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Elaboration Benefits Source 
Memory Encoding Through 
Centrality Change
Inge K. Amlien   1, Markus H. Sneve1, Didac Vidal-Piñeiro1, Kristine B. Walhovd1,2 & 
Anders M. Fjell1,2

Variations in levels of processing affect memory encoding and subsequent retrieval performance, 
but it is unknown how processing depth affects communication patterns within the network of 
interconnected brain regions involved in episodic memory encoding. In 113 healthy adults scanned with 
functional MRI, we used graph theory to calculate centrality indices representing the brain regions’ 
relative importance in the memory network. We tested how communication patterns in 42 brain regions 
involved in episodic memory encoding changed as a function of processing depth, and how these 
changes were related to episodic memory ability. Centrality changes in right middle frontal gyrus, right 
inferior parietal lobule and left superior frontal gyrus were positively related to semantic elaboration 
during encoding. In the same regions, centrality during successful episodic memory encoding was 
related to performance on the episodic memory task, indicating that these centrality changes reflect 
processes that support memory encoding through deep elaborative processing. Similar analyses 
were performed for congruent trials, i.e. events that fit into existing knowledge structures, but no 
relationship between centrality changes and congruity were found. The results demonstrate that while 
elaboration and congruity have similar beneficial effects on source memory performance, the cortical 
signatures of these processes are probably not identical.

The levels of processing (LOP) framework posits that the durability of a memory trace is a function of how deeply 
the memory has been encoded1. In general, we remember better when we learn using deep semantic processing 
than when we attend to shallower features, such as item color or shape. Behavioral evidence for these mem-
ory effects were first described decades ago1–4, and functional magnetic resonance imaging (fMRI) studies have 
provided support for the framework by shedding light on the neural components involved in the relationship 
between processing depth during encoding and successful memory formation5,6.

Episodic memory formation is dependent on the hippocampus and medial temporal lobe (MTL) structures7,8, 
while memory storage also depends on representations that are distributed across cortical networks, in a pro-
cess of modality-specific cross-cortical storage9. Influential contemporary models of episodic memory function 
propose that events initially are encoded in parallel in both hippocampal and cortical networks of brain regions 
exterior to the MTL, including prefrontal cortex, bilateral fusiform, premotor, and posterior parietal cortex (see 
Kim10 and Paller9). Successful episodic memory encoding is thus dependent on the interactions between multiple 
spatially distributed cortical regions11–13.

Deep processing is associated with brain regions that are located in bilateral prefrontal cortex and hippocam-
pus, while shallow processing is typically found to be supported by similar, but less spatially extensive regions 
than deep processing14–18. Neuroimaging has shown that the memory enhancing effect of processing depth may 
in part stem from increased functional connectivity between hippocampus and the discrete neocortical regions 
discussed above, possibly reflecting relational binding through hippocampal-cortical synchronization6. However, 
long-range integration and communication between neocortical regions outside the MTL could also be affected 
by different levels of processing. How the larger network of cortical regions involved in episodic memory encod-
ing interacts during this process of initial binding of memory representations into coherent episodic memories 
is not yet well described.
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Graph theory is a mathematical set of concepts and tools for network analyses that is well suited to describe 
and classify the roles different brain regions have in brain networks, and also how these roles may change in 
response to different situational demands19. A core graph theoretical concept concerns node centrality, i.e., the 
relative importance of a node and its capacity to influence other parts of the network20. Different measures of cen-
trality can be applied to detect nodes that are highly connected and act like hubs, or nodes that are intermediate 
and rather affect the organization of the network19,21. Network characteristics during memory operations is mod-
ulated by memory state, for example whether an item can be retrieved or not, and the vividness of the retrieved 
memory. Successful retrieval has been linked to increased centrality in the left hippocampus22, and increased cen-
trality and communication efficiency has been demonstrated during recollection of vivid vs. dim visual scenes23. 
Similarly, Schedlbauer et al.24 found that successful memory retrieval was associated with increased node cen-
trality within the MTL, frontal and parietal lobes, and the visual cortex. Notably, this study also demonstrated 
that the increased centrality during successful retrieval was related to individual differences in retrieval accuracy.

Current research has focused on retrieval. However, the levels of processing framework include factors that 
probably act upon encoding more than retrieval, and processing depth during encoding may affect the strength 
of the memory trace and consequently subsequent memory success1. The beneficial effect processing depth has on 
episodic memory may be reflected through tighter integration and interaction between neocortical brain regions, 
and changes in the organization of the network of encoding-relevant regions during the initial binding of cortical 
memory representations. To examine levels of processing effects we thus have to focus on processes that occur 
during episodic memory encoding, rather than retrieval alone.

Elaboration and congruity are two related features of memory encoding that may have independent effects 
on memory strength4,25. While elaboration traditionally refers to how strongly a mental representation has been 
enriched during encoding by semantic evaluations25, congruity is a dimension of the LOP framework that refers 
to how well target words or items fit into existing knowledge structures or schemas26. Both elaboration and con-
gruity are related to subsequent memory performance and can be operationalized as attributes of the encoding 
situation that can have different levels2,5,25,27–29.

