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Abstract 

Background:  Multi-trait genetic parameter estimation is an important topic for target traits with few records and 
with a low heritability and when the genetic correlation between target and secondary traits is strong. However, esti-
mating correlations between multiple traits is difficult for both Bayesian and non-Bayesian inferences. We extended 
a Hamiltonian Monte Carlo approach using the No-U-Turn Sampler (NUTS) to a multi-trait animal model and investi-
gated the performance of estimating (co)variance components and breeding values, compared to those for restricted 
maximum likelihood and Gibbs sampling with a population size of 2314 and 578 in a simulated and real pig dataset, 
respectively. For real data, we used publicly available data for three traits from the Pig Improvement Company (PIC). 
For simulation data, we generated two quantitative traits by using the genotypes of the PIC data. For NUTS, two prior 
distributions were adopted: Lewandowski-Kurowicka-Joe (LKJ) and inverse-Wishart distributions.

Results:  For the two simulated traits with heritabilities of 0.1 and 0.5, most estimates of the genetic and residual vari-
ances for NUTS with the LKJ prior were closer to the true values and had smaller root mean square errors and smaller 
mean absolute errors, compared to NUTS with inverse-Wishart priors, Gibbs sampling and restricted maximum likeli-
hood. The accuracies of estimated breeding values for lowly heritable traits for NUTS with LKJ and inverse-Wishart 
priors were 14.8% and 11.1% higher than those for Gibbs sampling and restricted maximum likelihood, respectively, 
with a population size of 578. For the trivariate animal model with real pig data, the estimates of the genetic correla-
tions for Gibbs sampling and restricted maximum likelihood were strongly affected by population size, compared to 
NUTS. For both the simulated and pig data, the genetic variances and heritabilities for NUTS with an inverse-Wishart 
prior were overestimated for low-heritability traits when the population size was 578.

Conclusions:  The accuracies of variance components and breeding values estimates for a multi-trait animal model 
using NUTS with the LKJ prior were equal to or higher than those obtained with restricted maximum likelihood or 
Gibbs sampling. Therefore, when the population size is small, NUTS with an LKJ prior could be an alternative sampling 
method for multi-trait analysis in animal breeding.
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Background
Selection of livestock is usually based on a combina-
tion of several traits of economic importance that may 
be phenotypically and genetically related. Multi-trait 

analysis was introduced in quantitative genetics by Hen-
derson and Quaas [1]. It is based on the simultaneous 
evaluation of animals for several traits and makes use of 
the phenotypic and genetic correlations between them. 
Compared to analyzing each trait separately, the advan-
tages of multi-trait analysis are an increase in prediction 
accuracy, statistical power and parameter estimation 
accuracy and decrease in trait selection bias [2–4]. In 
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particular, multi-trait analysis can provide more accu-
rate estimations in the case of traits with a low heritabil-
ity or populations of small size [5]. Accurate estimation 
of variance components and functional parameters, such 
as heritabilities and genetic correlations, is important 
because prediction error variances for predicted random 
effects increase as the differences between estimated and 
true values of variance components increase [6]. Accu-
rate estimation of multi-trait variance components that 
considers the genetic correlations between economically-
important traits will contribute to improve the accuracy 
of genetic evaluation.

Restricted maximum likelihood (REML) and Bayesian 
analyses have become standard estimation methods in 
animal breeding. Patterson and Thompson [7] first devel-
oped the REML approach, which has been widely used 
for the estimation of multi-trait (co)variance compo-
nents thanks to the availability of several programs, e.g. 
MTDFREML [8], VCE [9], REMLf90 [10] or ASREML 
[11]. From a Bayesian viewpoint, REML is considered 
as the mode of the joint posterior distribution of all (co)
variance components, with noninformative prior densi-
ties, once the fixed effects are marginalized by transla-
tion invariance functions of the data [12]. However, since 
the REML estimator relies on an asymptotic distribution, 
the inferences are valid strictly for a sample of infinite 
size [13, 14]. Therefore, it is difficult to calculate reliable 
confidence intervals for REML-based variance compo-
nent parameters [15]. An alternative to REML estima-
tion is a full Bayesian approach through Markov chain 
Monte Carlo (MCMC) methods, which were introduced 
in quantitative genetics in the early 1990s [13, 16]. Gibbs 
sampling (GS) is an MCMC method that repeatedly sam-
ples from the conditional distributions of one variable 
when all the other variables are assumed to be known 
[17]. In practice, GS is frequently used because it does 
not require the design of a proposal distribution and the 
procedure is simple to program. In animal breeding pro-
grams and in the case of a single-trait model, an inverse-
gamma distribution is used for a prior distribution of 
variance components but, in practice, such a distribu-
tion has two major problems. One is that inappropriate 
parameters are used to make the inverse-gamma distri-
bution as uniform as possible [13, 16, 17], and the other 
is that, if small values are set to make the distribution as 
least informative as possible such as 0.001, the inverse-
gamma distribution will show a weak peak around 0, 
which might result in being unintentionally informative 
[18]. In the case of a multi-trait analysis, the inverse-
Wishart (IW) conjugate family of distributions is used as 
priors for the covariance matrices between traits because 
the IW distribution is a multivariate generalization of 
the inverse-gamma distribution [19]. Consequently, the 

IW prior is expected to have the same problems as the 
inverse-gamma prior.

The Hamiltonian Monte Carlo (HMC) approach has 
become a popular alternative MCMC method, which 
is based on Hamiltonian dynamics used in physics and 
is a Metropolis strategy for all parameters simultane-
ously [20]. Hoffman and Gelman [21] developed the No 
U-Turn Sampler (NUTS), which automatically tunes the 
hyperparameters required for HMC. Recently, HMC 
and NUTS were applied to animal breeding [22, 23]. In 
a single-trait analysis, Nishio and Arakawa [23] showed 
that NUTS performed well for the estimation of variance 
components, in the case of large effective sample sizes, 
low autocorrelations, and low skewness of posterior dis-
tributions, particularly when the heritability of the trait 
was low. NUTS can be implemented by probabilistic 
programming language, such as PyMC and Stan [24]. In 
addition, conjugate priors are not necessary for NUTS, 
thus appropriate priors other than the IW priors can be 
used for the covariance matrix. Therefore, NUTS that 
uses an appropriate prior might provide more accurate 
estimates of variance components and breeding values in 
multi-trait analysis than GS.

