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Abstract: In the fault monitoring of rotating machinery, the vibration signal of the bearing and gear
in a complex operating environment has poor stationarity and high noise. How to accurately and
efficiently identify various fault categories is a major challenge in rotary fault diagnosis. Most of
the existing methods only analyze the single channel vibration signal and do not comprehensively
consider the multi-channel vibration signal. Therefore, this paper presents Refined Composite
Multivariate Multiscale Fluctuation Dispersion Entropy (RCMMFDE), a method which extracts
the recognition information of multi-channel signals with different scale factors, and the refined
composite analysis ensures the recognition stability. The simulation results show that this method has
the characteristics of low sensitivity to signal length and strong anti-noise ability. At the same time,
combined with Joint Mutual Information Maximisation (JMIM) and support vector machine (SVM),
RCMMFDE-JMIM-SVM fault diagnosis method has been proposed. This method uses RCMMFDE
to extract the state characteristics of the multiple vibration signals of the rotary machine, and then
uses the JMIM method to extract the sensitive characteristics. Finally, different states of the rotary
machine are classified by SVM. The validity of the method is verified by the composite gear fault data
set and bearing fault data set. The diagnostic accuracy of the method is 99.25% and 100.00%. The
experimental results show that RCMMFDE-JMIM-SVM can effectively recognize multiple signals.

Keywords: RCMMFDE; JMIM; rotating machinery; fault diagnosis

1. Introduction

Rotating machinery plays an important role in the modern industry with a complex
dynamic system. During its operation, its bearings and gears may fail due to fatigue, wear and
corrosion. Due to the influence of friction, load and impact, its vibration signal often appears
unsteady and nonlinear characteristics [1–3]. Therefore, a variety of nonlinear signal analysis
methods have been widely used in bearing fault diagnosis. Due to its unique advantages
in feature extraction, more and more attention has been paid to entropy by researchers in
ever-increasing fields, and a series of research achievements have been made [4–6].

Yan et al. used Approximate Entropy (APE) [7] to extract bearing fault feature infor-
mation, and the results showed that this method could effectively extract fault feature, but
APE had poor stability and slow calculation speed. Han used sample entropy (SE) [8,9]
for bearing fault diagnosis, but this method was easily affected by abrupt signal. Azami
proposed dispersion entropy (DE) [10] to quantify the regularity of the time series. This
algorithm is fast in calculation and less affected by mutation signals. Rostaghi identified
the status of rolling bearing and gear by DE [11], and the results showed that the status
representation of rotating machinery by DE was more stable. Subsequently, Azami et al.
proposed the fluctuation dispersion entropy (FDE) [12], which considered the fluctuation of
time series. FDE only describes the complexity of a nonlinear time series on a single scale,
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resulting in the loss of a lot of important information. Therefore, Azami et al. proposed
multi-scale fluctuation dispersion entropy (MFDE) [13] by extending FDE at multiple scales.
To conquer the shortcomings of the coarsening method in the multi-channel signals for
MFDE, On the basis of MFDE, GAN et al. introduced the coarse-grained method and
proposed the composite multi-scale wave dispersion entropy (CMFDE) [14], proving that
the sliding coarse-grained method based on CMFDE has better entropy stability. Zhou et al.
proposed that refined complex multi-scale fluctuation dispersion entropy (RCMFDE) [15]
is stronger and more stable in extracting features, and RCMDE has a smaller dependence
on the length of time series. Azami et al. proposed multi-variable multi-scale dispersion
entropy (MMDE) [16] in order to quantify the complexity of multivariate time series. In
order to analyze data consisting of more than one-time series, Ahmed et al. proposed
multi-variable multi-scale sample entropy (mvMSE) [17]. mvMSE considered both time
domain and space domain, reflecting the complexity of multi-channel signals.

In order to solve the shortage of RCMFDE in multivariable time series and the poor
stability of mvMSE in feature extraction, in this paper, a refined composite multivariate
multiscale fluctuation dispersion entropy is proposed. This method synthesizes the infor-
mation of multiple coarse-grained sequences in each channel of the multi-variable time
series, and uses a refine composite method to make it less dependent on the length of the
time series and more stable and reliable in feature extraction. Meanwhile, a fault diagno-
sis method based on Refined Composite Multivariate Multiscale Fluctuation Dispersion
Entropy, Joint Mutual Information Maximisation, and Support Vector Machine (RCMMFD-
JMIM-SVM) is proposed. In this method, RCMMFDE extracts the multi-variable time-series
information of rotating machinery faults, uses JMIM to extract sensitive features, reduce
feature dimension, and reduce the time of fault diagnosis. Finally, the SVM classifier is
used to identify the fault state of rotating machinery. Two experimental results show that
this method can achieve good recognition accuracy.