Using a dataset that contains implicit information about levels of both congruity and elaboration, we exam-
ine systematic variation in levels of processing during encoding, and relate these processes to memory perfor-
mance and measures of centrality (as outlined by Palombo and Madan30). We take advantage of the ratings across 
the elaboration- and congruity dimensions that the participants collectively and implicitly performed during a 
source memory encoding task. During encoding, the participants were shown 100 drawings of objects, and rated 
whether it was possible to eat or lift the items. We code the events where the participants agreed on the answer 
as low elaboration, e.g. “can you eat an apple?”, and we code events where the participants did not agree as high 
elaboration events, e.g. “can you lift a sofa?” We base congruity on the participants’ idiosyncratic responses, such 
that if a participant answered yes to the question “can you eat an apple?” that event would be coded as congruent, 
and vice versa.

We hypothesized that encoding of events that received deep processing (high elaboration or congruent trials) 
would be associated with increased centrality in nodes of the brain network that are predictive of successful epi-
sodic memory encoding.

To test this hypothesis, we employ a graph-theoretical approach19,21,24, and link fMRI blood oxygen level 
dependent (BOLD) activity and functional connectivity patterns to elaboration and congruity during source 
memory encoding. We generated seed regions from fMRI encoding activity that predicted subsequent source 
memory success. Using these seed points (including bilateral hippocampi) as nodes, we compared centrality 
during episodic memory encoding between different levels of elaboration and congruity. Next, for nodes that 
show increased centrality during high elaboration or congruity, we test if this functional reorganization of brain 
networks associated with different levels of processing can underlie parts of the beneficial effect processing depth 
has on episodic memory encoding. We ask whether increased centrality of these nodes during successful source 
memory encoding is associated with source memory performance, i.e. are the participants who are able to cen-
tralize these nodes during encoding also those who remember the most?

Materials and Methods
Sample.  The study was approved by the Regional Ethical Committee of South Norway and all research was 
performed in accordance with relevant guidelines and regulations. All participants gave written informed con-
sent. The participants reported no history of neurological or psychiatric disorders, chronic illness, premature 
birth, learning disabilities, or use of medicines known to affect nervous system functioning. They were further 
required to be right-handed, speak Norwegian fluently and have normal or corrected to normal hearing and 
vision. Participants were paid for their participation. 158 participants were scanned using fMRI while they were 
solving an item-action association task, and data from all these participants were used for the stimulus-classi-
fication (see methods/stimulus classification). 127 participants participated in an incidental memory test after 
a delay of 1.5 hours, and data from these participants were included the fMRI analyses. Four participants were 
excluded due to motion during the fMRI scan exceeding 1.5 mm (half the size of a voxel), or due to recalling less 
than 10% of the stimuli with full source memory. The sample thus consisted of 123 participants (female n = 89, 
age: range = 18.5–38.4 years, M = 27.8, SD = 5.15 [M = mean, SD = standard deviations]). We regarded less than 
ten trials in any of the categories used in the fMRI analyses (i.e. high/low elaboration/congruity, source memory 
correct/no source memory) to be insufficient for analysis, and ten participants who met these exclusion criteria 
were excluded from further analyses. A final sample of 113 participants (female n = 81 age: range = 18.5–38.4 
years, M = 27.7, SD = 5.22) was thus used in the fMRI analyses.

Procedure.  The memory task was optimized to allow for the investigation of individual differences in source 
memory performance, i.e. the ability to remember a previously encountered item together with information 
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about the encoding context (an event). In line with recent theoretical accounts of source memory, our concep-
tualization of source memory considers all retained information about the encoding context as relevant, not 
only information about time and space e.g. Ranganath31. During encoding, participants went through 100 trials 
of a task in which they performed simple evaluations of everyday objects and items (Fig. 1A). A trial had the 
following structure: a black and white line drawing of an object was presented on the screen while a female voice 
asked either “Can you eat it?” or “Can you lift it?” Both questions were asked equally often and were pseudor-
andomly mixed across the different objects. Participants were instructed to produce yes/no-responses based on 
their subjective evaluations of object/task-contingencies, and that there were no correct responses to the task. 
Importantly, participants did not know that they were part of a memory experiment and would be tested on the 
evaluated material and remained ignorant about this until just before the test session. Responses were given by 
pressing buttons on the response grips according to on-screen instructions. The hand used to produce a “yes” 
response was counterbalanced between participants. After a response window of two seconds, the line drawing 
was replaced by a fixation cross which remained on screen during the interstimulus interval (ITI). ITI length 
varied randomly between 1–7 seconds with an exponential distribution over 4 discrete intervals (mean duration 
2.98 s, SD = 2.49 s). The jittering of stimulus onsets facilitated later disentangling of fMRI data reflecting different 
encoding conditions32,33. Stimuli (10 visual degrees in diameter) were presented on a NNL 32″ LCD Monitor at a 
resolution of 1920 × 1080 pixels (NordicNeuroLab, Bergen, Norway), positioned 176 cm from the mirror attached 
to the coil. Participants responded using the ResponseGrip system (NordicNeuroLab, Bergen, Norway) and were 
shown a response feedback indicator on screen. Auditory stimuli were presented to the participants through 
scanner-compatible headphones (Siemens Medical Systems, Erlangen, Germany).