We have introduced two estimation methods, i.e. 
REML and Bayesian analysis, and two computing algo-
rithms of Bayesian analysis, i.e. GS and NUTS. The goal 
of this study was to compare the performances of REML, 
GS and NUTS for the accuracy of the estimation of vari-
ance components and breeding values. This comparison 
was based on multi-trait genomic best linear unbiased 
prediction (GBLUP) models using simulated and real pig 
data.

Methods
Real pig data
Publicly available data including genotypic and pheno-
typic information on a single Pig Improvement Company 
(PIC) nucleus pig line were used (https://​acade​mic.​oup.​
com/​g3jou​rnal/​artic​le/2/​4/​429/​60260​60). This data-
set is composed of 3534 animals with phenotypes for 
five traits and genotypes from the PorcineSNP60 chip 
( n = 64, 223 ). These phenotypes were already adjusted 
for environmental fixed effects: sex, farm and year of 
birth [25]. We used three traits (T1, T2 and T3) and 
extracted 2314 animals for which records for these three 
traits were available. The T1, T2 and T3 traits used in 
this paper correspond to the T1, T2 and T3 traits in the 
publicly available PIC data. Two scenarios were applied 
to estimate variance components: Scenario 1 that used 
the full data (2314 animals) and Scenario 2 that used data 
from 578 animals randomly selected from the 2314 ani-
mals under the assumption that few records were avail-
able for the T1, T2 and T3 traits.

https://academic.oup.com/g3journal/article/2/4/429/6026060
https://academic.oup.com/g3journal/article/2/4/429/6026060
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Criteria to exclude single nucleotide polymorphisms 
(SNPs) were: a minor allele frequency lower than 0.05, a 
call rate lower than 0.95 and a Hardy–Weinberg equilib-
rium cut-off P value lower than 0.001. After quality con-
trol, the final data set included 33,860 SNPs. In this study, 
we used the genomic relationship matrix as an additive 
genetic relationship matrix that was denoted A in this 
paper and computed according to VanRaden [26]:

where pj is the frequency of the second allele at SNP j , 
M is the n× Nsnp matrix ( n is the number of genotyped 
animals and Nsnp is the number of SNPs) and the ele-
ments ( mij ) of M for animal i at SNP j are calculated as 
mij = gij − 2pj , where gij (coded as 0, 1 or 2) is the num-
ber of the second allele of animal i and SNP j.

Simulated data
To validate the performances of REML, GS and NUTS 
for the estimation of variance components, we also gen-
erated a simulated dataset from the genotypes of the 
real PIC pig dataset. Similar to the real data, we used the 
genomic relationship matrix ( A ) as an additive genetic 
relationship matrix. We simulated two quantitative traits 
(trait1 and trait2) by summing up the additive genetic 
effects a and the residuals e . Thus, the vector of phe-
notypes was calculated as y = a + e , where the a and e 
vectors were drawn from the multivariate normal dis-
tributions MVN (0,G0⊗A) and MVN (0,R0⊗I) , respec-
tively; G0 is the n× n additive genetic covariance matrix 
and R0 is the n× n residual covariance matrix for n traits. 
We used the Cholesky decomposition of the covari-
ances G(= G0⊗A) and R(= R0⊗I) to draw samples from 
the multivariate normal distribution. The random addi-
tive genetic effect a was calculated as a = Laza , where 
za ∼ MVN (0, I) and La is the Cholesky factor LaL′a = G ; 
whereas the residual e was calculated as e = Leze , where 
ze ∼ MVN (0, I) and Le is the Cholesky factor LeL′e = R . 
The heritabilities for trait1 and trait2 were set to 0.1 and 
0.5, respectively. As for the real PIC pig data, we defined 
two scenarios with 2314 and 578 animals, respectively. In 
order to simulate correlated traits with a genetic correla-
tion of 0.3 and a residual correlation of 0.1, the variance 
components were set as follows:

(1)A =
MaM

′
a

∑Nsnp

j=1
2pj(1− pj)

,

G0 =

[
1.0 0.67
0.67 5.0

]
,

In the statistical analysis, there are overall mean and 
no fixed effects. For each scenario, 10 replicates were 
simulated.

Statistical model
Following Henderson and Quaas [1], the multi-trait 
mixed linear model for n traits can be written as follows:

where yi is the phenotype for trait i ; βi is a vector of 
fixed effects associated with trait i ; ai is a vector of ran-
dom additive genetic effects associated with trait i ; 
ei is a vector of residuals with trait i ; and Xi and Zi 
denote the incidence matrices relating the observa-
tions to the corresponding fixed and random effects. 
Let y = [y′1, y

′
2, · · · , y

′
n]

′ , β = [β′1, β
′

2, · · · , β
′

n]
′ , 

a = [a′1, a
′
2, · · · , a

′
n]

′ , and e = [e′1, e
′
2, · · · , e

′
n]

′ . Then, 
the mixed model equation for Model (1) can be expressed 
as follows:

where G and R are the covariance matrices associated 
with a and e , respectively. Matrix R requires that each 
animal has either one record for all traits or none at all as 
is the case in our data.

Estimation of variance components by REML and GS
Variance components were estimated using REML and 
GS with the airemlf90 and gibbs2f90 software (available 
at http://​nce.​ads.​uga.​edu/​wiki/), respectively [27]. For 
REML, first we ran expectation maximization (EM)-
REML for all the initial 10 iterations and then switched to 
average information (AI) in the final iteration because the 
EM algorithm is much more stable than the AI algorithm 
and is very robust to poor initial estimates and can thus 
provide a good starting point for the AI algorithm [28]. 
Convergence was assumed when changes in the ratios 
of the corresponding estimates between two consecu-
tive rounds were less than 10−6 . The asymptotic stand-
ard error (SE) was computed following Houle and Meyer 
[29], as implemented in airemllf90.