The rest of this paper is organized as follows. Section 2 introduces the refined complex
multi-variable multi-scale fluctuation dispersion entropy method, the correlation character-
istic analysis of this method, and introduces the RCMMFDE-JMIM-SVM fault diagnosis
method. Section 3 introduces the diagnosis results of RCMMFDE-JMIM-SVM in different
rotating machinery fault data sets and discusses relevant results. Finally, the conclusion is
drawn in Section 4.

2. Refined Composite Multivariate Multiscale Fluctuation Dispersion Entropy
2.1. Multivariate Fluctuating Dispersion Entropy (MFDE)

In order to quantify the complexity of multivariate time series, based on the mul-
tivariate embedding theory, the fluctuation dispersion entropy (FDE) was extended to
the multivariate fluctuation dispersion entropy (MFDE) [18]. For a multiple time series,
X =

{
xk,i
}i=1,2,...,N

k=1,2,...,n . The detailed steps of MFDE of X are as follows:

(1) The multivariate time series X =
{

xk,i
}i=1,2,...,N

k=1,2,...,n is mapped to Y =
{

yk,i
}i=1,2,...,N

k=1,2,...,n
using a normal distribution function

yk,i =
1

σk
√

2π

xk,i∫
−∞

e
− t−µk

2σ2
k dt (1)

where µ is the expected value and σ2 is the variance.
(2) The linear transformation maps Y to Z =

{
zk,i
}i=1,2,...,N

k=1,2,...,n . 0 ≤ zk,i ≤ c

zk,i = int(c·yk,i + 0.5) (2)

where c is an integer and int(·) represents the rounding function. According to the
multi-variable embedding theory, the embedding vector Gm(j) is calculated by:
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Gm(j) = [z1,j, z1,j+τ1 , . . . , z1,j+(m1−1)τ1
,

z2,j, z2,j+τ2 , . . . , z2,j+(m2−1)τ2
,

. . . ,

zn,j, zn,j+τn , . . . , zn,j+(mn−1)τn ]

where j = 1, 2, . . . , N − (m− 1)τ. The embedding dimension vector m = [m1, m2, . . . ,
mn], The delay coefficient vector τ = [τ1, τ2, . . . , τn]. Convert Gm(j) to Fm(j),

Fm(j) =
{

z1,j+τ1 − z1,j + c, . . . , z1,j+(m1−1)τ1
− z1,j+(m1−2)τ1

+ c,

z2,j+τ2 − z2,j + c, . . . , z2,j+(m2−1)τ2
− z2,j+(m2−2)τ2

+ c,

. . . ,

zn,j+τn − zn,j + c, . . . , zn,j+(mn−1)τn − zn,j+(mn−2)τn + c,
}

For every Gm(j), all combinations of m−1 elements in Gm(j) are called φq,l(j), where q ∈[
1, C(m−1)n

m−1

]
, l ∈ [1, m− 1]. Map each φq,l(j) to a scatter pattern πv0v1 ...vm−2(v = 1, 2, . . . , c).

In this mode, φq,1(j) = v0, φq,1(j) = v1, . . . , φq,l(j) = vm−2. Since πv0v1 ...vm−2 consists of m−1
digits and each m−1 has class c, there are c(m− 1) dispersion patterns. the total number of
combinations per Gm(j) is C(m−1)n

m−1 . Therefore, there are [n− (m− 1)d]C(m−1)n
m−1 dispersion

patterns for time series with n variables. Calculate the probability of each distribution mode
πv0v1 ...vm−2 by:

P
(
πv0v1 ...vm−2

)
=

Num
(
πv0v1 ...vm−2

)
(N − (m− 1)d)C(m−1)n

m−1

(3)

(3) According to the definition of Shannon entropy, the multivariate fluctuation disper-
sion entropy of the original signal X is:

MFDE(X, m, c, τ) = −
(2c−1)m−1

∑
π=1

P
(
πv0v1 ...vm−2

)
InP

(
πv0v1 ...vm−2

)
(4)