During test, 200 line drawings of objects were presented; 100 of these had been shown and evaluated during 
encoding while the remaining 100 objects were new (Fig. 1B). A test trial started with the presentation of an 
object (old or new, pseudorandomly picked) and the question “Have you seen this item before?” Participants were 
instructed to respond “Yes” if they remembered seeing the item during the encoding phase, and otherwise “No”. If 
the participant indicated that (s)he remembered seeing the object, a new question followed: “Can you remember 
what you were asked to do with the item?” A “Yes”-response to this question, indicating that the participant also 
remembered the action associated with the object during encoding, led to a final control question: “Were you 
asked to eat it or lift it?” Here, the participant indicated either “Eat” (“I evaluated whether I could eat the item dur-
ing the encoding phase)” or “Lift” (“I evaluated if I could lift the item”). The test runs were also performed during 
fMRI in the same scanner. Note that the specific questions asked during scanning were simplified to fit within 
the temporal limits of the paradigm, but that all participants were instructed in detail before the test session that 
the questions pertained to the item-action evaluation performed at encoding. The task was originally described 
in Sneve et al.13.

MRI data acquisition.  A 3T Siemens Skyra system (Siemens Medical Systems, Erlangen, Germany) with a 
24-channel Siemens head coil was used to acquire all MR images. The two encoding fMRI runs were acquired 
with the same parameters: 43 transversally oriented gapless slices were recorded using a BOLD-sensitive 
T2*-weighted echo planar image (EPI) sequence (repetition time [TR] = 2390 ms, echo time [TR] = 30 ms, flip 
angle = 90, voxel size = 3 × 3 × 3 mm, field of view [FOV] = 224 × 224 mm, interleaved acquisition (GRAPPA 
acceleration factor = 2, bottom ->up).

Figure 1.  Schematic representation of the incidental encoding procedure (A), and the test procedure (B).
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Three dummy volumes were collected at the start of each run, to avoid T1 saturation effects in the analyzed 
data. Each encoding run consisted of 131 volumes. A standard double-echo gradient-echo field map sequence was 
acquired for distortion correction of the EPI images. In addition, two sagittal T1-weighted MPRAGE volumes 
consisting of 176 sagittally oriented slices were obtained using a turbo field echo pulse sequence (TR = 2300 ms, 
TE = 2.98 ms, flip angle = 90°, voxel size = 1 × 1 × 1 mm, FOV = 256 × 256 mm). Several other MRI volumes were 
recorded during the session, not related to the current experiment, including sequences intended for and exam-
ined by a radiologist, to rule out and medically follow up incidental neuroradiological findings.

Image analysis.  FreeSurfer 5.3 was used for the cortical- and volumetric reconstruction of the T1-weighted 
structural data (http://freesurfer.net). The processing steps include motion correction and averaging34, removal 
of non-brain tissue35, automated Talairach transformation, and intensity correction36. Intensity and continuity 
information from the 3D volume are used in segmentation and deformation procedures to reconstruct a gray/
white and gray/cerebrospinal fluid boundary throughout the brain37–39. Cortical surfaces then undergo inflation, 
registration to a spherical atlas, and identification of gyral and sulcal regions40,41. An experienced operator man-
ually inspected individual surfaces and segmentations for accuracy, but no manual edits were deemed necessary. 
The FreeSurfer Functional Analysis Stream (FSFAST) v5.3 was used for preprocessing the functional image data 
from the encoding task. All functional images were first corrected for distortions caused by B0 inhomogenities in 
EPI scans (FSL PRELUDE/FUGUE; http://fsl.fmrib.ox.ac.uk/fsl), before the images were motion corrected (AFNI 
3dvolreg; http://afni.nimh.nih.gov), slice timing corrected to the middle of a volume’s TR, intensity normalized, 
and registered to the same participants anatomical volume. The 4D functional data sets were then resampled to a 
common template (‘fsaverage’) using the surface-based inter-participant registrations created during the previous 
cortical reconstruction.

Operationalization and analytical approach.  The analytic approach we took was made in order to 
answer the two main hypotheses:

	 1.	 Encoding of events requiring deep processing (high elaboration or congruent trials) is associated with 
increased centrality in parts of the brain network involved in episodic memory encoding.

	 2.	 High centrality in levels of processing-hubs (i.e., brain regions that show increased centrality during deep 
processing, cf. hypothesis 1) is related to episodic memory performance.

A general overview of the analyses is presented in Fig. 2:

	 1.	 We identified regions (nodes) that are involved in episodic memory encoding by performing a whole-brain 
fMRI analysis, isolating positive and negative subsequent source memory effects. The resulting statistical 
maps were used as the basis for creating nodes that were inputs to the graph theoretical analyses. See below 
for details.

Figure 2.  Schematic representation of the analytical approach. (1) We first defined regions that were involved 
in episodic memory encoding by contrasting events that were subsequently remembered with full source 
information (i.e. the participant remembered whether they answered the lift or eat question) with those that were 
not. 40 nodes, including both hippocampi brought to the graph analyses. (2) centrality measures were calculated 
for all nodes (closeness centrality, node degree, eigenvector centrality, betweenness centrality), (3) and we 
identified nodes that increased centrality during deep processing. (4) Finally, in the levels-of-processing-nodes 
identified in the previous step, we tested the correlation between A: centrality change between events that were 
subsequently remembered vs forgotten, and B: source memory performance. Plus/minus signs denotes contrasts. 
Node drawings are for illustration purposes only, and are not accurate representations of the node matrix.
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	 2.	 We calculated centrality measures for all nodes defined in (1) plus bilateral hippocampus, 42 nodes in total. 
Centrality was calculated for all conditions (high elaboration remembered, low elaboration remembered, 
high elaboration forgotten, low elaboration forgotten [and the same for congruity]).