For GS, the conditional distribution of y , given that the 
parameters are assumed to follow a multivariate normal 
distribution, is as follows:

R0 =

[
9.0 0.67
0.67 5.0

]
.

(2)yi = Xiβi + Ziai + ei, i = 1, 2, · · · , n,

(3)
[
X′R−1X X′R−1Z

Z′R−1X Z′R−1Z+G−1

][
β̂
â

]
=

[
X′R−1y

Z′R−1y

]
,

http://nce.ads.uga.edu/wiki/
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In this study, the fixed effect was not included because 
the phenotypes were already corrected for environmen-
tal factors as described below. The additive genetic effects 
( a ) were assigned multivariate normal distributions with 
a mean vector of zeros:

and the residuals ( e ) were assumed to follow:

For the covariance matrices ( G0 and R0 ), priors were 
derived from the IW distribution:

and

where SA and SE are the n× n scale parameter matrices, 
and vA and vE are the degrees of freedom for the addi-
tive genetic and residual covariances, respectively. The 
IW prior has gained popularity as the conjugate prior for 
multivariate normal distributions, facilitating computa-
tions via GS. In this study, we set SA = I , SE = I , vA = n 
and vE = n . The posterior distribution for each param-
eter was obtained by integration of multivariate density 
functions, considering a single chain with 10,000 itera-
tions. The first 1000 iterations were discarded as burn-in 
and the thinning interval of the chain was 10. Posterior 
mean and posterior standard deviation were calculated as 
the parameter estimates and their SE.

Estimation of variance components by NUTS
In the Stan software, a Bayesian model is implemented 
by defining its likelihood and priors. Stan is an open-
source software, with a publicly available manual online 
(https://​mc-​stan.​org/​users/​docum​entat​ion/). For the 
NUTS approach, we used RStan, which is the R interface 
for Stan.

We used a Lewandowski–Kurowicka–Joe (LKJ) 
distribution as a prior of the correlation. Follow-
ing the separation strategy of Barnard et  al. [30], the 

(4)y|a,R0 ∼ MVN (Za,R0⊗I).

(5)a|G0,A ∼ MVN (0,G0⊗A),

(6)e|R0 ∼ MVN (0,R0⊗I).

(7)

p(G0|vA, SA) ∝ |G0|
− 1

2 (vA+n+1)exp

{
−
1

2
tr
(
G−1
0 S−1

A

)}
,

(8)

p(R0|vE, SE) ∝ |R0|
− 1

2 (vE+n+1)exp

{
−
1

2
tr
(
R−1
0 S−1

E

)}
,

covariance matrices ( G0 and R0 ) were decomposed as 
G0 = �A�A�A and R0 = �E�E�E , where �A and �E are 
the n× n diagonal matrices with the genetic and residual 
standard deviations, and �A and �E are the n× n genetic 
and residual correlation matrices, respectively. For the 
correlation matrices ( �A and �E ), priors were derived 
from the LKJ distribution with one positive scalar shape 
parameter η [31]: �A ∼ LKJ (η) and �E ∼ LKJ (η) . Here, 
we set the shape parameter for the genetic correlation as 
equal to that for the residual correlation. The posterior 
density function of the LKJ distribution for �A is:

and is proportional to the determinant of the correlation 
matrix raised to the η − 1 power: p(�A|η) ∝ |�A|

η−1 . 
Thus, the shape parameter η tunes the strength of the 
correlations; η = 1 leads to a uniform distribution on cor-
relation matrices, while the magnitude of the correlations 
between components decreases as η → ∞ . In contrast, 
0 < η < 1 leads to low correlations. In the current study, 
the value of η was set to 1 as the base value. Moreover, we 
investigated the effect of the scalar shape parameter η of 
the LKJ distribution. In scenario 1, the values of η were 
set to 0.25, 0.5, 1.0, 2.0 and 4.0.

For efficient calculation, we used Cholesky fac-
tor parameters for variance components. Let LA be the 
Cholesky factor of A : A = LAL

′
A . Let L�A

 and L�E be 
the Cholesky factors of �A and �E : �A = L�A

L′�A
 and 

�E = L�E
L′�E

 . Thus, the covariance matrices were rede-
fined as: G0 = �AL�A

L′�A
�A and R0 = �EL�E

L′�E
�E . 

Stan provides an implicit parameterization of the LKJ 
correlation matrix density in terms of its Cholesky fac-
tor. For the Cholesky factors L�A

 and L�E
 derived from the 

LKJ Cholesky distribution: L�A
∼ LKJCholesky(η) and 

L�E
∼ LKJCholesky(η). For example, L�A

∼ LKJCholesky(η) 
implies L�A

L′�A
∼ LKJ (η) . The priors of the diago-

nals of the genetic and residual standard deviations were 
assigned Cauchy distributions: �A ∼ Cauchy(0, 5) 
and �E ∼ Cauchy(0, 5) . Hence, the random additive 
effects a was reshaped as a = LAza

(
�AL

′
�A

)
 . When 

za ∼ MVN (0, I):

Stan provides an implicit parameterization of the 
multivariate normal density in terms of its Cholesky 
factor. The conditional distribution of y follows a multi-
variate normal Cholesky distribution:

(9)p(�A|η) =

[
2

n−1∑

i=1

{2(η − 1)+ n− i}(n− i)

n−1∏

i=1

{
Beta

(
η +

(n− i − 1)

2
, η +

(n− i − 1)

2

)}n−i
]
|�A|

η−1,

(10)a|LA,�A,L�A
, za ∼ MVN (0,G0⊗A).

