while lacking recurrently
mutated coding genes other than TP53. Both TMB and gene level
CNVs of the ACGEJ genome indicate the prognosis of Chinese
patients. Compared with previous reports, the present study has
two major advances. Firstly, our integrative analyses on genome
and bulk-tissue transcriptome sequencing data have led us to
more reliable findings. Secondly, we have gone beyond descriptive
genomic profiling to predict effective therapeutic agents and
prognosis of patients based on their genomic and transcriptomic
changes. The comprehensive findings in the present study may
improve our current knowledge of ACGEJ and have implications
for clinical care of patients.

In the ACGEJ genomes of our patients, TP53 is the only sig-
nificantly and recurrently mutated coding gene we have detected.
That said, there may be mutated non-coding drivers, such as
CTCF-binding-site SNVs attributable to COSMIC Signature 17.
As one of the hallmark signatures of upper-gastrointestinal ade-
nocarcinoma, Signature 17 is believed to arise from mis-
incorporation of oxidized DNA precursors into genomic
DNA12,35. It has been shown that oxidative stress may generate
more mutations in introns and intergenic regions than in exons
and promoters36, and improperly handled oxidative DNA
damages can lead to CIN phenotypes in model systems37,38 and
in human cells39. Our results are in line with these previous
reports, indicating that Signature 17 SNVs may be attributed to
oxidative stress and represents an etiological factor forming CIN
in ACGEJ genomes. In addition, we have notably provided bulk
transcriptomic evidence to support the role of Signature 17 by
correlating its activities with a gene expression signature of CIN.
More importantly, our analysis on bulk RNA sequencing data has
revealed an immunosuppressive microenvironment in tumors
with high activities of Signature 17. These results indicate that
Signature 17 related genome and transcriptome changes play very
important roles in the development and progression of ACGEJ,
which may be of clinical relevance.

Comparing the genomic and transcriptomic alterations in our
samples with those in TCGA ACGEJ samples (mostly from
Caucasian patients) revealed similar CNV patterns and pathway
aberrations. However, tumor samples of our patients seem to

Fig. 4 Genomic alterations vulnerable to existing treatment options in Chinese ACGEJ in comparison with TCGA ACGEJ. a Chemotherapeutic agents
predicted to be responsive in Chinese ACGEJ. Left panel shows genomic alterations vulnerable to each chemotherapeutic agent and right panel shows the
percentage of samples responsive to each chemotherapeutic agent, with comparisons between our ACGEJ patient set and the TCGA ACGEJ dataset. b Bar
plots comparing ACGEJ samples likely responsive and unresponsive to Anthracyclines, Gemcitabine, or Mytomycin C (n= 91 and 33, respectively) for the
frequencies of WGD, chromothripsis, and kataegis (Fisher’s exact tests). c Genomic alterations in our ACGEJ samples and the corresponding targeted
therapeutic agents. Only genomic alterations detected in ≥5 samples and agents having potential targets in ≥20% samples are shown. d Percentage of
samples predicted to be responsive to different targeted therapeutic agents, with comparisons between our patients and TCGA patients without ERBB2
amplification (n= 89 and 85, respectively). Only agents with potential targets in ≥20% of our patients or TCGA patients are shown. e Comparison
between likely druggable and undruggable ACGEJ samples (n= 113 and 11, respectively) for TMB, chromosomal (Chr.) arm or gene level CNVs (two-sided
Wilcoxon rank-sum tests), and the frequencies of WGD (Fisher’s exact test). f In vitro validation of predicted vulnerabilities to chemotherapeutic and
targeted therapeutic agents. Box plots compare relative viability (expressed as OD450 value) of different cell lines, likely vulnerable (blue) or invulnerable
(red) to specified therapeutic agents, after treatment with optimal dose (in parentheses) of corresponding agents for 72 h. Each dot represents the result of
one independent experiment and each experiment had three replicates on one cell line; n represents the number of cell lines; P values derived from two-
sided Wilcoxon rank-sum tests. Box plots in (e, f) show the median (central line), the 25–75% interquartile range (IQR) (box limits), the ±1.5 times IQR
(Tukey whiskers), and all data points, among which the lowest and the highest points indicate minimal and maximal values, respectively.
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have fewer functional mutations than TCGA samples, which
might reflect different genetic and environmental backgrounds
between Chinese patients and Caucasian patients or might be
simply due to different coverage of our WGS data and TCGA
whole-exome sequencing data. We could reduce the confounding
effect of different sequencing coverage by down-sampling the
reads, but that requires access to controlled TCGA data. There are
also some differences in the alteration rates of candidate driver
genes (e.g., LIPF), potential drug targets (e.g., CCNE1), and
survival-associated immune pathways (e.g., IFN-α response)

across two cohorts. In these regards, the current study has
increased general knowledge on the genetic and molecular basis
of ACGEJ and, particularly, filled in the gap for non-Caucasian
patients. Thus, our findings could contribute to developing more
specific and effective precise care of ACGEJ worldwide.