	 3.	 We identified nodes that showed increased centrality during deep processing-trials.
	 4.	 Using the LOP nodes defined in the previous step, we tested the correlation between A: centrality change 

between events that were subsequently remembered vs forgotten, and B: source memory performance.
	 5.	 We permuted the analysis in the previous step, testing the likelihood of finding a similarly strong relation-

ship between centrality and memory ability in any other constellations of nodes than the ones we found 
were relevant for LOP.

Levels of Processing.  In order to extract information about levels of processing from the data, we ranked 
the 100 events (item/question combinations) that were presented during encoding according to the total number 
of “yes” responses across all participants. Our conceptualization of elaboration involved that when an event was 
encountered for which the participants collectively agreed on the answer, less elaboration was required than for 
events where the participants where split in their decisions, i.e. where for example 50% answered “yes” and 50% 
“no”. High and low elaboration categories thus represent degree of agreement across subjects.

We envisioned that the events with low agreement across participants received a mix of yes and no responses 
because the item-action combinations were novel, conflicting, or evoked ambivalence. The increased time the 
participants spent on the high elaboration events before concluding with a push on the response button could 
thus reflect a qualitatively different form of semantic evaluation than for the low elaboration events, and possi-
bly greater number of encoded features2. While the low elaboration events easily fit with previous experiences, 
either because the item-action combinations had been encountered previously, and the decision merely hinged 
on recollecting the episode, or the item-action combination was easily imaginable (i.e. can you lift an apple), the 
high elaboration events were the opposite. High elaboration events were assumed to demand a greater number of 
semantic iterations and possibly a greater number of encoded features, thus more effortful semantic processing 
before a decision could be reached, either because the item-action combinations were novel, or evoked cognitive 
conflicts. Examples of low elaboration events are the item “apple” combined with the eat-question, which all par-
ticipants agreed was possible, and the item “Boat” combined with the eat-question, which all participants agreed 
was impossible. A high elaboration example is the item “sofa” combined with the lift-question, an event that 
received approximately 50/50 yes and no answers, reflecting that the participants probably had to perform some 
degree of semantic judgements on the item-question combination (for example evaluating whether they have 
lifted sofas in the past, or how heavy this specific sofa appears) before reaching a decision.

The ranking and categorization of events is explained in Fig. 3. The events that received predominantly either 
“Yes” or “No” responses were categorized as low elaboration, and the events that the participants disagreed on 
were categorized as high elaboration. We performed the categorization by splitting the events into 4 quartiles 
based on total number of “yes” responses, and labelled the middle two quartiles that received mixed responses 
as high elaboration, and the top and bottom quartiles (mainly yes- and no responses) as low elaboration (Fig. 3).

Congruity was based solely on the participants’ idiosyncratic responses. Following Schulman26, we envisioned 
that item-action combinations that were congruent according to the individual participants mental representa-
tions, would be judged as possible more often than not, and be awarded with “yes” responses. When a positive 
response is made, the encoding question (lift/eat) and target (item) could form a more coherent and thus easier 
integrated unit. The congruity dimension was thus classified on the individual level, where the events the individ-
ual participant responded with “yes” were classified as high congruity events, and the events that received “no” 
responses were classified as low congruity events.

Figure 3.  Stimulus classification categories. The stimulus items were ranked based on the sum of Yes-responses 
each item received during encoding (along the X-axis). The Y-axis represents percent Yes-responses per item 
(circles), and the amount of disagreement among the participants per item (solid line). Categories 1 and 3 are 
classified as low elaboration, category 2 as high elaboration.

https://doi.org/10.1038/s41598-019-39999-1


6Scientific Reports |          (2019) 9:3704  | https://doi.org/10.1038/s41598-019-39999-1

www.nature.com/scientificreportswww.nature.com/scientificreports/

Memory performance.  A participant’s source memory score was calculated as the percentage of encoded 
events that were recognized with correct recollection of the associated encoding action. Thus, participants had to 
correctly recognize an item (correct “Yes” response to test question 1), state that they remembered the associated 
action (“Yes” response to test question 2), and explicitly pick the correct associated action (correct response to 
question 3) for that event to fall into the source memory category. The participant’s recognition score was the 
percentage of encoded items they correctly recognized (correct “Yes” response to test question 1), regardless of 
response to follow-up questions. As the number of events varied between individuals and categories, we per-
formed analyses using ratio-scores (hit rate/number of events per condition) in the analyses of memory perfor-
mance. Where applicable, we also tested d-prime scores in the recognition memory analyses, taking into account 
false alarm rates, and corrected source memory performance scores when possible (source memory performance 
- number of wrong action decisions, i.e. wrong answer to question 3). To correct for multiple tests, we used 
Bonferroni adjusted alpha levels, adjusted for four analyses (elaboration and congruity by recognition and source 
memory).

fMRI analyses.  For each encoding run, three first-level general linear models (GLM) were set up. First, we 
contrasted events subsequently remembered with full source memory with events without full source memory 
(i.e. recognition misses, recognition hits, no source memory, or wrong source memory). Two additional models 
were set up, with four main conditions/regressors (high elaboration remembered with full source memory, high 
elaboration without full source memory, low elaboration remembered with full source memory, low elabora-
tion without full source memory, and similar for congruity. The regressors were modelled as events with onsets 
and durations corresponding to the encoding period (2 s), and convolved with a two-gamma canonical HRF. In 
addition to the task-regressors and their temporal derivatives, estimated motion correction parameters and a 
set of polynomials (up to second degree) were included in the GLM as nuisance regressors. The model and the 
data were high-pass filtered with a cutoff at 0.01 Hz, and temporal autocorrelations (AR(1)) in the residuals were 
corrected using a pre-whitening approach. Statistical significance was tested at each vertex on the cortical surface 
using GLMs and a weighted least squares approach42. For each individual, the contrasts of parameter estimates 
were calculated and brought to the group-level, where the following analyses were performed.