(11)
y|LA,�A,�E,L�A

,L�E
, za ∼ MVNCholesky

(
Za,�EL�E

)
,

https://mc-stan.org/users/documentation/
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which implies that y|LA,�A,�E,L�A
,L�E

, za ∼ M

VN (Za,R0⊗I) . The RStan code for NUTS with an LKJ 
prior in RStan is described in Additional file 1. In addi-
tion, we used the IW prior for NUTS to investigate 
whether either the sampling method or the prior, or 
both, contribute to the performance for the estimation 
of variance components. The RStan code for NUTS 
with the IW prior in RStan is described in Additional 
file  2. For NUTS, 2000 iterations were simulated to 
obtain posterior distributions and the first 1000 itera-
tions were discarded as the warm-up phase.

Because for all but the most trivial model cases there 
is no analytical solution, NUTS uses a process called 
the leapfrog integration to draw a sketch of the poste-
rior probability surface. The failures in this integrator 
are identified by “divergent transitions”, which basically 
means that the sampler is no longer following the sur-
face of the model correctly [32]. To check for the pres-
ence of divergent transitions, after the warm-up phase, 
we investigated the two important parameters that 
affect divergent transitions: the number of steps and 
the tree depth. In Stan, the limits for number of steps 
and tree depth were set to 1000 and 10, respectively.

Criteria for comparing methods
To investigate the accuracy of the estimation of vari-
ance components using the simulated data, we calculated 
two indices: the root mean square error (RMSE) and the 

mean absolute error (MAE). These indices of the estima-
tor θ̂  were calculated as follows:

where θ̂  is the estimated variance component obtained in 
each replication, θ is the true value used for the simula-
tion and q is the number of replicates. To avoid the differ-
ences of scales between scenarios, the relative RMSE and 
MAE were set to 1.0 for NUTS. Therefore, the relative 
RMSE and MAE were calculated by dividing the RMSE 
and MAE values by those for NUTS.

Accuracy of estimated breeding values
The simulated population was divided into a training and 
a test population to investigate the accuracy of estimated 
breeding values. The training and test populations con-
sisted of 2000 and 314 animals in Scenario 1 and of 500 
and 78 animals in Scenario 2, respectively. The test pop-
ulation was randomly selected from the last generation. 
The training population had both phenotypic and geno-
typic values whereas the test population had only geno-
typic values. The accuracies of estimated breeding values 

(12)RMSE(θ) =

√√√√
q∑

i=1

1

q

(
θ̂i − θi

)2
,

(13)MAE(θ) =

q∑

i=1

1

q

∣∣∣
(
θ̂i − θi

)∣∣∣.

Table 1  Estimated variance components, heritability and correlations in Scenario 1 using the simulated data

NUTS No-U-Turn sampler, LKJ Lewandowski-Kurowicka-Joe, IW inverse-Wishart, GS Gibbs sampling, REML restricted maximum likelihood, SE standard error

σ 2
a  : additive genetic variance, σa : additive genetic covariance, σ 2

e  : residual variance, σe : residual covariance, h2 : heritability, ra : additive genetic correlation, re : residual 
correlation

Parameter True value NUTS (LKJ prior) NUTS (IW prior) GS REML

Mean SE Mean SE Mean SE Estimate SE

Additive genetic (co)variances

 σ 2
a (trait1) 1.05 1.11 0.26 1.29 0.21 1.24 0.30 1.19 0.27

 σ 2
a (trait2) 5.14 5.04 0.44 5.02 0.48 5.47 0.47 5.37 0.49

 σa(trait1, trait2) 0.70 0.64 0.24 0.61 0.31 0.64 0.26 0.65 0.27

Residual (co)variances

 σ 2
e (trait1) 8.99 8.93 0.32 8.82 0.38 8.87 0.32 8.85 0.32

 σ 2
e (trait2) 5.03 4.96 0.22 4.96 0.26 4.70 0.24 4.70 0.24

 σe(trait1, trait2) 0.65 0.66 0.19 0.67 0.20 0.66 0.26 0.64 0.20

Heritabilities

 h2(trait1) 0.11 0.11 0.03 0.13 0.02 0.12 0.03 0.12 0.03

 h2(trait2) 0.50 0.50 0.03 0.50 0.03 0.54 0.03 0.53 0.03

Additive genetic correlations

 ra(trait1, trait2) 0.30 0.26 0.10 0.24 0.10 0.24 0.10 0.26 0.11

Residual correlations

 re(trait1, trait2) 0.10 0.10 0.03 0.10 0.03 0.10 0.03 0.10 0.03
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were calculated from the Pearson’s correlations between 
the true and the estimated breeding values in the test 
population. In addition, we investigated the RMSE of 
estimated breeding values in the test population.

Convergence diagnostics for MCMC
Establishing convergence of MCMC is one of the most 
important steps of Bayesian analysis. We used two 
MCMC diagnostic tools: the Gelman and Rubin’s con-
vergence diagnostic [33] and the Geweke’s convergence 
diagnostic [34], which rely on multiple chains starting at 
initial points that are drawn from a density that is over-
dispersed with respect to the target density. Using par-
allel chains, the convergence diagnostic ( ̂R ) is calculated 
by comparing the within- and between-chain variances. 
A value of R̂ that is much higher than 1 indicates a lack 
of convergence. A cutoff value of 1.1 is generally used by 
MCMC practitioners, as recommended by Gelman et al. 
[35]. In this study, values of R̂ were calculated from three 
parallel chains. Geweke’s convergence diagnostic is based 
on a test for equality of the means of the first and last 
parts of a Markov chain. The test statistic is a standard 
z-score, which is calculated under the assumption that 

the two parts of the chain are asymptotically independ-
ent. The absolute value of the z-score exceeding 1.96 (5% 
cutoff point of the standard normal distribution) indi-
cates a lack of convergence. We calculated the z-scores 
using the first 10% and the last 50% as two parts of the 
Markov chain. The two convergence diagnostic statistics 
were calculated using the R “coda” package [36].