Because there have been no specific and effective drugs for
ACGEJ treatments, we have screened the ACGEJ genome and
transcriptome of each patient for changes that may indicate the
patient’s responses to therapeutic agents currently used for other
types of cancer or under clinical trials. Since DNA repair
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deficiency caused by TP53 inactivation and other events is the
major mechanism associated with the efficacy of cytotoxic antic-
ancer drugs, we have predicted that more frequent TP53 inacti-
vating mutations may lead to generally higher response rates to
cytotoxic anticancer agents in Chinese patients than in Caucasian
patients, suggesting that these chemotherapeutic agents may gen-
erally benefit Chinese patients with ACGEJ. We have also found
that a considerable proportion of Chinese ACGEJ patients might
benefit from targeted anticancer agents40 such as ERBB2, WEE1,
and CDK4/6 inhibitors. The predicted response rates to these
agents are somewhat different between Chinese and Caucasian
ACGEJ patients. Specifically, we have shown that CCNE1 ampli-
fication is a CIN-associated oncogenic event prevalent in Chinese
patients and often coexisting with ERBB2 amplifications. Given
that CCNE1 amplification has been linked to the resistance to
ERBB2 inhibitors41,42, it is worthwhile to conduct clinical trials for
CDK2 inhibitors43,44 in Chinese ACGEJ patients. We have vali-
dated the reliability of gene-alteration-based drug vulnerability
prediction by in vitro assays in a panel of cancer cell lines. Thus,
our predictions on the response rates to currently used cytotoxic
anticancer agents or targeted drugs approved or tested for other
types of cancer have provided molecular evidence for their clinical
use or clinical trials for treating ACGEJ.

In the present study, we have identified several prognostic
markers from genomic or transcriptomic changes associated with
the survival time in ACGEJ patients. At the genomic level, we
have found that TMB and gene level CNVs are independently and
combinedly correlated with the survival time in our patients. In
addition, we have identified Signature 17 activity as another
independent marker for ACGEJ survival time, which one may
expect because in our patient set Signature 17 is correlated with
CIN-related genomic changes such as WGD and chromothripsis,
both confer terrible malignant cancer phenotypes23,45. Consistent
with our result, a previous genomic study in breast cancer has
also shown that Signature 17 is enriched in metastatic tumors and
linked to poor prognosis of patients46. Nevertheless, in the pre-
sent study we went beyond genome data and incorporated
transcriptome data for analysis. As a result, we have found that a
Signature 17-correlated cancer hallmark pathway, IFN-α
response, is also significantly associated with the survival time
in our ACGEJ patient set. Moreover, transcriptome analysis has
shown that tumors with high Signature 17 activities had repressed
activities of IFN-producing cytotoxic cells. These findings
emphasize that immunosuppression in the tumor micro-
environment, likely induced by high Signature 17 activities in
cancer cells, plays an important role in the progression of ACGEJ.
Specifically, we have found significant associations of high
expression levels of IFI44 and IFI30, two IFN-α-inducible genes,
with good survival in our patient set. Our comparative analyses
on TCGA and GEO datasets have yielded both consistent and
inconsistent results. The associations of TMB levels, Signature 17
activities, IFN-α response activities, and IFI30 expression with
patient survival time are quite consistent in our patient set and
TCGA and GEO patient set. The results for gene level CNVs in
our cohort and the TCGA cohort seem contradictory. For IFI44,
the GEO data agreed with our finding, whereas the TCGA data
showed a significantly negative correlation between high IFI44
expression and patient survival. IFI44 has been reported to
function in many biological processes through IFN signaling
pathways, including anti-proliferative activity in tumors47,48.
High IFI30 expression in tumor cells has been linked to improved
cancer survival49,50, possibly due to its ability to enhance the
presentation of tumor antigens for T cell recognition51 or to
regulate the cellular redox state and proliferation52. Thus, the
identified down-regulation of IFI44 and IFI30 might be a sim-
plified prognostic marker for ACGEJ in clinical use.

Despite the advances discussed above, we acknowledge some
limitations in the present study. Firstly, we focused on genomic
alterations in coding sequences and barely touched upon non-
coding elements, which may harbor additional ACGEJ drivers.
Secondly, we have not fully investigated the extent of intratumor
heterogeneity and how it may affect our findings. Both issues are
on our agenda for future studies. In addition, the clinical or pre-
clinical evidence for the anticancer agents we referred to mostly
came from studies on Caucasian patients and thus it is uncertain
whether and how much they will apply to Chinese patients.

In conclusion, our present study has profiled ACGEJ in Chi-
nese patients as a CNV-dominant CIN-type tumor, revealed the
types and the distributions of various druggable changes in tumor
genomes, and identified genomic and transcriptomic prognostic
markers that have potential clinical implications. These findings
have furthered our understanding on ACGEJ and would help
develop more effective therapeutic strategies to precisely fight this
malignancy, especially for Chinese patients.

Methods
Biospecimen and clinical data. The biospecimen used in this study were obtained
from 124 Chinese ACGEJ patients (Supplementary Table 3) recruited at the
Linzhou Cancer Hospital and Linzhou Esophageal Cancer Hospital (Henan Pro-
vince, China) between 2013 and 2018. ACGEJ tumor, adjacent non-tumor gastric
tissue (≥5 cm from tumor margin), and peripheral blood samples were collected at
the time of surgical resection. ACGEJ (tumors arising at the gastric cardia and/or
gastroesophageal junction with/without involvement of other esophageal and/or
gastric subsites) was confirmed by two pathologists via histopathological exam-
ination. No patient had received chemotherapy or radiotherapy before surgery.
Clinical data were collected from the medical record of each patient. We conducted
follow-up phone interviews with 83 patients in a period of 20.2 months (median).
At the most recent interview (November 2018), 75.9% (63/83) of patients were still
alive. This study was approved by the Institutional Review Board of Cancer
Hospital, Chinese Academy of Medical Sciences. Written informed consent was
solicited from every patient prior to sample collection.