Node matrix creation.  We performed a whole-brain cortical GLM where we contrasted source mem-
ory > no source memory trials (i.e. recognition only or miss), regardless of elaboration or congruity status. These 
results provided a set of regions relevant for source memory encoding that were used for defining the nodes that 
were used in the graph analyses. Nodes were created by running the FDR corrected (p < 0.05) statistical map of 
the [source memory > no source memory] contrast through mri_surfcluster and saving clusters with an extent 
greater than 100 vertices. We algorithmically searched for local maximas in each cluster, restricted to minimum 
25 mm separation between maximas, expanded the cluster down the gradients starting from the maxima fol-
lowing the cluster structure up to a maximum of 600 vertices, and saved the resulting ROIs. The specific values 
for minimum/maximum cluster size and degree of separation were chosen to keep nodes from overlapping and 
account for registration inaccuracies/smoothing. We included the set of nodes generated by this analysis, as well 
as the FreeSurfer-segmented left and right Hippocampus, in the following graph analyses. The reason we included 
the hippocampus in the analyses a priori was that the other nodes were derived from vertex-wise surface-based 
data, and FreeSurfer handles hippocampus in volume-space.

Graph construction.  The pre-processed functional data were analyzed for task-specific connectivity using 
the generalized psychophysiological interactions (PPI) toolbox43. First, observed BOLD data (first eigenvariate) 
for all nodes defined in the previous step were deconvolved into estimates of neural events44. Next, the task time 
courses from the first-level FSFAST design matrix, representing the stimulus categories (high and low elabora-
tion, subsequently remembered, and similar for congruity), were separately multiplied by the deconvolved neural 
estimate, and convolved with a canonical HRF, creating the PPI terms. Finally, for each participant and condition, 
we calculated the Fisher-transformed temporal correlations (Pearson’s r) between all nodes’ PPI terms, creating a 
correlational PPI connectivity matrix of all pairwise combinations45. Due to a different number of trials going into 
each condition, that could also vary across participants (different number of yes/no responses), we thresholded 
all connectivity matrices to contain only the strongest edges. To allow comparisons between participants and 
conditions independent of absolute connectivity levels, we binarized the thresholded connectivity matrices. All 
centrality analyses were run on these undirected, thresholded, binarized connectivity matrices.

Centrality measures.  Centrality measures were calculated using the Brain Connectivity Toolbox 
(brain-connectivity-toolbox.net). We calculated four different but related measures of centrality: closeness cen-
trality, degree, betweenness centrality and eigenvector centrality. The first three centrality measures were first 
proposed by Freeman46 and eigenvector centrality by Bonacich47. The application of the centrality measures for 
research on brain networks is further described in for example Van Den Heuvel et al.48.

Closeness Centrality (CC).  A node high in CC has on average shorter paths to other nodes in the network, than 
nodes low on CC. Both degree and closeness centrality are measures sensitive to global properties of the network 
and yield information about how easily information can spread from one node through the network. The CC of a 
network node can be calculated by the inverse of the sum of the shortest distance between the node and all other 
nodes in the graph:
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7Scientific Reports |          (2019) 9:3704  | https://doi.org/10.1038/s41598-019-39999-1

www.nature.com/scientificreportswww.nature.com/scientificreports/

=
∑ ≠

CC v
d

( ) 1

i v vi

All the analyzed measures of centrality (closeness, degree, betweenness, and eigenvector) are measures that 
describe aspects of a node’s importance in a network49. While degree and closeness are highly intercorrelated50, 
closeness reflects more global aspects of how a node relates to a network than the degree measure which simply 
counts number of connected edges. We chose to focus on CC in the main analyses, as this measure may corre-
spond to more global aspects of network connectivity than node degree. However, as the different measures of 
centrality can be informative of different aspects of network organization, we include results from alternative 
measures of centrality as supplementary material (node degree, betweenness centrality [BC], and eigenvector 
centrality [EC])48.

Graph centrality statistical analyses.  To test whether any of the source memory encoding nodes 
increased centrality during deep processing, we conducted paired-samples t-tests on centrality for all 42 
nodes. Comparisons were made between the high- and low-elaboration categories and between the high- and 
low-congruity categories that were subsequently recollected with source memory. To test if effects of levels of 
processing were simply effects of successful encoding, we also performed paired-samples t-tests on centrality for 
the difference memory contrast, between items that were remembered with full source memory and items that 
were not remembered with full source memory.

We performed analyses on binarized graphs that were thresholded using density based thresholding. Use of 
density-based thresholding allowed us to be able to match connection density across all participants. The most 
conservative threshold we employed was to keep 20% of the strongest edges, and this value was selected based 
on the criterion that at least 85% the nodes had at least one remaining edge, in at least 85% of the participants. In 
order to reduce the likelihood of type 1 errors due to spurious effects appearing at specific graph thresholds only, 
we performed all graph analyses on binarized graphs that were thresholded at 20, 22, 24, 26, 28 and 30% edge den-
sity, and only results that were significant (FDR-corrected at p < 0.05) across all six graph thresholds are reported 
and considered significant. This correction is quite conservative, and we can be fairly certain that any node that 
shows increased centrality in a condition is not due to chance alone.

