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From Individual to Population Preferences:

Comparison of Discrete Choice and Dirichlet
Models for Treatment Benefit-Risk Tradeoffs

Tommi Tervonen , Francesco Pignatti, and Douwe Postmus

Introduction. The Dirichlet distribution has been proposed for representing preference heterogeneity, but there is lim-
ited evidence on its suitability for modeling population preferences on treatment benefits and risks. Methods. We
conducted a simulation study to compare how the Dirichlet and standard discrete choice models (multinomial logit
[MNL] and mixed logit [MXL]) differ in their convergence to stable estimates of population benefit-risk preferences.
The source data consisted of individual-level tradeoffs from an existing 3-attribute patient preference study (N =
560). The Dirichlet population model was fit directly to the attribute weights in the source data. The MNL and
MXL population models were fit to the outcomes of a simulated discrete choice experiment in the same sample of
560 patients. Convergence to the parameter values of the Dirichlet and MNL population models was assessed with
sample sizes ranging from 20 to 500 (100 simulations per sample size). Model variability was also assessed with coef-
ficient P values. Results. Population preference estimates of all models were very close to the sample mean, and the
MNL and MXL models had good fit (McFadden’s adjusted R2 = 0.12 and 0.13). The Dirichlet model converged
reliably to within 0.05 distance of the population preference estimates with a sample size of 100, where the MNL
model required a sample size of 240 for this. The MNL model produced consistently significant coefficient estimates
with sample sizes of 100 and higher. Conclusion. The Dirichlet model is likely to have smaller sample size require-
ments than standard discrete choice models in modeling population preferences for treatment benefit-risk tradeoffs
and is a useful addition to health preference analyst’s toolbox.
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Preference studies are increasingly being used to support
health policy decision making with regulatory agencies
recently expressing interest in preference-based benefit-
risk assessment.1–3 Discrete choice experiments (DCEs)
are the most commonly used method for eliciting
benefit-risk tradeoffs in the health domain.4 In a DCE,
benefit-risk tradeoffs are inferred from a series of choice
questions in which participants are asked to choose
between 2 or more hypothetical treatment profiles. The
utility that a participant obtains from a treatment profile
is assumed to be a random variable whose expected
value is expressed as a function of the attribute levels
that constitute that treatment profile. The regression

coefficients of this function are the parameters of interest
for the DCE and can be used to calculate attribute
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weights that express the marginal rate of substitution
between 2 attributes.

Because of the limited amount of information that is
obtained with each discrete choice question, DCEs often
require hundreds of answers for estimating the preference
parameters (i.e., the benefit-risk tradeoffs, possibly con-
ditional on a set of explanatory covariates) sufficiently
accurately.5 Moreover, the maximum number of attri-
butes respondents can handle in DCEs is limited; the
exact number is context dependent,6 but most recently
published health DCEs have used between 4 and 9 attri-
butes.7 Finally, although more complex statistical models
allow distinguishing and characterizing preference het-
erogeneity,8 DCEs rarely allow estimating individual-
level utility functions with high precision.9

Other preference elicitation and modeling methods
have been developed to overcome these challenges.
Instead of assuming that utility is a latent variable, mul-
ticriteria decision analysis is based on normative models
of rational choice that state that a subject’s preference
structure can be represented by means of a utility func-
tion if that subject’s choice behavior satisfies certain
basic rationality axioms, such as completeness and tran-
sitivity. Several direct valuation methods have been
developed to elicit the parameters of this function, which
has an additive structure when the attributes under con-
sideration are preferentially independent for the decision
maker. The parameters of interest for the additive value
model are the attribute weights and the marginal gain or
loss in utility from increasing attribute values (i.e., the
so-called partial value or utility functions).

