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Abstract: Bladder cancer represents the ninth most widespread malignancy throughout the world. It is
characterized by the presence of two different clinical and prognostic subtypes: non-muscle-invasive
bladder cancers (NMIBCs) and muscle-invasive bladder cancers (MIBCs). MIBCs have a poor
outcome with a common progression to metastasis. Despite improvements in knowledge, treatment
has not advanced significantly in recent years, with the absence of new therapeutic targets. Because of
the limitations of current therapeutic options, the greater challenge will be to identify biomarkers
for clinical application. For this reason, we compared our array comparative genomic hybridization
(array-CGH) results with those reported in literature for invasive bladder tumors and, in particular,
we focused on the evaluation of copy number alterations (CNAs) present in biopsies and retained in
the corresponding cancer stem cell (CSC) subpopulations that should be the main target of therapy.
According to our data, CCNE1, MYC, MDM2 and PPARG genes could be interesting therapeutic
targets for bladder CSC subpopulations. Surprisingly, HER2 copy number gains are not retained
in bladder CSCs, making the gene-targeted therapy less interesting than the others. These results
provide precious advice for further study on bladder therapy; however, the clinical importance of
these results should be explored.

Keywords: bladder cancer; transitional cell carcinomas; therapeutic targets; cancer stem cells; copy
number alterations

1. Introduction

Bladder cancer represents the ninth most widespread malignancy with 429,000 new cases and
about 165,000 fatalities in 2012 (2% of the total number of cancer deaths). It occurs in men more than
in women, with a sex ratio of 3.5 [1]. More than 90% of these tumors are transitional cell carcinomas
(TCC, also urothelial carcinoma). This tumor is characterized by the presence of two different
clinical and prognostic subtypes: non-muscle-invasive bladder cancers (NMIBCs) and muscle-invasive
bladder cancers (MIBCs). At diagnosis the majority are non-muscle-invasive, papillary and low grade.
NMIBC has the highest recurrence rate (50%–80%) of any carcinoma and, consequently, this is the
most expensive carcinoma per patient between diagnosis and death [2] because of repetitive and costly
follow-up. However, the prognosis is usually good, with only 10%–15% progressing towards invasion
while the five-year survival rate is 90%. On the contrary, about 20% of cancers present muscle invasion
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at diagnosis, an unfavorable outcome with a survival rate after five years below 50% [3] and common
progression to metastasis.

For this reason, two different potential pathways have been proposed. The onset of NMIBCs
may be derived via simple hyperplasia and minimal dysplasia through the loss of heterozygosity of
chromosome 9 and activating mutations of FGFR3, PIK3CA and STAG2. Invasive carcinomas could be
due to TP53 mutation in addition to chromosome 9 deletions, but generally without FGFR3 mutations
via flat dysplasia and carcinoma in situ [4].

A recent study has combined statistical analysis and computational modeling to identify
co-occurrence and mutual exclusivity of genes involved in bladder cancer [5]. Authors confirmed that
FGFR3 and PIK3CA mutations along with CDKN2A deletions are more associated with the noninvasive
pathway, whereas EGFR, E2F3 amplifications and TP53 mutations characterized the invasive pathway.

Despite improvements in knowledge, treatment has not advanced significantly in recent years,
with the absence of new therapeutic targets. NMIBC treatment options include: removing the
tumor(s) via transurethral resection with fulguration, eventually followed by instillation of intravesical
chemotherapy and possibly periodic intravesical instillations of bacillus Calmette–Guérin for high risk
of recurrent tumors [6]. Standard treatment for patients with MIBCs is either neoadjuvant multiagent
cisplatin–based chemotherapy and then radical cystectomy and urinary deviation, or radiation therapy
associated with chemotherapy [6]. Because of the limitations of current therapeutic options, the greater
challenge will be to identify biomarkers for clinical application.

We have been studying bladder cancer genetics for many years. We firstly reported the isolation and
biological characterization of putative bladder cancer stem cell (CSC) populations from primary TCCs [7].
CSCs expand as clonally derived spheres (urospheres) with extensive proliferation and self-renewal
capabilities. These cells showed positivity for stem cell markers and they could differentiate in the
presence of serum. Cytogenetic data indicated an enrichment of hypo- or near-diploid cells, without
the complexity of fresh tumors. Subsequently, we drew a comparison between the results of the
UroVysion test executed on freshly isolated nuclei and on formalin-fixed paraffin-embedded tissues
from 22 TCCs and we found no significant differences. Then, from the comparison between array
comparative genomic hybridization (array-CGH) findings and the specific chromosomal data of the
UroVysion test, we proved that it is still recommended to apply these two synergistic techniques, as
the former is able to detect genome-wide alterations, but the second can preserve the characteristics of
the individual cells [8].