Results
Comparison of parameter estimates
Compared to GS and REML, the average estimates 
of genetic variances and residual variances for trait2 
obtained using NUTS with an LKJ prior were close to the 
true values in Scenario 1 (Table  1), but there was little 
difference between the estimates for all methods. The rel-
ative RMSE and MAE of the residual variances and herit-
abilities for trait2 were larger using GS and REML than 
those using NUTS with the LKJ and IW priors (Fig. 1). In 
Scenario 2, all the estimates obtained using NUTS with 
an LKJ prior were close to the true values whereas, in 
contrast to Scenario 1, the estimates with the other meth-
ods greatly differed from the true values (Table 2). For all 
the estimates, the relative RMSE and MAE using NUTS 
with an LKJ prior were smaller than those with GS and 
REML (Fig. 2). The relative RMSE and MAE of the esti-
mates for trait1 using NUTS with an IW prior were quite 
large. The relative RMSE and MAE of some the param-
eters for the traits with a low heritability were high when 
η = 0.25, whereas there were no differences in relative 
RMSE and MAE when η ≥ 0.5 (Fig. 3).

The parameter estimates for the real PIC pig data 
obtained with the trivariate animal models using NUTS, 
GS and REML in Scenarios 1 and 2 are in Tables 3 and 
4, respectively. In Scenario 1, the estimates of the genetic 
correlations between T1 and T2, and between T1 and T3, 
differed between the three methods whereas the other 
parameter estimates were almost the same. In Scenario 
2, the differences in the estimates of genetic correla-
tions were larger than those in Scenario 1. In particular, 
the estimates of the genetic correlation between T1 and 
T2 and their SE using GS and REML were quite high 
(Table 4). The estimates of the genetic variance and her-
itability using NUTS with an IW prior were higher than 
those with the other methods. The posterior distribu-
tions of GS for the genetic correlations between T1 and 
T2, and between T1 and T3, were skewed compared to 
those of NUTS (Fig. 4).

There were no differences in accuracies and RMSE of 
estimated breeding values between the four methods in 
Scenario 1. In Scenario 2, the accuracies of estimated 
breeding values for trait1 using NUTS with the LKJ and 
IW priors were 14.8% and 11.1% higher than those using 
GS and REML, respectively (Table 5). The RMSE of trait2 
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Fig. 1  Plots of the relative root mean square error (RMSE) and 
mean absolute error (MAE) for all estimates in Scenario 1 using the 
simulated data. a1 and a2 are the additive genetic effects of trait1 
and trait2, respectively; and e1 and e2 are the residuals of trait1 and 
trait2, respectively. var variance, cov covariance, h2 heritability, cor 
correlation
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using NUTS with the LKJ and IW priors were smaller 
than those using GS and REML.

Performances of MCMC sampling using NUTS and GS
The R̂ values of the Gelman and Rubin’s R convergence 
diagnostics and the z-scores of Geweke’s convergence 
diagnostics in Scenarios 1 and 2 using simulated and real 
PIC pig data are in Tables S1, S2, S3 and S4, respectively, 
(see Additional file 3: Table S1, Additional file 4: Table S2, 
Additional file 5: Table S3 and Additional file 6: Table S4). 
The convergences of the MCMC samplings using NUTS 
with the LKJ prior were established. Using NUTS with 
the IW prior, the R̂ values were smaller than the value of 
1.1 set as criterion, but the z-scores for the five param-
eters in Scenario 2 using simulated data exceeded the cri-
terion value (1.96). Using GS, some of the R̂ values and 
the z-scores exceeded the criterion values with both the 
simulated and real PIC pig data.

There were no divergent transitions in both the simu-
lated data and real PIC pig data (see Additional file  7: 
Table  S5). The numbers of leapfrog steps ranged from 
36.7 to 63.7 and the tree depths ranged from 5.0 to 
5.6. These two parameters were below the limit values 
defined in Stan.

Computing time
Total computing times for REML were much shorter 
than those for NUTS and GS (See Additional file  8: 

Table 2  Estimated variance components, heritability and correlations in Scenario 2 using the simulated data

NUTS No-U-Turn sampler, LKJ Lewandowski-Kurowicka-Joe, IW inverse-Wishart, GS Gibbs sampling, REML restricted maximum likelihood, SE standard error

σ 2
a  : additive genetic variance, σa : additive genetic covariance, σ 2

e  : residual variance, σe : residual covariance, h2 : heritability, ra : additive genetic correlation, re : residual 
correlation

Parameter True value NUTS (LKJ prior) NUTS (IW prior) GS REML

Mean SE Mean SE Mean SE Estimate SE

Additive genetic (co)variances

 σ 2
a (trait1) 0.98 1.00 0.36 1.79 0.20 1.29 0.35 1.06 0.44

 σ 2
a (trait2) 4.89 5.32 1.48 5.37 1.40 5.84 1.46 5.54 1.49

 σa(trait1, trait2) 0.59 0.57 0.29 0.72 0.35 0.86 0.46 0.75 0.47

Residual (co)variances

 σ 2
e (trait1) 9.06 9.06 0.44 8.45 0.39 8.90 0.45 8.94 0.50

 σ 2
e (trait2) 5.02 4.82 0.59 4.78 0.59 4.61 0.63 4.60 0.66

 σe(trait1, trait2) 0.84 0.88 0.42 0.82 0.41 0.75 0.46 0.80 0.46

Heritabilities

 h2(trait1) 0.10 0.10 0.03 0.17 0.02 0.13 0.03 0.11 0.04

 h2(trait2) 0.50 0.52 0.08 0.52 0.08 0.55 0.08 0.54 0.09

Additive genetic correlations

 ra(trait1, trait2) 0.27 0.31 0.20 0.24 0.12 0.34 0.21 0.40 0.33

Residual correlations

 re(trait1, trait2) 0.12 0.13 0.06 0.13 0.07 0.12 0.07 0.13 0.07
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Fig. 2  Plots of the relative root mean square error (RMSE) and 
mean absolute error (MAE) for all estimates in Scenario 2 using the 
simulated data. a1 and a2 are the additive genetic effects of trait1 
and trait2, respectively; and e1 and e2 are the residuals of trait1 and 
trait2, respectively. var variance, cov covariance, h2 heritability, cor 
correlation
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Table  S6). The computing times per MCMC iteration 
for NUTS were longer than those for GS in all cases. The 
total computing times of 2000 iterations for NUTS were 
similar to those of 10,000 iterations for GS in Scenario 1 
for both the simulated and real PIC pig data. In Scenario 
2, the total computing times for NUTS with the LKJ and 
IW priors were 2.5 times longer compared to those for 
GS.