Swing weighting and other direct valuation methods can
handle a larger number of attributes, and their questioning
procedures are designed in such a way that they completely
identify an individual’s utility function. However, when
direct valuation methods are used, and the analyst wants to
generalize from the sample to the population, a statistical
model for the data-generating process needs to be specified.
Various authors have proposed using the Dirichlet distribu-
tion for modeling the distribution of the attribute weights
in the population.10–12 The Dirichlet distribution is particu-
larly compelling for this purpose, given its support is the
simplex (i.e., the full feasible space of attribute weights
when they are normalized to sum to unity). However, there
is limited empirical evidence on the use of the Dirichlet dis-
tribution to model population preferences, including an
understanding of the convergence of the parameter esti-
mates with sample sizes commonly encountered in health
preference studies.

This article aims to fill this evidence gap by evaluating
the use of the Dirichlet distribution for modeling

population preferences. We compare the Dirichlet distri-
bution to the multinomial logit model (MNL) commonly
used for modeling preferences as captured with a DCE,
by conducting computational experiments with data col-
lected in a previous preference study. We also fit a mixed
logit (MXL) model to the data and discuss the differ-
ences between the MXL and Dirichlet approaches.

Methods

We conducted a simulation study to compare how the
Dirichlet and MNL models differ in their convergence to
stable estimates of the population preferences.

We based our computational experiments on an exist-
ing study13 that used an online questionnaire with
choice-based matching questions to elicit the preferences
of 560 patients with multiple myeloma for hypothetical
cancer treatments. The treatments were described in
terms of the following 3 attributes: probability of being
progression free for 1 year or longer (index: 1; levels:
50%, 60%, 70%, 80%, and 90%), risk of moderate but
chronic toxicity (index: 2; levels: 45%, 55%, 65%, 75%,
and 85%), and risk of severe toxicity (index: 3; levels:
20%, 35%, 50%, 65%, and 80%). The source data con-
sisted of a set of N = 560 weight vectors (1 for each
patient) that were derived from the patients’ responses to
the choice-based matching questions. Using these real
data, instead of simulated data, may provide better evi-
dence on the methods’ convergence in a realistic setting.

For the Dirichlet model, the utility that a random
patient i obtains from a hypothetical treatment j with
attribute values xj = xj1, xj2, xj3

� �
was specified as

Uij =wi1

xj1

90� 50

� �
� wi2

xj2

85� 45

� �
� wi3

xj3

80� 20

� �
:

Here, the attribute weights wi = wi1,wi2,wi3ð Þ, which are
nonnegative and normalized to sum to unity, are Dirichlet
distributed with density fD wð Þ. To estimate fD wð Þ, we fit a
Dirichlet regression model directly to the attribute weights
in the source data. We refer to this fitted distribution as
f̂D wð Þ.

For comparison purposes, we also fit an MNL model
and MXL model to the outcomes of a simulated DCE in
the same sample of 560 patients. To obtain discrete
choice data sets for fitting the 2 models, we simulated a
DCE with the following design. First, we generated an
orthogonal design using the Lma method14 with 2 choice
alternatives and 5 levels for each of the 3 attributes.
Then, we filtered out questions in which 1 of the choice
alternatives was dominated (i.e., would have higher risk
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of both toxicities and lower probability of 1-year
progression-free survival). This resulted in a set of 16
possible discrete choice questions. Next, we simulated
the individual patient responses based on the beha-
vioral assumption that, for any given question, patients
choose the alternative that provides the greatest utility.
The utility that patient i obtained from alternative j in
choice question k was generated according to the fol-
lowing equation:

~Uijk =wi1

xjk1

90� 50

� �
� wi2

xjk2

85� 45

� �

� wi3

xjk3

80� 20

� �
+ eijk:

Here, eijk is a Gumbel distributed error term that was
added to the utility values of the choice alternatives in
each question to make the resulting choice behavior con-
sistent with the assumptions underlying the MNL and
MXL models.15–17 The attribute weights in this equation
were directly taken from the source data.

To determine a suitable scale value b for the Gumbel
distributed error term, we conducted for each value of
b 2 0:1, 0:2, . . . , 1:0f g a set of 1000 experiments in which
each of the N = 560 patients were simulated to answer
all 16 discrete choice questions. These results indicated
that the expected Euclidean distance between the sample
mean of the attribute weights (i.e., the arithmetic mean
of the attribute weights of all 560 patients in the sample)
and the normalized attribute weights calculated from the
regression coefficients of the fitted MNL models was
minimal when the Gumbel scale value was set equal to
b= 0:3 (see the results in the Supplementary Material).
This scale value was therefore used for further simula-
tions of the MNL and MXL models.