DNA and RNA sequencing. Only tumor samples containing ≥ 60% of cancer cells
evaluated by examining tissue slides (Supplementary Fig. 1a) were used for DNA
and RNA sequencing. WGS data were generated from matched tumor and blood
samples from 124 patients. The bulk RNA sequencing data were generated from
matched tumor and normal tissue samples from 123 of the 124 patients. DNA and
total RNA were extracted from tissue samples using the AllPrep DNA/RNA Kit
(Qiagen). Blood DNA was extracted using QiaAmp Blood Midi Kit (Qiagen).
Library preparation was as previously described53. All libraries were sequenced on
Illumina HiSeq xTen in 2 × 150 bp paired-end mode.

Detection of somatic SNVs, indels, CNVs, and SVs. DNA sequence reads were
aligned to the Ensembl GRCh37 human genome using BWA-MEM (v0.1.22)54.
Somatic mutations (SNVs and indels) were detected using Strelka2 (v2.8.3)55 and
annotated by Ensembl Variant Effect Predictor (VEP, release 90)56. We filtered the
results with gatk-tools (v0.2.2). TMB was measured by the number of non-silent
SNVs/indels. Somatic CNVs (based on the log ratio of tumor to non-tumor reads)
were detected from WGS data by BIC-seq2 (v0.2.4)57. Allelic copy number, ploidy,
and purity were estimated by FACETS (v0.5.14)58. Large-scale (>50 bps) SVs were
independently called from the WGS data by Delly (v0.7.3)59, GRIDSS (v2.4.0)60,
Manta (v1.1.1)61, and svABA (v0.2.1)62; then we used SURVIVOR (v1.0.6)63 to
merge nearby break points and filter out SVs detected by only one tool.

Identification of specific genomic features. We used MutSigCV (v1.41)64 to
identify genes with significantly recurrent coding-sequence SNVs/indels and
ActiveDriverWGS (v1.0.1)65 to identify non-coding genomic elements (e.g., pro-
moters, non-coding RNAs) with significantly more unexpected somatic SNVs.
These genes and genomic elements were deemed potential drivers of ACGEJ.
Functional mutations were defined as SNVs/indels likely affecting the function of a
gene, including in-frame and frame-shift indels, nonsense SNVs, OncoKB anno-
tated oncogenic or likely oncogenic missense SNVs, or SNVs/indels occurring on
splice site, start codon, or stop codon.

Segmentation files output by BIC-seq2 (for our samples) or downloaded from
the TCGA website (excluding the regions within 3Mb around centromeres and
1Mb at both chromosome ends) were used as input for GSITIC2.0 (v.2.0.23)66 to
quantify the CNV status of each gene in each tumor genome. In a tumor genome,
we considered a gene undergoing homozygous deletion, copy-number loss, copy-
number gain, or amplification if the corresponding GISTIC score=−2, ≤ −1, ≥ 1,
or = 2, respectively. Significantly recurrent focal CNV regions (Supplementary
Data 8, 9) were also determined by GISTIC2.0 (FDR q < 0.25).
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We considered a chromosomal arm undergoing copy-number gain or loss if
≥2/3 genes on that arm had GISTIC score ≥1 or ≤−1, respectively. We defined
arm level CNVs as chromosomal arms with copy-number gain or loss and gene
level CNVs as gene amplifications or deletions. Only genes with GISTIC scores ±2
were counted when measuring gene level CNVs. We considered an ACGEJ genome
undergoing WGD if ≥50% autosomes had a major allele copy number ≥2; the 50%
threshold was determined following a previous study23 (Supplementary Fig. 5). We
measured the proportion of CNV affected genome using regions where | log2(reads
ratio) | ≥0.3. Kataegis events were detected following the method of a previous
WGS study67. Chromothripsis events were identified by ShatterSeek (v0.4)45 based
on the merged SV results and FACETS CNV results.

Identification of mutational signatures. We started by extracting de novo sig-
natures from and inferring the prevalence of 30 published COSMIC mutational
signatures in the Chinese cohort. Both had led us to recognize the prevalent
activities of COSMIC Signatures 1, 3, 5, 8, and 17 (or their analogues). Thus, we
only focused on these five signatures and clamped the activities of other signatures
to zero in all subsequent analyses. We used deconstructSigs (v1.8.0)68 to measure
the activity of every signature in every tumor genome (the percentage of SNVs
across the exome or genome attributable to the signature). For each somatic SNV,
we determined its clonality and the mutational signature it most likely belongs to
using Palimpsest (v.2.0.0)69.