To test the relationship between centrality and memory performance, we correlated source memory perfor-
mance with average centrality change across the set of nodes that remained significant after the combined FDR 
correction and conjunction test across all thresholds. The analyses were performed on CC in the main analyses, 
with other graph centrality measures shown in supplementary material. To quantify the likelihood of obtain-
ing similar results with any other constellation of brain regions, we compared the results with distributions of 
correlation coefficients derived from all possible constellations of the same number of randomly selected nodes 
(excluding the set of nodes nodes found in the previous analyses). The number of permutations in the exhaus-
tive permutation tests were 73815 for CC (3 LOP nodes excluded), and 9139 for degree and EC (set of 4 nodes 
excluded). The 40 surface-based nodes are included in supplementary material on FreeSurfer annotation format.

Results
Stimulus classification.  The 100 events presented during encoding were classified by ranking each events 
according to the accumulated number of “yes” responses across all participants (Fig. 3). For the low elaboration 
events, participants produced an average of 97.8% (SD = 1.6%) “yes” responses (Fig. 3, category 3) or 99.2% 
(SD = 0.7%) “no” responses (Fig. 3, category 1). Events classified as high elaboration i.e. combinations character-
ized by a high degree of disagreement, had on average 48.0% (SD = 32.1%) “yes” responses (Fig. 3, category 2). 
Congruity was classified on an individual basis, simply as the events where the participant answered “yes” (high 
congruity), or “no” (low congruity)26. There was a statistically significant difference in mean response time (RT) 
between high (mean = 1034 ms, SD = 131 ms) and low elaboration (mean = 848 ms, SD = 104 ms, p < 0.001), and 
between high (mean = 981 ms, SD = 125 ms) and low congruity (mean = 955 ms, SD = 124 ms, p < 0.001). The 
pattern of RTs reflects what would be expected from LOP theory, with increased RTs for high elaboration vs. low 
elaboration, and while previous studies have found small or no differences between high and low congruity con-
ditions, the absolute differences we report were small2.

Memory performance.  Paired samples t-tests were performed on corrected source memory performance 
scores between high- and low elaboration, and high- and low congruity, separately. The analyses revealed that 
events processed with high elaboration were recollected more often with full source memory (mean = 64.09%, 
SD = 15.00%, t[122] = 24.09, p < 0.001) than events processed with low elaboration (mean = 35.52%, 
SD = 16.73%). This pattern held also for congruity, and a higher number of high congruity events were recol-
lected with full source memory (mean = 56.93%, SD = 15.89%, t[122] = 11.68, p < 0.001), than low congruity 
events (mean = 42.61%, SD = 16.39%). The memory performance of the group reflected what we would expect 
according to LOP, with both elaboration and congruity positively related to source memory2. A similar pattern 
emerged when we analyzed differences in simple recognition, accounting for false positive rates. High elabo-
ration was associated with better recognition (d′ = 2.05, SD = 0.48) than low elaboration (d′ = 1.71, SD = 0.56, 
t[122] = 14.05, p < 0.001), and the participants recognized the high congruity events more readily (d′ = 1.57, 
SD = 0.53) than the low congruity events (d′ = 1.30, SD = 0.53, t[122] = 12.82, p < 0.001)

Centrality analyses.  We defined a set of regions involved in source memory encoding that resulted in a 
network of 40 cortical nodes (Fig. 4). We also included the left and right Hippocampus, yielding a total of 42 
nodes that were entered in the connectivity analyses. PPI terms were extracted from all nodes, for both high and 
low levels of elaboration and congruity, for the trials that were subsequently remembered with source memory, 
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resulting in 42 × 42 correlation matrices per condition, per participant. We also extracted PPI terms for successful 
vs unsuccessful source memory encoding contrast, regardless of elaboration or congruity.

To characterize how the brain’s nodal centrality characteristics are reorganized during different encoding con-
ditions, we performed paired-samples t-tests on individual estimates of closeness centrality between conditions, 
across all nodes. We only report the nodes that were significant after FDR-correction at p < 0.05, at all six graph 
density thresholds (20%, 22%, 24%, 26%, 28%, 30%). An example graph matrix binarized at 20% threshold and 
the underlying raw connectivity values between nodes is shown in Fig. 5.

Figure 4.  Areas showing significant subsequent source memory effects on BOLD activity, independent 
of elaboration and congruity. Nodes entered into the connectivity analyses shown in pink (Right and left 
Hippocampus not shown). The abbreviations for the nodes are as follows: SFG (Superior frontal gyrus), MFG 
(Middle frontal gyrus), SMG (Surpamarginal gyrus), ANG (Angular gyrus), SPL (Superior parietal lobe), 
ITL (inferior temporal lobe), MTG (Middle temporal gyrus), STG (Superior temporal gyrus), INS (Insula), 
OFC (Orbitofrontal cortex), IPL (Inferior parietal lobe), OFC (Orbitofrontal cortex), PRC (Precuneus), RSC 
(Retrosplenial cortex), ICC (Isthmucingulate cortex), PCG (Posterior cingulate cortex), PHC (Parahippocampal 
cortex), LNG (Lingual gyrus), FFG (Fusiform gyrus). The FreeSurfer annot-files describing the labels are 
available as Supplementary Material.