To fit the MNL and MXL models to the outcomes of
the simulated DCE in the sample of 560 patients, we used
linear models with continuous level encoding to estimate
only the coefficients that express marginal rates of substi-
tution between the attributes:

~Uijk = ~wi1xjk1 + ~wi2xjk2 + ~wi3xjk3 +~eijk:

Here, the vector of preference weights ~wi is either fixed
(MNL) or independent, normal-distributed (MXL) and
~eijk Gumbel distributed with b= 1. We refer to these
fitted distributions (deterministic distribution in case of
MNL) as f̂MNL ~wð Þ and f̂MXL ~wð Þ, respectively. The normal-
ized attribute weights wi can be obtained from the prefer-
ence weights ~wi by multiplying the latter with the
attribute scale variation and then applying rescaling so
that they sum to unity. To achieve comparability of the T
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results of the different models, all comparisons were
made at the level of the normalized attribute weights.

To assess the goodness of fit of the 3 models, the
mean normalized attribute weights from the fitted mod-
els were compared with the sample mean of the attribute
weights in the source data. Standard errors and 95%
confidence intervals (CIs) for the mean attribute weights
of the MNL and MXL models were obtained using the
delta method.18 The 95% CI for the sample mean and
the mean attribute weights of the Dirichlet model were
obtained through bootstrapping. For the Dirichlet and
MXL model, the fitted distribution of the attribute
weights was also visually compared with the actual dis-
tribution of the attribute weights in the source data.

To assess the convergence of the MNL and Dirichlet
models to the previously fitted population models
f̂MNL ~wð Þand f̂D wð Þ, we conducted a series of computa-
tional experiments with a varying number of respon-
dents. The DCE data sets for the MNL models were
constructed by simulating 6 discrete choice questions

from the set of 16 possible questions for each participant.
The questions were resampled for each simulated respon-
dent to minimize errors due to inefficient experimental
design. The choice probabilities for the choice alterna-
tives in these questions were obtained directly from the
logit probabilities evaluated at f̂MNL ~wð Þ. For the fitting of
the Dirichlet models, attribute weights were randomly
sampled from f̂D wð Þ. We varied the number of simulated
respondents between 20 and 500 and repeated each simu-
lation 100 times to assess the variance of the results. We
measured convergence by calculating the Euclidean dis-
tance between the mean normalized attribute weights
from the fitted models and the mean normalized attri-
bute weights from f̂MNL ~wð Þand f̂D wð Þ.

By measuring convergence to the (normalized) means
of the previously fitted population models rather than to
the sample mean of the attribute weights in the source
data, we are able to assess convergence under ideal cir-
cumstances, where no bias is caused by misspecification
of the preference model. In addition to the Euclidean
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Figure 1 Box plots of convergence of the multinomial logit (MNL; top) and Dirichlet (bottom) models to the fitted population
models with varying sample sizes; the dashed blue line indicates the Euclidean distance 0.15 that has been used to truncate the
data set.
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distance, we evaluated the MNL model coefficients’ P
values to understand when the hypothetical analyst
could consider the results to be sufficiently accurate.
Finally, we measured maximum acceptable risks of the
adverse event (AE) attributes to assess whether the
results in terms of key behavioral outputs are different
from the results of individual model parameters.

All simulations were implemented in R. The MXL
model was estimated using 5000 Halton draws. All pro-
gram code and the full-source data set are available
online.19

This research has received no external funding.

Results

The fitted Dirichlet, MNL, and MXL population models
as well as the sample mean of the attribute weights in the
source data are presented in Table 1. All models approxi-
mated the sample mean well, and the MNL and MXL
models had reasonably good fits (adjusted R2 = 0.12
and 0.13).