Analysis of bulk-tissue RNA sequencing data. We used HISAT2 (v2.1.0)70 to
align RNA sequence reads to the Ensembl GRCh37 human genome and then used
StringTie (v1.3.3b)71 to re-assemble transcriptome and quantify the expression
level of each gene in each sample. The assembly process was guided by the
reference annotations from GENCODE (v19)72. Gene expression levels were
quantified by Transcript per Million (TPM). We considered a gene differentially
expressed in tumor and normal samples if the log2+ 1 transformed TPM change
was significant in a paired Student’s t-test (FDR q < 0.05) and the fold change of
mean TPM was >1.2 or <0.8. In other comparing situations, we considered a gene
differentially expressed in two groups of samples if the TPM change was significant
in a paired Wilcoxon test (P < 0.05) and the fold change of median TPM was >1.2
or <0.8. The activity of specific pathway or gene signature in each tumor or normal
sample was quantified using the R package GSVA (v1.30.0)31 on log2+ 1 trans-
formed TPM. The differential expression of specific pathway or gene signature
between tumor and normal samples was assessed using gene set enrichment
analysis (GSEA)73 (implemented in the R package clusterProfiler v3.10.174). We
quantified the fractions of 10 immune cell types (i.e., macrophages (M1 and M2),
monocytes, neutrophils, B, NK, CD8+ /CD4+ /regulatory T, myeloid dendritic
cells, and uncharacterized cells) in individual tumor and adjacent normal samples
using quanTIseq75 (implemented in the R package immunedeconv v2.0.0).

Identification of Signature17-correlated pathways and gene signatures. We
identified these pathways and gene signatures using matched WGS and bulk RNA-
seq data generated from 123 patients. We first calculated partial Spearman’s cor-
relation (using the R package ppcor v1.1) between Signature 17 activities and the
expressions of each gene across tumor samples, controlling for tumor purity and
the activities of other four signatures (i.e., Signatures 1, 3, 5, and 8). Then we
examined known cancer hallmark pathways and gene signatures obtained from a
previous study30 one by one to see whether they are enriched with Signature 17-
correlated genes using GSEA on the calculated correlation coefficients.

Analysis and integration of public data. To fairly compare the transcriptomic
profiles of our ACGEJ samples and TCGA samples, we combined the gene
expression data (measured by TPM) of both cohorts and that of normal gastro-
esophageal junction tissue samples from the Genotype-Tissue Expression (GTEx)
Project, performed normalization and batch correction and used the processed data
for comparative analyses. We normalized the combined gene expression dataset by
keeping genes whose expression levels were quantified in all three individual
datasets (n= 19,587) and rescaling the TPM values per sample to maintain a sum
of 1 million. The ComBat function implemented in the R package sva (v3.28.0)76

was used to remove the batch effect of different data sources (i.e., data source as a
batch parameter). Tumor and normal samples in the combined dataset were
respectively grouped together and appropriately separated from each other (Sup-
plementary Fig. 6). The GSVA scores of featured pathways and gene signatures in
either cohort before and after the processing were highly correlated; so were the
estimated fractions of different immune cell types.

In vitro validation of drug vulnerability prediction. We used eight human cancer
cell lines including the ACGEJ cell line OE19 (purchased from Beijing Beina
Chuanglian Biotechnology Institute), esophageal adenocarcinoma cell lines OE33
and SK-GT-4 (purchased from Nanjing COBIOER Biosciences Company Limited),
gastric adenocarcinoma cell lines AGS and HGC-27, and colorectal cancer cell lines
HCT-116, LoVo and RKO (purchased from the Cell Bank of Type Culture Col-
lection of Chinese Academy of Sciences Shanghai Institute of Biochemistry and
Cell Biology). We obtained somatic mutation and CNV data of these cell lines from
COSMIC Cell Lines Project (https://cancer.sanger.ac.uk/cell_lines) and predicted

each cell line as vulnerable or invulnerable to specific chemotherapeutic or targeted
therapeutic agents based on whether it carried corresponding gene alterations. The
efficacy of 11 drugs was respectively assessed by cell viability measured using the
CCK-8 kit (Dojindo Labs). Briefly, cells were treated with optimal dose of each
drug and the viability was measured after incubation for 72 h. All analyses were
performed in two independent experiments and each had three replicates.

Survival analysis. We used the log-rank test in univariate survival analyses and the
Cox proportional hazards model in multivariate survival analyses (both imple-
mented in the R package survival v2.43-3). The Kaplan-Meier plot was used for
presentation. The specific cutoff we used to dichotomize a continuous variable (e.g.,
gene level CNVs, Signature 17 activities, IFI44 expression) and then group patients
was determined by testing a series of values of that variable with fixed increments
and then choosing the one by which both log-rank and Cox P were <0.05 and the
log-rank P was minimized. This process would not give us any options if there was
no statistically significant result in the first place. The cutoffs we used to obtain the
presented results were 3.45 per Mb for TMB, 382 for gene level CNVs, 17.1% for
Signature 17 activities, −0.2256 for IFN-α response, 3.22 for IFI44 expressions, and
28.13 for IFI30 expressions. The same approach was applied to divide TCGA
patients into good or poor survival groups, with the specific cutoffs of 1.73 per Mb
for TMB, 42 for gene level CNVs, 48.5% for Signature 17 activity, −0.4892 for IFN-
α response, 12.09 for IFI44 expressions, and 10.80 for IFI33 expressions.