2.2. Multivariate Multiscale Fluctuation Dispersion Entropy (MMFDE)

The steps of the MMFDE are first to establish the coarse-grained time series of the
original multivariate signal and then calculate the MFDE for each coarse-grained multi-
variate time series. For a multiple time series, U =

{
µk,b
}b=1,2,...,L

k=1,2,...,N . The detailed steps of
MFDE of U are as follows:

(1) For a multivariable time series, U =
{

µk,b
}b=1,2,...,L

k=1,2,...,N with length L and number of
signal channels N. Then, the coarse granulation time series of scale factor τ is:

xτ
k,i =

1
τ

iτ

∑
b=(i−1)τ+1

µk,b, 1 ≤ i ≤ L
τ

(5)

(2) MMFDE was obtained by calculating the MFDE of each coarse-grained multivariate time

series
{

xτ
k,i

}
under the same parameters. By extending the single-scale MFDE to the

multi-scale, more information is obtained from the multi-scale coarse-grained time series
of different scales to obtain the multi-scale MMFDE. However, in the coarse-grained mul-
tivariate time series whose MMFDE scale factor is τ, only the coarse-grained multivariate
time series starting with µk,1 is considered, and the remaining τ − 1 multivariable time
series is missing. The relationship between the coarse-grained time series has not been
taken into consideration, resulting in the lack of statistical information.
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2.3. Refined Composite Multivariate Multiscale Fluctuation Dispersion Entropy (RCMMFDE)

(1) For a multivariable time series U =
{

µk,b
}b=1,2,...,L

k=1,2,...,N with length L and number of
signal channels N, the a coarse-grained time series for the given scale factor τ is

Xτ
a =

{
xτ

k,i,1, xτ
k,i,2, . . . ,

}
, where xτ

k,i,a =
1
τ

a+iτ−1
∑

b=a+(i−1)τ
µk,b, where 1 ≤ i ≤ L

τ , 1 ≤ a ≤ τ.

(2) The RCMMFDE of the original multivariable time series U =
{

µk,b
}b=1,2,...,L

k=1,2,...,N is:

RCMMFDE(U, m, c, d, τ) = −
(2c−1)m−1

∑
π

p
(
πv0v1 ...vm−2

)
Inp
(
πv0v1 ...vm−2

)
(6)

where m is the embedding dimension, c is the number of categories, d denotes the

delay coefficient, τ represent the scale factor. p
(
πv0v1 ...vm−2

)
= 1

τ

τ

∑
1

pτ
a is the average

probability of the dispersion mode πv0v1 ...vm−2 of coarse-grained sequence Xτ
a . pτ

a is
the frequency of scattering mode πv0v1 ...vm−2 in the A multivariate coarse-grained time
series Xτ

a .

2.4. RCMMFDE Feature Analysis

In this section, five sets of simulation signals are used to verify the relevant charac-
teristics of RCMMFDE. Firstly, white noise and 1/f noise are used for analysis to study
RCMMFDE’s ability to measure the complexity of multi-variable time series and its sta-
bility under different time series lengths. Finally, the synthetic signal is used to verify the
anti-noise performance of RCMMFDE.

2.4.1. Mixed Analysis of White Noise and 1/f Noise

In order to illustrate the corresponding characteristics of multivariable time series,
RCMMFDE is applied to the generated four-channel time series: (1) all four channels are
1/f noise; (2) three channels are 1/f noise and one channel is white noise; (3) two chan-
nels are 1/f noise and two channel is white noise; (4) one channels are 1/f noise and
three channel is white noise; (5) all four channels are white noise. The parameter val-
ues used to calculate RCMMFDE in this section are set as: embedding dimension m = 3,
category c = 5, delay coefficient d = 1, scale factor τ = 2. For the convenience of compar-
ison, the calculated results of the 50 samples were averaged. Figure 1 shows the mean
standard deviation curves of RCMMFDE, Refined Composite Multivariate Multiscale Fluc-
tuation Entropy(RCMMFE) [19] and Refined Composite Multivariate Multiscale Sample
Entropy(RCMMSE) [20]. As shown in Figure 1, the overall trend of changes in RCMMFDE,
RCMMFE and RCMMSE is roughly similar, which all decrease with the increase of white
noise channel and the increase of scale factor. This is because the time series consisting
of 4-channel 1/f noise is rather complex. The complexity of time series decreases with
the decrease of 1/f channel, and the complexity of time series composed of four channel
white noise is the lowest. RCMMFE and RCMMSE overlap widely in the first category
(all four channels are 1/f noise) and the second category (three channels are 1/f noise and
one channel is white noise), and the separation is not obvious. but, RCMMFDE has a clear
distinction between category 1 and category 2 with a lower standard deviation. Which
proves that RCMMFDE has better resolution ability and stability and more suitable for the
multi-channel signal feature extraction.