Discussion
Multi-trait analysis using mixed models tends to be 
more powerful and to provide more accurate estimates 
than single-trait analysis because the former method can 
take the underlying correlation structure that is present 
in multi-trait data into account. Thus, the estimation of 
(co)variance and correlation parameters in multi-trait 
analysis is an important topic in animal breeding pro-
grams. However, Bayesian and non-Bayesian inferences 

for multi-trait mixed models are complex. In this study, 
we focused on the NUTS approach and implemented 
NUTS with LKJ and IW priors for a multi-trait animal 
model using the recently developed software Stan, and 
compared the results with the commonly used REML 
and GS methods. The results obtained with the simulated 
and real pig data indicate that the estimation of genetic 
parameters for a multi-trait animal model is improved 
by using NUTS with an LKJ prior, particularly when 
the population size is small. Moreover, for real pig data, 
NUTS can provide the unimodal and bilaterally sym-
metrical posterior distributions of genetic correlations 
regardless of the level of the heritability.

The NUTS approach has two advantages over GS. 
First, the NUTS algorithm is extremely effective for the 
MCMC sampling process because it can generate sam-
ples from a wide range of parameter spaces with a high 
level of acceptance probability and automatic tuning of 
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the hyperparameters of HMC. Nishio and Arakawa [22] 
demonstrated how to use Stan for a single-trait animal 
model and showed that the mixing properties of Stan 
were better than the GS with no tuning. Second, conju-
gate priors are not necessary for NUTS, which opens up 
the possibility of other potentially beneficial priors. The 
choice of prior is important and can influence the pos-
terior, particularly when the amount of data is small. A 
common choice is a conjugate prior, where both the prior 
and the posterior have the same distributional form. Typ-
ically, a conjugate prior is chosen to provide analytical 
solutions for the posterior and is a requirement for GS. 
The natural conjugate prior for a multivariate normal dis-
tribution is the IW distribution [28]. However, IW priors 
impose a degree of informativity and the posterior infer-
ences are sensitive to the choice of hyperparameters [37] 
and there is an a priori dependence between correlations 

and variances [38]. These characteristics of the prior fre-
quently result in biased estimates in the analysis of small 
datasets. In this study, we used the LKJ distributions as 
priors of correlations in the NUTS approach. This is one 
of the separation strategies in which the standard devia-
tions and correlations are modeled independently and 
then combined to form a prior on the covariance matrix 
[30]. Alvarez et al. [39] showed that the separation strat-
egy resulted in a better inference property than the use of 
an IW prior. In this study, we compared the performance 
of NUTS with LKJ and IW priors. When the population 
size was small, the RMSE and MAE of trait1 (trait with 
a low heritability) using NUTS with an IW prior were 
notably larger than those using NUTS with an LKJ prior. 
In addition, Geweke’s convergence diagnostic (z-scores) 
using NUTS with an IW prior were larger than the cri-
terion value. These results indicate that the performance 

Table 3  Estimated variance components, heritability and correlations in Scenario 1 using the real PIC pig data

NUTS No-U-Turn sampler, LKJ Lewandowski-Kurowicka-Joe, IW inverse-Wishart, GS Gibbs sampling, REML restricted maximum likelihood, SE standard error

σ 2
a  : additive genetic variance, σa : additive genetic covariance, σ 2

e  : residual variance, σe : residual covariance, h2 : heritability, ra : additive genetic correlation, re : residual 
correlation

Parameter NUTS (LKJ prior) NUTS (IW prior) GS REML

Mean SE Mean SE Mean SE Estimate SE

Additive (co)variances

 σ 2
a (T1) 0.03 0.02 0.07 0.02 0.05 0.02 0.04 0.02

 σ 2
a (T2) 0.23 0.03 0.24 0.03 0.26 0.03 0.25 0.03

 σ 2
a (T3) 0.24 0.04 0.25 0.04 0.27 0.04 0.26 0.04

 σa(T1, T2) 0.02 0.01 0.02 0.05 0.02 0.02 0.02 0.02

 σa(T1, T3) 0.02 0.02 0.03 0.07 0.03 0.02 0.03 0.02

 σa(T2, T3) 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02

Residual (co)variances

 σ 2
e (T1) 0.97 0.03 0.94 0.03 0.96 0.03 0.96 0.03

 σ 2
e (T2) 0.62 0.02 0.62 0.02 0.61 0.02 0.61 0.02

 σ 2
e (T3) 0.75 0.03 0.75 0.03 0.73 0.03 0.73 0.03

 σe(T1, T2) 0.01 0.02 0.02 0.02 0.01 0.02 0.01 0.02

 σe(T1, T3) 0.00 0.04 0.00 0.04 0.00 0.03 0.00 0.02

 σe(T2, T3) 0.02 0.02 0.01 0.05 0.01 0.02 0.01 0.02

Heritabilities

 h2(T1) 0.03 0.02 0.07 0.02 0.05 0.02 0.04 0.02

 h2(T2) 0.27 0.03 0.27 0.03 0.30 0.03 0.29 0.03

 h2(T3) 0.24 0.03 0.25 0.03 0.27 0.03 0.26 0.03

Additive genetic correlations

 ra(T1, T2) 0.24 0.17 0.12 0.12 0.19 0.14 0.25 0.25

 ra(T1, T3) 0.27 0.22 0.21 0.15 0.26 0.17 0.37 0.34

 ra(T2, T3) 0.13 0.09 0.14 0.03 0.12 0.09 0.14 0.10

Residual genetic correlations

 re(T1, T2) 0.02 0.02 0.02 0.03 0.02 0.03 0.02 0.03

 re(T1, T3) 0.00 0.04 0.00 0.04 0.00 0.05 0.00 0.03

 re(T2, T3) 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03
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of NUTS with an LKJ prior was superior to that of NUTS 
with an IW prior for estimating variance components 
and MCMC sampling convergence.