However, our most interesting study concerned the comparison between array-CGH profiles of
CSCs and the primary biopsy, to evaluate if differences in the genomic signature already exist in the
initial steps of low grade and high grade tumors [9]. We found that CSCs isolated from low grade
biopsies are highly rearranged compared to the primary biopsy, with an incommensurate number
of genomic losses. This seems to be an essential characteristic which diversifies the two types of
tumor, not the result of alterations occurring by chance in culture. Our approach allowed us to show
that the genomic profile of low grade tumors differs from high grade tumors also in the initial steps
of tumorigenesis; furthermore, a subset of low grade tumors showed a major disposition to mislay
genomic regions.

These results provide precious information on bladder carcinogenesis and may be useful for the
identification of personalized therapy and of potential targetable biomarkers.

2. Results and Discussion

In this work, we compared our array-CGH results with those reported in literature for invasive
bladder tumors (Table 1); in particular, we focused on the comparison of selected genes identified by
the Cancer Genome Atlas analysis [10,11] to be the most significant in this type of tumor. Our approach
could lead to detecting potential therapeutic targets through the evaluation of copy number alterations
(CNAs) both in biopsies and in the corresponding isolated CSC subpopulations. For example, CCNE1
(cyclin E1) gene amplification has been reported in 9%–12% (Table 1) of bladder cancer, but in our
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cases a higher percentage of copy number gain in biopsies (25%) and especially in CSC subpopulations
(60%) occurred. The presence of gain in more than half of CSC samples made us speculate that it
might be considered an interesting therapeutic target. Currently, amplification of CCNE1 is considered
a well-defined target in high grade serous ovarian cancer [12]; however, in bladder cancer it was only
identified as a potential prognostic marker [13].

MYC oncogene amplification has been reported in bladder cancers (13%, Table 1): our results
showed the same percentage of mosaic gain in invasive biopsies (12.5%) whereas a higher percentage
of mosaic gain (40%) was found in the corresponding CSC subpopulations. Recently, the effect of
intravesical instillation of MYC inhibitor on orthotropic bladder tumor growth has been reported [14],
confirming its role as a promising target for bladder cancer therapy, even if there are no current clinical
trials (http://clinicaltrials.gov; https://www.clinicaltrialsregister.eu).

Also, MDM2, a negative regulator of tumor suppressor p53, has been reported as a potential
therapeutic target in urothelial carcinoma [15] and its amplification was found in 9% of invasive tumors
(Table 1). Interestingly, our biopsies showed no amplifications, but CSC subpopulations had a 40%
copy number gain, proposing a possible use of MDM2 inhibitors, which are in current clinical trials, in
bladder cancer therapy [16].

Human epidermal growth factor receptor 2 (HER2) overexpression is a target of anti-HER2
therapies for amplified breast cancer. Our array-CGH results showed a higher percentage of copy
number gain both in low grade non-infiltrating (LGNI) and high grade infiltrating (HGIN) tumors
with respect to published data (30% and 37.5%, respectively, versus 7% and 5%, Table 1). Recent works
have evaluated the role of HER2 in bladder cancer and also several trials are currently investigating
the possible benefit of targeted therapies for patients [17].

For this reason, we decided to substantiate these results on another set of tumors with the
fluorescence in situ hybridization (FISH) technique (Figure 1). We considered samples positive for
HER2 amplification that showed more than 10% of cells with an HER2/CEP17 (centromere 17) ratio
higher than two or with more than six HER2 signals per nucleus independent of CEP17 signals [18].
We found that 66.7% of tumors (both LGNI and HGIN) were positive for HER2 amplification (Table 2).
This disparity with array-CGH data could be explained by the peculiarity of the two techniques and
the different information provided by them, as already reported in our previous paper [8].
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paraffin-embedded (FFPE) tissues on the same tumoral area (case 27): (a) Her-2/Neu (17q12)/SE17 
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17green); (b) PPARγ Break probe. Yellow dots represent the fusion of green and red signals of the 
dual color split probe. 