2.4.2. Analysis of Anti-Noise Performance

In order to study the anti-noise performance of different entropy algorithms, a two-
channel composite signal with noise power variation is adopted. Each channel has a
sampling frequency of 512Hz and a length of 32s. To make a fair comparison, the embedded
dimensions in RCMMFDE, RCMMFE, RCMMSE and RCMMPE are set to equal m = 3,
and r = 0.15 in RCMMFE and RCMMSE set the fuzzy power of RCMMFE to n = 2. The
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sensitivity of RCMMFDE to noise was studied by using the dual-channel periodic signal
with noise power variation. This periodic signal had no noise in the first 4 s, and white
noise was added after 4 s, and the noise power was increased every 1 s. In order to
reduce the influence of entropy on the visualization of entropy change, the entropy values
of different methods are scaled to the range of 0–1, as shown in Figure 2. As shown in
Figure 2, the values of RCMMSE and RCMMPE increase rapidly with the increase of noise
power, but RCMMPE increases faster than RCMMSE. The curve of RCMMFDE grows
slowly, but RCMMFE performs better in variable noise synthesis signals. The results show
that RCMMFE and RCMMFDE have better anti-noise capability.
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2.4.3. RCMMFDE Data Length Sensitivity Analysis

In order to compare the stability of RCMMFDE under different data lengths, four-way
white noise samples with data lengths of 512, 1024, 1536, 2048, 2560 and 3072 were used, and
the number of samples of each data length was 100. RCMMFDE was calculated 20 times
for each data length, and its mean value and standard deviation are shown in Figure 3.
As shown in Figure 3a, as the data length increases, the value of RCMMFDE is relatively
close. However, when the scale factor is greater than 5, the RCMMFDE with lower data
length is slightly smaller than the RCMMFDE with higher data length, and this gap will
increase with the increase of the scale factor. This indicates that RCMMFDE is less sensitive
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to data length and can obtain reliable measurements of samples of different data lengths.
As shown in Figure 3b, the standard deviation of RCMMFDE increases with the increase
of scale factor and the decrease of data length. In particular, when the data length is 500,
the standard deviation increases significantly. When the data length is 3000, the standard
deviation of RCMMFDE is the smallest, which indicates that the longer the data length is,
the more stable RCMMFDE is. However, the data length is positively correlated with the
computation time. Given the tradeoff between RCMMFDE stability and computation time,
the data sample length is set to 2048.
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2.5. Fault Diagnosis Based on RCMMFDE
2.5.1. JMIM Feature Selection

Joint Mutual Information Maximisation (JMIM) [21] is an effective feature selection
algorithm. Considering the overall stability of Joint Mutual Information, JMIM is able
to select a subset of features with the same or even better effect from the original feature
set [22]. Compared with other algorithms, such as mRMR, JMI and IG, the feature subset
selected by JMIM algorithm has better classification performance [23]. Therefore, the JMIM
algorithm is used as the sensitive sub-feature selection method in this paper.



Entropy 2021, 23, 128 7 of 18

2.5.2. RCMMFDE-JMIM-SVM Fault Diagnosis Algorithm

In many fault diagnosis fields, Support Vector Machine (SVM) has been proved to be
robust nonlinear multiple classifiers [24,25]. Combined with the advantages of RCMMFDE,
JMIM, and SVM, this paper proposes a fault diagnosis method of rotating machinery based
on RCMMFDE-JMIM-SVM. The flow chart is shown in Figure 4.

Step 1. Signal acquisition: Through acceleration sensors installed at different positions
of the rotating machinery to be monitored, multi-channel vibration signals of
the rotating machinery under different speeds are collected. The data samples
collected under different running speeds can form a fault sample data set.

Step 2. Feature extraction: RCMMFDE algorithm is used to extract features from fault
sample data to form feature data sets, which are divided into training data sets
and test data sets.

Step 3. Feature selection: JMIM algorithm is used to select the most sensitive sub-features
of the feature.