For an LKJ distribution, one positive scalar hyperpa-
rameter ( η ) tunes the strength of the correlations. In this 
study, we varied the values of η from 0.25 to 4.0 in the 
simulation Scenario 1. The effect of η on the performance 
of NUTS with an LKJ prior was negligible except when 
the values of η were very small. Our results indicate that 
values of η exceeding 0.5 are preferable. The Stan manual 
also recommends η ≥ 1.

Few studies have compared the performance of REML 
and GS for the estimation of variance components in a 
multi-trait analysis. In the animal breeding literature, 
Van Tassel and Van Vleck [19] reported that the posterior 
means of GS and REML estimates for additive genetic 
variances and correlations were quite similar for traits 
with a high heritability. In the plant breeding literature, 

Waldmann and Ericsson [40] reported that REML esti-
mates were accurate and that the posterior means of GS 
were overestimated based on the results of two simulated 
traits with heritabilities of 0.1 and 0.5, respectively. These 
results are in concordance with those of our study: the 
estimates of the additive genetic variances and heritabili-
ties obtained with GS were overestimated when using 
simulated data, particularly when the population size 
was small. However, in the simulation study of Mathew 
et al. [41], GS provided better estimates for the additive 
genetic correlations than the REML approach with a 
dataset for traits with a low heritability. The performance 
of GS could be strongly influenced by a prior with a low 
heritability. Thus, the choices of inference methods and 
priors are complex for multi-trait analyses and could be 
solved by using the NUTS algorithm with an LKJ prior as 
shown here.

Table 4  Estimated variance components, heritability and correlations in Scenario 2 using the real PIC pig data

NUTS No-U-Turn sampler, LKJ Lewandowski-Kurowicka-Joe, IW inverse-Wishart, GS Gibbs sampling, REML restricted maximum likelihood, SE standard error

σ 2
a  : additive genetic variance, σa : additive genetic covariance, σ 2

e  : residual variance, σe : residual covariance, h2 : heritability, ra : additive genetic correlation, re : residual 
correlation

Parameter NUTS (LKJ prior) NUTS (IW prior) GS REML

Mean SE Mean SE Mean SE Estimate SE

Additive (co)variances

 σ 2
a (T1) 0.02 0.01 0.13 0.04 0.01 0.01 0.02 0.01

 σ 2
a (T2) 0.34 0.07 0.34 0.07 0.38 0.08 0.28 0.06

 σ 2
a (T3) 0.28 0.08 0.30 0.08 0.35 0.09 0.31 0.09

 σa(T1, T2) 0.01 0.02 0.01 0.09 0.04 0.03 0.04 0.03

 σa(T1, T3) 0.01 0.02 0.04 0.04 0.02 0.04 0.06 0.04

 σa(T2, T3) 0.05 0.05 0.05 0.05 0.06 0.06 0.06 0.06

Residual (co)variances

 σ 2
e (T1) 1.04 0.06 0.96 0.07 1.05 0.07 1.04 0.06

 σ 2
e (T2) 0.60 0.06 0.59 0.06 0.58 0.06 0.69 0.04

 σ 2
e (T3) 0.67 0.07 0.65 0.07 0.64 0.07 0.65 0.07

 σe(T1, T2) 0.04 0.04 0.04 0.05 0.02 0.04 0.02 0.05

 σe(T1, T3) 0.00 0.04 − 0.02 0.08 0.00 0.05 − 0.07 0.04

 σe(T2, T3) − 0.06 0.05 -0.06 0.02 − 0.07 0.05 − 0.07 0.05

Heritabilities

 h2(T1) 0.02 0.02 0.12 0.04 0.01 0.01 0.01 0.01

 h2(T2) 0.36 0.06 0.37 0.06 0.39 0.07 0.28 0.05

 h2(T3) 0.29 0.07 0.32 0.08 0.35 0.08 0.32 0.08

Additive genetic correlations

 ra(T1, T2) 0.13 0.32 0.05 0.20 0.62 0.44 0.63 0.53

 ra(T1, T3) 0.12 0.36 0.19 0.23 0.32 0.48 0.88 0.53

 ra(T2, T3) 0.15 0.16 0.16 0.17 0.16 0.17 0.21 0.21

Residual genetic correlations

 re(T1, T2) 0.05 0.05 0.05 0.06 0.02 0.06 0.02 0.05

 re(T1, T3) 0.00 0.05 − 0.02 0.11 − 0.02 0.09 − 0.09 0.05

 re(T2, T3) − 0.09 0.06 − 0.10 0.04 − 0.11 0.08 − 0.12 0.08
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The predictions of breeding values by NUTS were 
superior to those by GS and REML when the popula-
tion size was small. In animal breeding, there are cases 
where small datasets need to be analyzed, e.g. for rare 
breeds that are maintained in small population sizes. In 
Japan, 18 local public animal experimental stations have 
performed selection experiments in closed small popu-
lations for several generations using estimated breed-
ing values. Moreover, for many difficult-to-measure or 
expensive traits, such as methane emission, heat toler-
ance, individual feed intake or immune response, NUTS 
is a promising sampling method for multi-trait analysis.