Figure 5.  Node adjacency matrix showing the centrality structure during high and low elaboration, based on 
the group average. Raw connectivity weights between nodes above the diagonal, binarized edges at 20% edge 
density threshold below the diagonal.
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We found that CC was increased during the high elaboration condition compared to the low elaboration 
condition in three frontal nodes (left superior frontal gyrus-inferior node[L-SFGi], right middle frontal gyrus–
anterior node [R-MFG-a] and the right middle frontal gyrus–posterior node [R-MFG-p]) and one posterior 
node (right inferior parietal lobule [R-IPL]). Plot of CC values for all nodes are shown in Fig. 6, and these four 
elaboration network nodes are display in Fig. 7. No nodes showed the opposite effects, i.e. higher CC during low 
elaboration compared to high elaboration. Three nodes (L-SFGi, RIPL and R-MFGp) also showed stability across 
three of the tested centrality measures (CC, degree, EC). No significant effects were found when comparing cen-
trality during encoding of congruent vs incongruent events, or when testing subsequent source memory effects 
on centrality, regardless of levels of processing (i.e. comparing centrality during encoding of events that were 
subsequently remembered with source memory with events that were not remembered with source memory).

Centrality and Source Memory.  Elaboration is positively related to source memory performance, and the 
pattern of edge reorganization we detected as increased centrality during high elaboration could represent features of 
deep processing that gives rise to the beneficial effect on source memory encoding. Centrality differences in the elab-
oration network nodes during successful compared to unsuccessful source memory encoding could thus be indicative 
of the effectiveness of which participants use elaborative encoding strategies or processes when encoding memories. 
To test for the existence of such a relationship, we correlated mean centrality change in the elaboration network nodes 
during successful vs unsuccessful source memory encoding with individual source memory performance.

There was a positive relationship between centrality during successful vs. unsuccessful source memory encod-
ing and source memory performance (mean CC across the four elaboration network nodes: r = 0.34, p < 0.001, 
Fig. 8, right column). To test if this relationship was truly unique to the four elaboration network nodes or if 
a similar relationship could be identified also in other nodes, we performed the same tests in all 73815 possi-
ble unique permutations of subsets of four random nodes, excluding the previously identified four elaboration 
network nodes. We calculated centrality difference between source memory correct vs incorrect, across the six 

Figure 6.  Nodes (X-axis) in green show significantly increased closeness centrality in the high-elaboration vs 
low elaboration condition. The values on the Y-axis represent closeness centrality change between conditions, 
averaged across all thresholds. Individual values are represented by the dots, horizontal lines represent group 
means, dark area = 95% confidence interval, light area = standard deviation.

Figure 7.  Nodes that show significantly increased CC in the high-elaboration vs low elaboration condition. 
Red = Left superior frontal gyrus - inferior; Green = Right inferior parietal lobule; Blue = Right middle 
frontal gyrus–posterior; Yellow = right middle frontal gyrus–anterior. Nodes are displayed on a semi-inflated 
FreeSurfer fsaverage template.
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different thresholds as in the main analyses, averaged over the four randomly chosen nodes, and correlated the 
centrality values with source memory performance. This procedure was performed using every possible con-
stellation of nodes, and the null-distribution of correlations between source memory performance and CC for 
all permutations was saved. The relevant correlation from the nodes in the elaboration network is plotted as the 
green line in Fig. 8, left column. Only 19/73815 unique permutations of nodes resulted in similar or higher cor-
relation values, translating to 0.026% of the possible combinations of nodes. Comparable results were found for 
degree and EC (Fig. S5). A relationship with similar strength between source memory performance and increased 
centrality in the elaboration network nodes is thus not likely to be found in other subsets of nodes.

Discussion
In this study, using a graph theoretical approach, we were able to identify a set of cortical regions involved in deep 
processing during associative encoding. The magnitude of centrality increase in these regions during successful 
encoding was positively related to individual source memory performance. The findings demonstrate that elabora-
tion may benefit episodic memory encoding through centrality changes in a set of frontal and parietal brain regions. 
While several studies have shown how brain activity5,17,51 and connectivity6 is affected by changes in levels of pro-
cessing, the present study attempts to unify these findings by using graph theoretical constructs to assess changes in 
brain network interaction and reorganization during episodic memory encoding with different levels of processing.

Successful episodic memory retrieval has been associated with changes in communication patterns of the 
brain, exemplified by increased centrality of distinct brain regions, possibly reflecting increased integrative pro-
cessing22,24. While we were unable to detect equivalent centrality changes specific to successful source memory 
processes during encoding, a distinct set of nodes showed increased centrality during encoding of high elabora-
tion vs low elaboration events.

Both the middle frontal gyrus and the posterior parietal cortex are involved in episodic memory encod-
ing10,52,53 and retrieval54. Univariate BOLD activity in the posterior parietal cortex (R-IPL) is possibly related to 
search for task-related information in episodic memory during retrieval, and may be involved in binding features 
episodic memories to coherent wholes55. The IPL is also referred to as part of a network involved in various forms 
of scene processing and integration56,57, and related, as part of the posterior medial memory system thought to 
support the construction of situation models in support of memory31. It is likely that construction of scenes or 
situational models of events with high elaboration requires greater cognitive effort, or a more comprehensive 
memory search, than similar scene construction with low elaboration. The centrality increase in posterior parietal 
cortex we found in the present study during high elaboration may thus reflect increased network integration in 
networks involved in scene construction or the posterior medial memory system. As scene construction involves 
integrating episodic memory traces into coherent wholes, the increased centrality in the two MFG nodes could 
likewise reflect effortful or extensive episodic memory search during processing of high elaboration events.