Step 4. SVM model training: SVM classifier is trained using sensitive features. The SVM
classifier includes M-1 dichotomous SVM, where M is the type of fault sample.

Step 5. Fault diagnosis: Input the samples of the test data set into the RCMMFDE-JMIM-
SVM classifier to identify the fault types of different bearing samples.
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3. Experimental Verification and Analysis

In this paper, a gearbox fault data set and a rolling bearing fault data set are respec-
tively used to verify the effectiveness of the method. Collect the multivariable time series
of gearbox and rolling bearing at constant speed. RCMMFE, RCMMSE, RCMMPE and
RCMMFDE were compared, and the good performance of the method was verified by the
identification accuracy and CPU time.

3.1. Validation of Gearbox Fault Data Set
3.1.1. Data Set Description

This data set is the 2009 PHM Challenge data set (in Supplementary Materials), which
is the gearbox composite failure test data obtained on the gearbox test bench. The test
platform is shown in Figure 5a, which mainly includes induction motor, gearbox, speed
measuring device, solenoid brake, AC drive, experimental bench and data acquisition
system. The gearbox includes input shaft, intermediate shaft and output shaft. The internal
structure diagram is shown in Figure 5b. Two accelerometers are placed at the input end
and output end of the gearbox respectively to collect vibration signals of the gear box, as
shown in Figure 5c,d. This paper takes the meshing fault of helical gear as the research
object, Based on Tooth Surface Crack (TSC), Tooth Root Fracture (TRF), Bearing Outer Fault
(BOF), Bearing Inner Outer Fault (BIF), Bearing Balling Fault, As for fault types such as
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BBF), Gear Imbalance (GI) and Input Shaft Imbalance (ISI), a result of eight helical gears
meshing composite fault states is simulated. Information about the composite fault state
is illustrated in Table 1, and Gear of each fault is illustrated in Figure 6. The sampling
frequency is 66.67 KHz, the rated speed of input shaft is 3000 r/min, and the sampling time
is 4 s gear box vibration signal under each compound fault state. The signal is divided into
several samples, each with a length of 2048. The labels and sample Numbers are shown
in Table 2. The time-domain waveform of the gear in different states is shown in Figure 7.
Because there are many fault states, it is difficult to distinguish the specific bearing fault
from the time domain waveform.
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Table 1. Compound fault status information of helical gear meshing.

Abbreviation G1 G2 G3 G4 G5 G6 G7 G8

Shaft Input Normal Normal Normal Normal Normal ISI Normal ISI
Output Normal Normal Normal Normal Normal Normal Keyway wear Normal

Bearing

Input shaft—Input end Normal Normal Normal BBF BIF BIF BIF Normal
Intermediate shaft—Input shaft Normal Normal Normal Normal BBF BBF Normal BBF

Output shaft—Input end Normal Normal Normal Normal BOF BOF Normal BOF
Input shaft—Output end Normal Normal Normal Normal Normal Normal Normal Normal

Intermediate shaft—Output end Normal Normal Normal Normal Normal Normal Normal Normal
Output shaft—Output end Normal Normal Normal Normal Normal Normal Normal Normal

Gear

32T Normal TSC Normal Normal TSC Normal Normal Normal
96T Normal Normal Normal Normal Normal Normal Normal Normal
48T Normal GI GI GI GI Normal Normal Normal
80T Normal Normal Normal TRF TRF TRF Normal Normal
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Figure 6. Gear fault type: (a) Normal; (b) TRF; (c) TSC.

Table 2. Gearbox fault data set label.

No State Training Samples Testing Samples Class Label

1 G1 200 100 1,0,0,0,0,0,0,0
2 G2 200 100 0,1,0,0,0,0,0,0
3 G3 200 100 0,0,1,0,0,0,0,0
4 G4 200 100 0,0,0,1,0,0,0,0
5 G5 200 100 0,0,0,0,1,0,0,0
6 G6 200 100 0,0,0,0,0,1,0,0
7 G7 200 100 0,0,0,0,0,0,1,0
8 G8 200 100 0,0,0,0,0,0,0,1
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3.1.2. RCMMFDE-JMIM-SVM Sensitive Feature Number Analysis 
In each data sample of the above data set, 200 samples were randomly selected as test 