Identification of prognostic marker genes. To identify prognostic marker genes
in the IFN-α response pathway, we first selected 40 genes whose expressions were
(a) significantly correlated with the pathway GSVA scores across tumor samples (|
Spearman’s ρ| > 0.3, P < 0.05) and (b) significantly different between the two sur-
vival groups divided based on their IFN-α pathway GSVA scores (t-test P < 0.05).
Next, we tested each of the 40 genes and found 13 of them were significantly
correlated with patient survival (with at least one cutoff under which log-rank and
Cox P < 0.05). We finally picked IFI44 and IFI30 out of the 13 genes using a Lasso-
Cox method as implemented in the glmnet package v3.0-277.

Statistical analysis. We used Fisher’s exact test for any independence test between
two categorical variables and Wilcoxon rank-sum test for any independence test
between a continuous variable and a binary categorical variable, when there was no
covariate to adjust for. Otherwise, we used an F-test to compare two generalized
linear models, one of which included the variable being evaluated as a predictor.
Spearman’s rank correlation coefficient was used to measure the correlation
between two continuous variables.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The raw WGS and RNA sequencing data generated in this study are deposited in the
Genome Sequence Archive of Beijing Institute of Genomics, Chinese Academy of Sciences
(http://bigd.big.ac.cn/gsa/, accession number HRA000025). The gene expression data are
also publicly available from NCBI Gene Expression Omnibus (https://www.ncbi.nlm.nih.
gov/geo, accession number GSE159721). The whole-genome somatic variants are also
publicly available from the European Variation Archive (https://www.ebi.ac.uk/eva,
accession number PRJEB41070). We obtained somatic mutation and CNV data of TCGA
ACGEJ samples8 from the Broad Institute GDAC Firehose website (https://gdac.
broadinstitute.org/) and somatic mutation data of additional 46 ACGEJ samples15,16 from
the Tumor Portal (http://www.tumorportal.org). The gene expression (TPM) data of
TCGA ACGEJ samples10 were obtained from TCGA Pan-cancer Atlas publication web
page (https://gdc.cancer.gov/about-data/publications/pancanatlas). The gene expression
(TPM) data of normal gastroesophageal junction tissue samples78 were obtained from the
GTEx Portal (http://www.gtexportal.org/home/). Additional survival analyses in the GEO
datasets were conducted on the Kaplan-Meier Plotter website (https://kmplot.com)79 with
automatically selected best cutoffs. Other data that support the findings of this study are
available within the supplementary files or available from the authors upon request.

Code availability
We used published software for all our analyses as indicated. Other accompanying code
is available from the authors upon request.

Received: 10 April 2020; Accepted: 8 November 2020;

References
1. Buas, M. F. & Vaughan, T. L. Epidemiology and risk factors for

gastroesophageal junction tumors: understanding the rising incidence of this
disease. Semin. Radiat. Oncol. 23, 3–9 (2013) .

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-19949-6

12 NATURE COMMUNICATIONS |         (2020) 11:6091 | https://doi.org/10.1038/s41467-020-19949-6 | www.nature.com/naturecommunications

https://cancer.sanger.ac.uk/cell_lines
http://bigd.big.ac.cn/gsa/
https://www.ncbi.nlm.nih.gov/geo
https://www.ncbi.nlm.nih.gov/geo
https://www.ebi.ac.uk/eva
https://gdac.broadinstitute.org/
https://gdac.broadinstitute.org/
http://www.tumorportal.org
https://gdc.cancer.gov/about-data/publications/pancanatlas
http://www.gtexportal.org/home/
https://kmplot.com
www.nature.com/naturecommunications


2. Liang, D. et al. Gastric cancer burden of last 40 years in north china (hebei
province): a population-based study. Medicine 96, e5887 (2017).

3. Ajani, J. A. et al. Esophageal and esophagogastric junction cancers, version
2.2019, NCCN clinical practice guidelines in oncology. J. Natl. Compr. Cancer
Netw. 17, 855–883 (2019).

4. Lin, Y. et al. Epidemiology of esophageal cancer in Japan and China. J.
Epidemiol. 23, 233–242 (2013).

5. Greally, M., Agarwal, R. & Ilson, D. H. Optimal management of
gastroesophageal junction cancer. Cancer 125, 1990–2001 (2019).

6. Fuchs, C. S. et al. Ramucirumab monotherapy for previously treated advanced
gastric or gastro-oesophageal junction adenocarcinoma (REGARD): an
international, randomised, multicentre, placebo-controlled, phase 3 trial.
Lancet 383, 31–39 (2014).

7. Boku, N. et al. Safety and efficacy of nivolumab in combination with S-1/
capecitabine plus oxaliplatin in patients with previously untreated,
unresectable, advanced, or recurrent gastric/gastroesophageal junction cancer:
Interim results of a randomized, phase II trial (ATTRACTION-4). Ann.
Oncol. 30, 250–258 (2019).

8. Cancer Genome Atlas Research Network. Comprehensive molecular
characterization of gastric adenocarcinoma. Nature 513, 202–209 (2014).

9. Alexandrov, L. B. et al. Signatures of mutational processes in human cancer.
Nature 500, 415–421 (2013).

10. Liu, Y. et al. Comparative molecular analysis of gastrointestinal
adenocarcinomas. Cancer Cell 33, 721–735 (2018).

11. Gerstung, M. et al. The evolutionary history of 2,658 cancers. Nature 578,
122–128 (2020).

12. Nones, K. et al. Genomic catastrophes frequently arise in esophageal
adenocarcinoma and drive tumorigenesis. Nat. Commun. 5, 1–9 (2014).