Activity in a region in the left superior frontal gyrus (L-SFGi) was on the other hand related to subsequent 
forgetting, regardless of levels of processing. The node is however not considered part of the default memory net-
work, which could be expected from its negative relationship with encoding, but the region is typically thought to 
be a part of a dorsal network which supports top-down executive control processes58. It can be speculated that the 
results reflect competition between processes that support encoding and processes required for the control of the 
task, such that on trials demanding more cognitive control for task switching (i.e. items that are rarely associated 
with lifting/eating), fewer resources were available for encoding. Similar activity pattern has been reported by 
Otten et al.17 and Kim10.

Figure 8.  Left column; Null distribution of r-values (73815 permutations) between connectivity and source 
memory, using constellations of nodes not in the elaboration network. Correlation value from the right panel 
shown as green line. Right column; Mean centrality difference between subsequent source- and no subsequent 
source memory across elaboration network nodes of interest represented on the X-axis. Corrected source 
memory performance on the Y-axis.
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When examining the univariate fMRI analyses (Fig. 4), we find that this left frontal region shows a negative 
subsequent source memory effect in concert with the right frontal, and parietal/occipital regions showing positive 
subsequent memory effects. Still, these regions all display similar changes in communication patterns, and take 
more central roles in the network during deep processing. One interpretation of these seemingly contradictory 
findings is that although a region may have a minor, or even negative association with memory encoding when 
studied in isolation, it may still have great influence on the integration and control of information flow in the brain.

The tested centrality measures (see supplementary material for degree, EC, BC results) do differ in what net-
work attributes are weighted when a node’s importance or centrality is evaluated. Degree and CC are linear meas-
ures of the number of strong connections to other nodes, and how tightly connected a node on average is to all 
other nodes in the network, respectively. EC does on the other hand reflect to what degree a node communicates 
with other important nodes, following the somewhat recursive idea that important nodes are important because 
they communicate with other important nodes. A node high in BC is central in a network because other nodes 
communicate through the node, the node is often on the shortest paths between other nodes48. When we found 
elaboration-related changes in all centrality measures but BC, this may reflect that elaboration does not simply 
affects the breadth of communication, for example through more numerous connections with sensory regions, 
but that the regions possibly increase communication with other well-connected nodes to a greater degree during 
high elaboration.

Why is increased centrality of the elaboration network nodes during encoding associated with enhanced 
source memory performance? The findings could potentially be informative of how elaboration enhances mem-
ory. Individuals may differ in their predisposition or ability to use elaboration as a memory enhancing strategy, 
which in turn could be reflected as increased centrality. The centrality - source memory relationship can reflect 
increased integration between the constituent parts of events or scenes, or enhanced strength of the memory trace 
itself through iterated elaborations. Age related changes in brain and cognition has been shown to affect the use 
and usefulness of semantic encoding strategies59,60, and it is possible that the individual differences in the neural 
connectivity patterns and memory performance we observe also reflect inter-individual differences in encoding 
strategies or cognitive abilities.

Schott6 examined connectivity associated with elaboration specifically and found that high elaboration was 
associated with increased connectivity between the hippocampus and bilateral ventrolateral prefrontal cortex and 
right temporoparietal junction. The findings of increased connectivity between hippocampus and distributed 
cortical regions is a hallmark of episodic memory function and is consistent with several theories of memory61–63. 
In the present study, we did not find increased centrality in hippocampus in any condition, i.e. changes in hip-
pocampus centrality was not significantly associated with either subsequent memory, elaboration or congruity. 
While unexpected, several studies of anatomical and functional connectivity using graph theoretical measures 
have failed to assign the importance to the hippocampus in the brain network as one would expect considering 
the import role of the hippocampus in episodic memory function21,64,65, and these null-findings exemplify the 
point made above, that when regions are studied in the context of network interactions, the results can differ from 
what is found when the activity of the same regions are studied in isolation.

Differences in network edge configurations were observed for elaboration, but not congruity. If congruity 
affects encoding simply through increased elaboration, we would expect to see similar activation and connectiv-
ity patterns for both congruent and high elaboration events. The data does not provide convincing support for 
this explanation. Rather, the results indicate that while both elaboration and congruity benefit episodic memory 
encoding, the functional brain correlates of these processes are not identical. The results thus detail the brain 
activity correlates of critical processes for episodic memory encoding, well-established at the behavioral level 
in the LOP framework1,2, and demonstrate that they may have different communication patterns, and possibly 
independent effects on memory encoding.

Limitations
Similar to the tasks used in other studies on levels of processing6,17, it can be argued that while difference in depth 
exists, the low elaboration condition in the present study still entails some degree of semantic elaboration, but in a 
different intensity than the high elaboration condition. We do however find the behavior results we would expect 
with regard to LOP theory.

Conclusion
In sum, the results demonstrate that while elaboration and congruity have large but similar effects on memory 
for both item and context, the cortical signatures of these processes are not identical. Centrality in a distinct set 
of cortical regions was associated with level of elaboration, but no such association was found for congruity. 
Further, in the same set of regions, we found a relationship between centrality increase during episodic memory 
encoding and episodic memory ability, indicating that elaboration as a feature of episodic memory encoding has 
real importance beyond semantic classification. Future studies should test whether changes in network properties 
during high vs. low elaboration can be identified during development and aging.

Data Availability
The dataset analyzed during the current study is available from the corresponding author on reasonable request.
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