Figure 1 presents the results from the computational
experiments assessing model convergence. For both the
Dirichlet and MNL models, the estimated mean normal-
ized attribute weights converged toward the population
mean values in Table 1. The Dirichlet model seems to con-
verge better than the MNL model: the mean attribute
weights of the fitted Dirichlet models converged to within
0.05 distance of the mean of f̂D wð Þ with a sample size of
100 in 97% of the simulations, whereas the fitted MNL
models required a sample size of 240 to converge to the
same distance of the normalized mean attribute weights of
f̂MNL ~wð Þ in 96% of the simulations. Similar results were
observed when convergence was assessed in terms of maxi-
mum acceptable risks (see the results in the Supplementary
Material).

Figure 2 presents convergence of the MNL model
with respect to the P value of the least important attri-
bute (moderate AEs). The results indicate that the MNL
model consistently produced significant (P \ 0.05) esti-
mates with a sample size of 100 or higher. With sample
sizes of 60 to 80, there were some simulations in which
the analyst would not be able to conclude the signifi-
cance of the estimate.

Figure 3 compares the distribution of the attribute
weights in the original study with the distribution of the
attribute weights for the fitted Dirichlet and MXL mod-
els. Samples drawn from the fitted MXL and Dirichlet
models have similar spread over the preference space,
although the Dirichlet model seems to have a slightly

higher dispersion than the MXL model. Both models
seem to describe the source data reasonably well.

Discussion

Our computational experiments demonstrated that the
Dirichlet model is likely to have smaller sample size
requirements than the MNL model in modeling popula-
tion benefit-risk preferences. Although we have no quan-
titative evidence of differences between the Dirichlet and
MXL approaches, the full-sample preference distribu-
tions seemed similar, which indicates that the Dirichlet
distribution may also be appropriate for modeling prefer-
ence heterogeneity in benefit-risk tradeoffs. Importantly,
our results indicate that the Dirichlet distribution is able
to represent the population benefit-risk tradeoffs once
they are captured using an elicitation technique, such as
the choice-based matching that was applied in the source
data study. This implication has direct practical rele-
vance for treatment benefit-risk analyses using methods
that apply the Dirichlet distribution20,21: our results
demonstrate that the full distribution, including the con-
centration parameter that has previously been undefined,
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(moderate adverse effects) in the multinomial logit model, with
sample size varying from 20 to 100; the P value was \0.05 in
all simulations in which the number of respondents was .100.
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can reliably be estimated with reasonably small sample
sizes.

Fitting a Dirichlet distribution with a standard max-
imum likelihood procedure requires per-respondent
tradeoff weights to be available in complete format.
These are usually obtained with a direct elicitation pro-
cedure, which is generally thought to be more demand-
ing to complete than indirect procedures such as DCEs,
as they require preferences to be expressed in precise
cardinal terms. Therefore, direct elicitation procedures
often require facilitation, making their application a
resource-intensive exercise with larger samples.22

However, once the per-respondent preferences are
available, understanding their distribution requires less
modeling than what is needed to analyze discrete choice
data.

This study has some important limitations. First, we
conducted experiments on only a single data set that
contained 3 attributes. Most health preference studies
are conducted on larger sets of benefit, risk, and process
attributes. However, the Dirichlet distribution is well
understood, and we would not expect the estimate preci-
sion to suffer more from an increase in dimensionality
than the MNL model. Furthermore, using only a three-
attribute data set has the additional advantage of the
preference space being 2 dimensional, and therefore, it
can be easily visualized. Future research should assess
the Dirichlet approach in studies with more attributes.
Second, we did not compare the Dirichlet and MXL
models in the experiments because 1) MXL estimation is

much more time-consuming than MNL estimation and
2) specifying preferences that adhere to the MXL distri-
butional assumptions would have added an extra layer
of complexity to the experiments. Third, we considered
the Dirichlet model only for the case in which respon-
dent preferences are available in a complete format. In
practice, there may be partial or incomplete preference
data for some respondents, such as ranking of the attri-
bute scale swings instead of the exact tradeoff weights.
Future research should consider estimation and conver-
gence of the Dirichlet model in such cases.
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