13. Cristescu, R. et al. Molecular analysis of gastric cancer identifies subtypes
associated with distinct clinical outcomes. Nat. Med. 21, 449–456 (2015).

14. Xing, R. et al. Whole-genome sequencing reveals novel tandem-duplication
hotspots and a prognostic mutational signature in gastric cancer. Nat.
Commun. 10, 1–13 (2019).

15. Wang, K. et al. Exome sequencing identifies frequent mutation of ARID1A in
molecular subtypes of gastric cancer. Nat. Genet. 43, 1219–1223 (2011).

16. Dulak, A. M. et al. Exome and whole-genome sequencing of esophageal
adenocarcinoma identifies recurrent driver events and mutational complexity.
Nat. Genet. 45, 478–486 (2013).

17. Sansregret, L., Vanhaesebroeck, B. & Swanton, C. Determinants and clinical
implications of chromosomal instability in cancer. Nat. Rev. Clin. Oncol. 15,
139–150 (2018).

18. Bakhoum, S. F. & Cantley, L. C. The multifaceted role of chromosomal
instability in cancer and its microenvironment. Cell 174, 1347–1360 (2018).

19. Carter, S. L., Eklund, A. C., Kohane, I. S., Harris, L. N. & Szallasi, Z. A
signature of chromosomal instability inferred from gene expression profiles
predicts clinical outcome in multiple human cancers. Nat. Genet. 38,
1043–1048 (2006).

20. Dewhurst, S. M. et al. Tolerance of whole-genome doubling propagates
chromosomal instability and accelerates cancer genome evolution. Cancer
Disco. 4, 175–185 (2014).

21. Chakravarty, D. et al. OncoKB: a precision oncology knowledge base. JCO
Precis. Oncol. 1, 1–16 (2017).

22. Chia, N. Y. et al. Regulatory crosstalk between lineage-survival oncogenes
KLF5, GATA4 and GATA6 cooperatively promotes gastric cancer
development. Gut 64, 707–719 (2015).

23. Bielski, C. M. et al. Genome doubling shapes the evolution and prognosis of
advanced cancers. Nat. Genet. 50, 1189–1195 (2018).

24. Zack, T. I. et al. Pan-cancer patterns of somatic copy number alteration. Nat.
Genet. 45, 1134–1140 (2013).

25. Spruck, C. H., Won, K. A. & Reed, S. I. Deregulated cyclin E induces
chromosome instability. Nature 401, 297–300 (1999).

26. Aziz, K. et al. Ccne1 overexpression causes chromosome instability in liver
cells and liver tumor development in mice. Gastroenterology 157, 210–226
(2019).

27. Katainen, R. et al. CTCF/cohesin-binding sites are frequently mutated in
cancer. Nat. Genet. 47, 818–821 (2015).

28. Liu, E. M. et al. Identification of cancer drivers at CTCF insulators in 1,962
whole genomes. Cell Syst. 8, 446–455 (2019).

29. Guo, Y. A. et al. Mutation hotspots at CTCF binding sites coupled to
chromosomal instability in gastrointestinal cancers. Nat. Commun. 9, 1–14 (2018).

30. Tamborero, D. et al. A pan-cancer landscape of interactions between solid
tumors and infiltrating immune cell populations. Clin. Cancer Res. 24,
3717–3728 (2018).

31. Hanzelmann, S., Castelo, R. & Guinney, J. GSVA: gene set variation analysis
for microarray and RNA-seq data. Bioinformatics 14, 7 (2013).

32. Tamborero, D. et al. Cancer genome interpreter annotates the biological and
clinical relevance of tumor alterations. Genome Med. 10, 25 (2018).

33. Wang, J. et al. TOP2A amplification in breast cancer is a predictive marker of
anthracycline-based neoadjuvant chemotherapy efficacy. Breast Cancer Res.
Treat. 135, 531–537 (2012).

34. Sohn, B. H. et al. Clinical significance of four molecular subtypes of gastric
cancer identified by the cancer genome atlas project. Clin. Cancer Res. 23,
4441–4449 (2017).

35. Tomkova, M., Tomek, J., Kriaucionis, S. & Schuster-Bockler, B. Mutational
signature distribution varies with DNA replication timing and strand
asymmetry. Genome Biol. 19, 1–12 (2018).

36. Poetsch, A. R., Boulton, S. J. & Luscombe, N. M. Genomic landscape of
oxidative DNA damage and repair reveals regioselective protection from
mutagenesis. Genome Biol. 19, 1–23 (2018).

37. Degtyareva, N. P., Chen, L., Mieczkowski, P., Petes, T. D. & Doetsch, P. W.
Chronic oxidative DNA damage due to DNA repair defects causes
chromosomal instability in saccharomyces cerevisiae. Mol. Cell Biol. 28,
5432–5445 (2008).

38. Thomson, G. J. et al. Metabolism-induced oxidative stress and DNA damage
selectively trigger genome instability in polyploid fungal cells. EMBO J. 38,
e101597 (2019).

39. Coluzzi, E. et al. Oxidative stress induces persistent telomeric DNA damage
responsible for nuclear morphology change in mammalian cells. PLoS One 9,
e110963 (2014).