Figure 1. Examples of fluorescence in situ hybridization (FISH) analysis on formalin-fixed,
paraffin-embedded (FFPE) tissues on the same tumoral area (case 27): (a) Her-2/Neu (17q12)/SE17
(SE: satellite enumeration) probe (human epidermal growth factor receptor 2 (HER2) red, centromere
17green); (b) PPARγ Break probe. Yellow dots represent the fusion of green and red signals of the dual
color split probe.
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Table 1. Array comparative genomic hybridization (array-CGH) results. Comparison with literature.

Genes
Nature [10] Clin Cancer Res [11] Biopsies CSC Subpopulation Biopsies CSC Subpopulation

% Loss
HGIN

% Gain
HGIN

% Loss
IN

% Gain
IN

% Loss
LGNI

% Loss
HGIN

% Loss
LGNI

% Loss
HGIN

% Gain
LGNI

% Gain
HGIN

% Gain
LGNI

% Gain
HGIN

CCND1 * - 10 A˝ - 11 A - - 10 M 20 M 20 A
30 M

12.5 A
12.5 NM
12.5 M

40 A
20 M

20 A
20 NM

E2F3/SOX4 - 20 A˝ - 18 A - - - - - 12.5 NM - 20 NM

EGFR - 11 A˝ - 7 A - - 10 M - 20 NM
10 M 12.5 M 30 NM 20 M

PPARG - 17 A˝ - 14 A - - - - -
12.5 A
25 NM
25 M

- 40 M

PVRL4 * - 19 A˝ - 17 A - - 10 CL
20 NM 20 NM 10 NM

10 M 75 M 30 NM
10 M 40 M

YWHAZ * - 22 A˝ - 22 A - - - - 10 NM 25 NM 10 NM 40 NM

MDM2 - 9 A˝ - 9 A - - 10 M - 20 M - 10 M 20 NM
20 M

HER2 - 7 A˝ - 5 A - - 20 M - 20 M
10 NM 37.5 M 10 M -

YAP1 - 4 A˝ - ni 10 M 12.5 M - - - 12.5 M - 25 M

CCNE1 - 12 A˝ - 9 A - 12.5 M - - - 25 M - 60 M

MYC - 13 A˝ - 13 A - 12.5 M 10 NM
10 M - - 12.5 M 10 M 40 M

FGFR3 * - 3 A˝ - 4 A - 12.5 M 20 M 20 M 10 A
40 M 12.5 M 10 A

10 M 20 M

MYCL1 * - 6 A˝ 6 A - - - - 10 M 12.5 M 10 NM -

BCL2L1 - 11 A˝ - 10 A - - 10 CL
20 NM - 50 M

12.5 A
12.5 NM
37.5 M

10 A
20 NM
10 M

20 NM

BEND3 * - ni - 3 A - 37.5 NM - - 10 M 25 NM 20 NM
10 M -

BIRC3 - ni - 4 A 20 M 37.5 M 10 NM
10 M 20 M - - 10 M 20 NM

20 M
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Table 1. Cont.

Genes
Nature [10] Clin Cancer Res [11] Biopsies CSC Subpopulation Biopsies CSC Subpopulation