In this study, we used genomic information to gener-
ate the relationship matrix. The MCMC implementation 
of the animal model can become extremely slow when 
using a genomic relationship matrix instead of a pedigree-
based relationship matrix. In order to decrease computing 
requirements, Villemereuil [42] suggested two promising 
approaches: Integrated Nested Laplace Approximations 
(INLA) [43] and HMC. Mathew et al. [41] showed that the 
genetic parameter estimates for the INLA approach and 
the MCMC method were almost the same in a multi-trait 
animal model when relationship matrices were dense. They 
concluded that the INLA approach could be a fast alter-
native to MCMC methods for multi-trait animal models. 
Our study showed the computing times of NUTS derived 
from HMC. The total and per iteration computing times of 
NUTS were longer than those of GS with both the simu-
lated and real PIC pig data when the sample size was large. 
Conversely, the convergence performance of NUTS with 
an LKJ prior was superior to that of GS because the con-
vergence conditions were sufficiently established for both 
the Gelman and Rubin’s R convergence and the Geweke’s 
convergence diagnostics in all scenarios. In addition, the 
effective sample size for NUTS is much larger than that 
for GS [22]. These results indicate that the computing time 
of NUTS with an LKJ prior could be reduced by decreas-
ing the number of MCMC iterations. Recently, Arakawa 
et  al. [23] developed the HMC method with optimized 
tunings of hyperparameters in a single-trait animal model. 
This method outperformed GS in terms of sampling from 
a wider range of parameter spaces. The computing time 
for their method was similar to that for GS. Thus, further 
study is needed to apply this method to multi-trait animal 
models.

Developing a program for NUTS is challenging because 
of its very complex algorithm; however, this can be over-
come by using Stan, which has a simple programming 
language. In this study, we used Stan because a Bayesian 
model is implemented by defining its likelihood and pri-
ors. Recently, Burkner [44] developed the “brms” pack-
age, which allows R users to easily specify a wide range 
of Bayesian single- and multi-level models that are fitted 
with Stan. This package allows the writing of models in 
a relatively straightforward R syntax. Thus, it might be 
possible to write the program code of a multi-trait animal 
model easily using brms.

Conclusions
In this paper, we applied the NUTS approach with LKJ 
and IW priors to a multi-trait animal model and showed 
its performance for estimating variance components and 
breeding values. The simulated data showed that, com-
pared to NUTS with an IW prior, GS and REML, most 
of the estimates of genetic parameters obtained by using 

a

b

c

0

0.5

1

1.5

2

2.5

3

3.5

4

-0.5 0 0.5 1 1.5

P
o

st
er

io
r 

d
en

si
ty

Genetic correlation

NUTS(LKJ prior)

NUTS(IW prior)

GS

0

0.5

1

1.5

2

2.5

3

-1 -0.5 0 0.5 1 1.5

P
o

st
er

io
r 

d
en

si
ty

Genetic correlation

NUTS(LKJ prior)

NUTS(IW prior)

GS

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

-0.4 -0.2 0 0.2 0.4 0.6

P
o

st
er

io
r 

d
en

si
ty

Genetic correlation

NUTS(LKJ prior)

NUTS(IW prior)

GS

Fig. 4  Posterior density plots for genetic correlations using the 
No-U-Turn Sampler (NUTS) with an LKJ prior (red line), NUTS with an 
IW prior (blue line) and the Gibbs sampler (GS) (black line) in Scenario 
1 using the real PIC pig data. a T1 and T2; b T1 and T3; and c T2 and T3
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NUTS with an LKJ prior were closer to the true values 
and RMSE and MAE were smaller. These tendencies were 
remarkable when the population size was small. The con-
vergence performances of MCMC samplings using NUTS 
with an LKJ prior were superior to those of NUTS with an 
IW prior and to GS. Moreover, the accuracies of estimated 
breeding values for NUTS with LKJ and IW priors were 
higher than those for GS and REML when the population 
size was small. The real PIC pig data showed that the effect 
of population size on estimating genetic correlations using 
NUTS with an LKJ prior was smaller than that using GS 
and REML. For both the simulated and real PIC pig data, 
the genetic variances and heritabilities using NUTS with 
an IW prior were overestimated for traits with a low her-
itability when the population size was small. Developing 
a NUTS program for a multi-trait animal model is chal-
lenging because of its very complex algorithm but this can 
be overcome by using Stan and its simple programming 
language. However, application of NUTS to large data-
sets requires further study because the NUTS algorithm 
requires much computing time. Therefore, we conclude 
that NUTS with an LKJ prior could be an alternative sam-
pling method for multi-trait analysis in animal breeding, 
particularly when the population size is small.
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Table 5  Accuracy (correlation coefficient) and root mean square error (RMSE) of estimated breeding value (and standard deviation) 
using the simulated data

NUTS No-U-Turn sampler, LKJ Lewandowski-Kurowicka-Joe, IW inverse-Wishart, GS Gibbs sampling, REML restricted maximum likelihood

NUTS (LJK prior) NUTS (IW prior) GS  REML

Correlation coefficient Scenario 1

 Trait1 0.48 (0.08) 0.49 (0.08) 0.48 (0.08) 0.49 (0.08)

 Trait2 0.72 (0.06) 0.72 (0.06) 0.73 (0.06) 0.73 (0.06)

Scenario 2

 Trait1 0.27 (0.11) 0.27 (0.11) 0.23 (0.13) 0.24 (0.11)

 Trait2 0.51 (0.07) 0.50 (0.07) 0.45 (0.13) 0.50 (0.07)

RMSE Scenario 1

 Trait1 0.88 (0.05) 0.88 (0.05) 0.88 (0.05) 0.88 (0.05)

 Trait 2 1.55 (0.07) 1.57 (0.8) 1.55 (0.07) 1.55 (0.08)

Scenario 2

 Trait1 0.96 (0.10) 0.97 (0.12) 0.97 (0.07) 0.96 (0.08)

 Trait2 1.89 (0.20) 1.89 (0.22) 1.96 (0.27) 1.94 (0.30)
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