40. Bedard, P. L., Hyman, D. M., Davids, M. S. & Siu, L. L. Small molecules, big
impact: 20 years of targeted therapy in oncology. Lancet 395, 1078–1088
(2020).

41. Kim, J. et al. Preexisting oncogenic events impact trastuzumab sensitivity in
ERBB2-amplified gastroesophageal adenocarcinoma. J. Clin. Invest. 124,
5145–5158 (2014).

42. Janjigian, Y. Y. et al. Genetic predictors of response to systemic therapy in
esophagogastric cancer. Cancer Disco. 8, 49–58 (2018).

43. Au-Yeung, G. et al. Selective targeting of cyclin E1-amplified high-grade
serous ovarian cancer by cyclin-dependent kinase 2 and AKT inhibition. Clin.
Cancer Res. 23, 1862–1874 (2017).

44. Chen, Z. et al. Characterization and validation of potential therapeutic targets
based on the molecular signature of patient-derived xenografts in gastric
cancer. J. Hematol. Oncol. 11, 20 (2018).

45. Cortes-Ciriano, I. et al. Comprehensive analysis of chromothripsis in 2,658
human cancers using whole-genome sequencing. Nat. Genet. 52, 331–341
(2020).

46. Bertucci, F. et al. Genomic characterization of metastatic breast cancers.
Nature 569, 560–564 (2019).

47. Hallen, L. C. et al. Antiproliferative activity of the human IFN-alpha-inducible
protein IFI44. J. Interferon Cytokine Res. 27, 675–680 (2007).

48. Wang, H. et al. Long Noncoding RNA LINC01116 contributes to gefitinib
resistance in non-small cell lung cancer through regulating IFI44. Mol. Ther.
Nucleic Acids 19, 218–227 (2020).

49. Xiang, Y. J. et al. Absence of gamma-interferon-inducible lysosomal thiol
reductase (GILT) is associated with poor disease-free survival in breast cancer
patients. PLoS One 9, e109449 (2014).

50. Rausch, M. P. & Hastings, K. T. Diverse cellular and organismal
functions of the lysosomal thiol reductase GILT. Mol. Immunol. 68,
124–128 (2015).

51. Rausch, M. P. et al. GILT accelerates autoimmunity to the melanoma antigen
tyrosinase-related protein 1. J. Immunol. 185, 2828–2835 (2010).

52. Chiang, H. S. & Maric, M. Lysosomal thiol reductase negatively regulates
autophagy by altering glutathione synthesis and oxidation. Free Radic. Biol.
Med. 51, 688–699 (2011).

53. Chang, J. et al. Genomic analysis of oesophageal squamous-cell carcinoma
identifies alcohol drinking-related mutation signature and genomic
alterations. Nat. Commun. 8, 1–11 (2017).

54. Li, H. Aligning sequence reads, clone sequences and assembly contigs with
BWA-MEM. Preprint at http://arXiv:1303.3997 (2013).

55. Kim, S. et al. Strelka2: fast and accurate calling of germline and somatic
variants. Nat. Methods 15, 591–594 (2018).

56. McLaren, W. et al. The ensembl variant effect predictor. Genome Biol. 17, 122
(2016).

57. Xi, R., Lee, S., Xia, Y., Kim, T.-M. & Park, P. J. Copy number analysis of
whole-genome data using BIC-seq2 and its application to detection of cancer
susceptibility variants. Nucleic Acids Res. 44, 6274–6286 (2016).

58. Shen, R. & Seshan, V. E. FACETS: allele-specific copy number and clonal
heterogeneity analysis tool for high-throughput DNA sequencing. Nucleic
Acids Res. 44, e131 (2016).

59. Rausch, T. et al. DELLY: structural variant discovery by integrated paired-end
and split-read analysis. Bioinformatics 28, i333–i339 (2012).

60. Cameron, D. L. et al. GRIDSS: sensitive and specific genomic rearrangement
detection using positional de Bruijn graph assembly. Genome Res. 27,
2050–2060 (2017).

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-19949-6 ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:6091 | https://doi.org/10.1038/s41467-020-19949-6 | www.nature.com/naturecommunications 13

www.nature.com/naturecommunications
www.nature.com/naturecommunications


61. Chen, X. et al. Manta: rapid detection of structural variants and indels for
germline and cancer sequencing applications. Bioinformatics 32, 1220–1222
(2015).

62. Wala, J. A. et al. SvABA: genome-wide detection of structural variants and
indels by local assembly. Genome Res. 28, 581–591 (2018).

63. Jeffares, D. C. et al. Transient structural variations have strong effects on
quantitative traits and reproductive isolation in fission yeast. Nat. Commun. 8,
1–11 (2017).

64. Lawrence, M. S. et al. Mutational heterogeneity in cancer and the search for
new cancer-associated genes. Nature 499, 214–218 (2013).

65. Zhu, H. et al. Candidate cancer driver mutations in distal regulatory elements
and long-range chromatin interaction networks. Mol. Cell 77, 1307–1321
(2020).

66. Mermel, C. H. et al. GISTIC2.0 facilitates sensitive and confident localization
of the targets of focal somatic copy-number alteration in human cancers.
Genome Biol. 12, R41 (2011).