% Loss
HGIN

% Gain
HGIN

% Loss
IN

% Gain
IN

% Loss
LGNI

% Loss
HGIN

% Loss
LGNI

% Loss
HGIN

% Gain
LGNI

% Gain
HGIN

% Gain
LGNI

% Gain
HGIN

GDI2 * - ni - 9 A 30 M 12.5 M 10 M 10 NM
10 M 25 M 10 NM 60 M

PRKCI - ni 4 A - - - - - 12.5 M - -

SOX4 - ni 18 A - - - - - 12.5 NM - 20 NM

CDKN2A 47 D˝ - 43 D 30 CL
10 M

12.5 CL
12.5 NM

25 M
30 CL 20 CL

40 M - - - -

PTEN 13 D˝ - 13 D - - - - - 10 M - - 20 NM

NCOR1 25 D˝ - 24 D - - 25 M - 20 M - - - -

CREBBP 13 D˝ - 16 D - 20 M 25 M 10 M - - 37.5 M - -

RB1 14 D˝ - 17 D - - 12.5 M 40 M 20 M - 12.5 M - -

ARID1A ni - 5 D - 10 M - - - - - - -

FHIT ni - 13 D - 10 M 12.5 M 10 M 20 M - 12.5 M - -

IKZF2 ni - 15 D - - 50 M - 20 M 10 M - - -

LRP1B ni - 17 D - - 37.5 M - 20 M - - - -

PDE4D ni - 22 D - - 25 M - 20 M - - - -

WWOX ni - 15 D - - 12.5 M - - - - - -

A˝: copy number > 3; D˝: copy number < 1.5; A: amplification; CL: complete loss; M: mosaic; NM: non-mosaic; D: deletion; ni: no information; LGNI: low grade non-infiltrating;
HGIN: high grade infiltrating; CSC: cancer stem cell; *: only one or two probes.
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Table 2. Fluorescence in situ hybridization (FISH) on formalin-fixed, paraffin-embedded (FFPE) tissues.

HGIN HER2 % of Amplified Cells PPARG > Two Signals CDKN2A < Two Signals

19 22% 32%
m = 2.36

100%
m = 0.08

20 6% - 85%
m = 1.02

21 84% 56.4%
m = 3

58%
m = 1.19

22 80% 50%
m = 2.8

6%
m = 2.94

23 30% 63.6%
m = 2.97

10%
m = 2.27

24 2.5% 48%
m = 2.66 -

25 3.3% 42%
m = 2.4

100%
m = 0.02

26 20% 28%
m = 2.34

7%
m = 2.72

27 37.5% 87.5%
m = 3.7

43%
m = 1.83

LGNI HER2 % of Amplified Cells PPARG > Two Signals CDKN2A < Two Signals

28 8% 4%
m = 2.02

100%
m = 0.17

29 10% - 61%
m = 1.28

30 13% 10%
m = 1.6

100%
m = 0

31 32% 2%
m = 1.72

58%
m = 1.21

32 14% 38%
m = 2.52

99%
m = 0.03

33 30% 4%
m = 1.76 -

m: mean number of signals in all analyzed nuclei; LGNI: low grade non-infiltrating; HGIN: high
grade infiltrating.

Then our cohort of Italian patients showed a significant variance in HER2 amplification with respect to
published data. In particular, The Cancer Genome Atlas Project identified 7% amplification in 131 patients
with high grade urothelial cancer [10] and other studies displayed a frequency of amplification ranging
from 5% to 14%, with the exception of 42% detected in the infrequent micropapillary histological
variant [4]. However, a recent study on two different cohorts of patients proved a significant difference
in frequencies of HER2 amplification between the Spanish and Greek patients, with 20% and 4%,
respectively. These results suggest that HER2 amplification can change between populations and
promote the hypothesis that etiologic heterogeneity can lead to these differences [19].

To evaluate if HER2 may be a therapeutic target in a subgroup of urothelial carcinomas, we
analyzed the results obtained in the CSCs subpopulation. Comparison between biopsies and the
corresponding CSCs showed that HER2 copy number gains are not retained in CSCs except for one
case (Table 3). This result could suggest the hypothesis that HER2 amplification is not present in
bladder cancer tumor-initiating cells. Moreover, the majority of HER2 amplifications detected in
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biopsies are as a mosaic (Table 3), so a low level of mosaicism amplification could be also in CSCs, but
not detectable by the array-CGH technique.

Table 3. Array-CGH results. Comparison between biopsies and cancer stem cells.

Histotype CASE
n˝

Biopsies Cancer Stem Cells

HER2 PPARγ CDKN2A HER2 PPARγ CDKN2A

LGNI

1 disomy disomy disomy disomy disomy disomy
2 disomy disomy complete loss disomy disomy complete loss
3 disomy disomy disomy mosaic loss disomy disomy
4 non mosaic gain disomy disomy mosaic loss disomy disomy
5 mosaic gain disomy mosaic loss mosaic gain disomy disomy
6 mosaic gain disomy disomy disomy disomy disomy
7 disomy disomy disomy disomy disomy disomy
8 disomy disomy complete loss disomy disomy complete loss
9 disomy disomy disomy disomy disomy disomy

10 disomy disomy complete loss disomy disomy complete loss

HGIN

11 disomy non mosaic gain mosaic loss disomy disomy disomy
12 mosaic gain mosaic gain complete loss disomy mosaic gain mosaic loss
13 disomy disomy mosaic loss disomy disomy mosaic loss
14 mosaic gain disomy non mosaic loss disomy disomy complete loss
15 disomy non mosaic gain disomy disomy mosaic gain disomy
16 disomy amplification disomy - - -
17 disomy disomy disomy - - -
18 mosaic gain disomy disomy - - -

n˝: number.