67. Secrier, M. et al. Mutational signatures in esophageal adenocarcinoma define
etiologically distinct subgroups with therapeutic relevance. Nat. Genet. 48,
1131–1141 (2016).

68. Rosenthal, R., McGranahan, N., Herrero, J., Taylor, B. S. & Swanton, C.
Deconstructsigs: delineating mutational processes in single tumors
distinguishes DNA repair deficiencies and patterns of carcinoma evolution.
Genome Biol. 17, 31 (2016).

69. Letouze, E. et al. Mutational signatures reveal the dynamic interplay of risk
factors and cellular processes during liver tumorigenesis. Nat. Commun. 8,
1–13 (2017).

70. Kim, D., Langmead, B. & Salzberg, S. L. HISAT: a fast spliced aligner with low
memory requirements. Nat. Methods 12, 357–360 (2015).

71. Pertea, M., Kim, D., Pertea, G. M., Leek, J. T. & Salzberg, S. L. Transcript-level
expression analysis of RNA-seq experiments with HISAT, StringTie and
Ballgown. Nat. Protoc. 11, 1650–1667 (2016).

72. Harrow, J. et al. GENCODE: the reference human genome annotation for the
ENCODE project. Genome Res. 22, 1760–1774 (2012).

73. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based
approach for interpreting genome-wide expression profiles. Proc. Natl. Acad.
Sci. USA 102, 15545–15550 (2005).

74. Yu, G., Wang, L. G., Han, Y. & He, Q. Y. clusterProfiler: an R package for
comparing biological themes among gene clusters. OMICS 16, 284–287
(2012).

75. Finotello, F. et al. Molecular and pharmacological modulators of the tumor
immune contexture revealed by deconvolution of RNA-seq data. Genome
Med. 11, 34–53 (2019).

76. Leek, J. T., Johnson, W. E., Parker, H. S., Jaffe, A. E. & Storey, J. D. The sva
package for removing batch effects and other unwanted variation in high-
throughput experiments. Bioinformatics 28, 882–883 (2012).

77. Friedman, J., Hastie, T. & Tibshirani, R. Regularization paths for generalized
linear models via coordinate descent. J. Stat. Softw. 33, 1–22 (2010).

78. Aguet, F. et al. Genetic effects on gene expression across human tissues.
Nature 550, 204–213 (2017).

79. Szasz, A. M. et al. Cross-validation of survival associated biomarkers in gastric
cancer using transcriptomic data of 1,065 patients. Oncotarget 7, 49322–49333
(2016).

Acknowledgements
Supported by National Key Research and Development Program of China
(2016YFC1302700 to C.W.), National Science Fund for Distinguished Young Scholars
(81725015 to C.W.), Medical and Health Technology Innovation Project of Chinese
Academy of Medical Sciences (2016-I2M-3-019 to D.L.; 2016-I2M-4-002 to C.W.; 2019-
I2M-2-001 to D.L. and C.W.; 2016-I2M-1-001 to W.T.), Beijing Outstanding Young
Scientist Program (BJJWZYJH01201910023027 to C.W.) and National Natural Science
Foundation of China (81988101 to D.L. and C.W.).

Author contributions
C.W., G.G., and D.L. conceptualized and supervised this study. Y. Lin, Y.S., and Y.M.
performed bioinformatics analysis. Y. Lin, Y. Luo, and W.G. performed statistical ana-
lysis. X.Z. performed in vitro drug vulnerability experiments. Y. Luo and Y.X. prepared
DNA and RNA samples. Y.X., M.S., and W.T. responded for clinical data and biospe-
cimen collection and performed experiments. Y. Lin and Y. Luo drafted and C.W., G.G.,
and D.L. reviewed the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41467-
020-19949-6.

Correspondence and requests for materials should be addressed to G.G. or C.W.

Peer review information Nature Communications thanks Leng Han and the other,
anonymous, reviewer(s) for their contribution to the peer review of this work. Peer
reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2020

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-19949-6

14 NATURE COMMUNICATIONS |         (2020) 11:6091 | https://doi.org/10.1038/s41467-020-19949-6 | www.nature.com/naturecommunications

https://doi.org/10.1038/s41467-020-19949-6
https://doi.org/10.1038/s41467-020-19949-6
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications

	Genomic and transcriptomic alterations associated with drug vulnerabilities and prognosis in adenocarcinoma at the gastroesophageal junction
	Results
	CIN-associated focal CNV is the major feature of ACGEJ genomic alterations
	COSMIC Signature 17 is the characteristic ACGEJ mutational signature
	Comparative analysis on major genomic alterations of our patients and TCGA patients
	Genomic alterations indicate potential vulnerability to existing therapeutic agents
	Featured genomic and transcriptomic changes are correlated with survival in patients

	Discussion
	Methods
	Biospecimen and clinical data
	DNA and RNA sequencing
	Detection of somatic SNVs, indels, CNVs, and SVs
	Identification of specific genomic features
	Identification of mutational signatures
	Analysis of bulk-tissue RNA sequencing data
	Identification of Signature17-correlated pathways and gene signatures
	Analysis and integration of public data
	In vitro validation of drug vulnerability prediction
	Survival analysis
	Identification of prognostic marker genes
	Statistical analysis

	Reporting summary
	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