The most known gene involved in bladder cancer is CDKN2A. Our array-CGH results are in
agreement with the literature, with a 40% loss in LGNI biopsies (30% complete loss) and 50% in HGIN
biopsies (12.5% complete loss); instead, FISH analysis performed on another set of tumor biopsies
revealed a 100% loss in LGNI (5/5 cases) and 62.5% in HGIN samples (5/8 cases) with a median
number of signals less than two (Table 2). CDKN2A loss was also maintained in CSC subpopulations
(30% and 60% in LGNI and HGIN, respectively), denoting its important role in cancer onset and
progression (Table 3).

Finally, PPARG results were analyzed. We reported PPARG amplification in three samples derived
from the same patient with multifocal non-muscle-invasive bladder cancer, giving a novel proof on the
PPARG role in onset and support of bladder cancer, and also a potential explanation for the monoclonal
origin of multifocality [20].

PPARG amplification has been reported in 14%–17% of bladder cancer; our HGIN biopsies showed
12.5% amplification but also 50% copy number gain (Table 1). FISH analysis performed on another
set of tumor biopsies revealed a 20% of gain in LGNI (1/5) and 100% in HGIN samples (8/8) with
a median number of signals greater than two (Table 2). PPARG gain was maintained in 40% of CSCs,
only as mosaic gain (Table 3).

3. Materials and Methods

3.1. Tumor Specimens

TCC specimens were collected from 33 patients that underwent transurethral resection at a single
center, as previously reported [9]. Staging and grading were done according to the World Health
Organization Consensus Classification by a pathologist. Samples were classified as high or low grade
(HG or LG) and muscle infiltrating or non-muscle-infiltrating (IN or NI) (see Tables 2 and 3). No patient
has been treated before surgery.

This study was approved and founded by Direzione Generale Sanità Regione Lombardia and
presented by General Director and ethic commitment of ICP Hospital Bassini (Cinisello Balsamo, Italy),
as previously reported [9]. Written informed consent was obtained before tissue collection.
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3.2. Array Comparative Genomic Hybridization (Array-CGH)

Genomic DNA extraction, sample preparation, slide hybridization and analysis were performed
using SurePrint G3 Human CGH Microarray 8x60K (Agilent Technologies, Santa Clara, CA, USA)
following the manufacturer’s recommendations. The arrays were scanned at 2-µm resolution and
analyzed using Feature Extraction v10.7 and Agilent Genomic Workbench v5.0 software (Agilent
Technologies), as previously reported [9].

3.3. Fluorescence in Situ Hybridization (FISH)

FISH analysis on formalin-fixed, paraffin-embedded (FFPE) tissue sections was performed using
Her-2/Neu (17q12)/SE17 probe (Kreatech Diagnostics, Amsterdam, The Netherlands), PPARγ (3p25)
Break probe (Kreatech Diagnostics) and UroVysion bladder cancer kit (Vysis, Wiesbaden, Germany)
according to the manufacturer’s instructions. HER2 amplification is considered for samples that show
more than 10% of cells with HER2/CEP17 ratio greater than two or with more than six HER2 signals
per nucleus (ASCO international guidelines for breast cancer therapy) [18]. All digital images were
captured using a Leitz microscope (Leica DM 5000B, Leica Microsystems GmbH, Wetzlar, Germany)
equipped with a charge coupled device (CCD) camera (Leica Microsystems) and analyzed by means
of Chromowin software (Tesi Imaging, Milano, Italy).

4. Conclusions

In conclusion, our approach allowed us to evaluate genes with copy number alterations in biopsies
that are retained in the corresponding CSC subpopulations, which should be the main target of therapy.
According to our data, CCNE1, MYC, MDM2 and PPARG genes could be interesting therapeutic targets
for bladder CSC subpopulations in order to overcome the limitations of current therapeutic options.
Surprisingly, HER2 copy number gains are not retained in bladder CSCs, making the gene-targeted
therapy less interesting than the others. These results provide precious advice to further study on
bladder cancer therapy; however, the clinical importance of these results should be explored.
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