objects, of which 150 were training samples and 50 were test samples. The sensitive feature 
dimension p extracted by JMIM was set as 25. In order to verify the performance of the 
RCMMFDE-JMIM-SVM method, RCMMFDE, RCMMFE, RCMMSE, and RCMMPE were 
used to extract the features of vibration signals, and the optimal features were extracted 
through the JMIM algorithm. Finally, the optimal features were input into the SVM clas-
sifier to identify the fault type of the test sample. Each method was run 20 times respec-
tively. The specific parameters of RCMMFDE can be known from Azami research that the 
number of categories c = 6, the delay coefficient d = 1, the embedding dimension m = 2, and 
the maximum scale factor ߬ = 25 [26]. The average diagnostic accuracy of different meth-
ods is shown in Figure 8. As can be seen from Figure 8, the recognition accuracy of 
RCMMFDE-JMIM-SVM method is better than other methods, because RCMMFDE takes 
into account the amplitude changes between two adjacent elements at different scales of 
each channel in the multi-channel time series. Secondly, too large or too small number of 
sensitive features will reduce the accuracy of fault recognition. This is because too small 
number of feature sensitivities will contain less fault feature information. On the contrary, 
too large number of sensitive features will lead to redundancy of fault feature information 
and reduce fault identification accuracy. Secondly, too large or too small several sensitive 
features will reduce the accuracy of fault recognition. When the number of sensitive fea-
tures is less than 21, the accuracy of the RCMMFDE-JMIM-SVM method will increase with 
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the number of sensitive features is greater than 21, the accuracy of the model will decrease 
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3.1.2. RCMMFDE-JMIM-SVM Sensitive Feature Number Analysis

In each data sample of the above data set, 200 samples were randomly selected as test
objects, of which 150 were training samples and 50 were test samples. The sensitive feature
dimension p extracted by JMIM was set as 25. In order to verify the performance of the
RCMMFDE-JMIM-SVM method, RCMMFDE, RCMMFE, RCMMSE, and RCMMPE were
used to extract the features of vibration signals, and the optimal features were extracted
through the JMIM algorithm. Finally, the optimal features were input into the SVM classifier
to identify the fault type of the test sample. Each method was run 20 times respectively.
The specific parameters of RCMMFDE can be known from Azami research that the number
of categories c = 6, the delay coefficient d = 1, the embedding dimension m = 2, and the
maximum scale factor τ = 25 [26]. The average diagnostic accuracy of different methods is
shown in Figure 8. As can be seen from Figure 8, the recognition accuracy of RCMMFDE-
JMIM-SVM method is better than other methods, because RCMMFDE takes into account
the amplitude changes between two adjacent elements at different scales of each channel in
the multi-channel time series. Secondly, too large or too small number of sensitive features
will reduce the accuracy of fault recognition. This is because too small number of feature
sensitivities will contain less fault feature information. On the contrary, too large number
of sensitive features will lead to redundancy of fault feature information and reduce fault
identification accuracy. Secondly, too large or too small several sensitive features will
reduce the accuracy of fault recognition. When the number of sensitive features is less
than 21, the accuracy of the RCMMFDE-JMIM-SVM method will increase with the increase
of the number of sensitive features and eventually tend to be stable. When the number
of sensitive features is greater than 21, the accuracy of the model will decrease with the
increase in the number of sensitive features. Therefore, this paper sets the number of
sensitive features at 20.
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3.1.3. RCMMFDE-JMIM-SVM Performance Analysis at Constant Speed

To verify the effectiveness of the proposed method under the condition of constant
rotation speed, RCMMFDE-JMIM-SVM, RCMMFE-JMIM-SVM, RCMMSE-JMIM-SVM,
and RCMMPE-JMIM-SVM methods were used to analyze the gear fault data set. The main
parameters of these methods include embedding dimension m, number of categories c,
delay coefficient d, fuzzy power f, scale factor τ, threshold r and characteristic sensitive
number p. For the sake of fair comparison, the scale factors of these methods are consistent,
and the specific parameter settings are shown in Table 3.
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Table 3. Parameter setting table.

Method Parameter

RCMMFE-JMIM-SVM p = 17 m = 2 r = 0.15 d = 1 τ = 25 f = 2
RCMMSE-JMIM-SVM p = 12 m = 2 r = 0.15 d = 1 τ= 25
RCMMPE-JMIM-SVM p = 17 m = 2 τ = 17

RCMMFDE-JMIM-SVM p = 20 m = 2 c = 6 d = 1 τ = 25

Figure 9 and Table 4 show the identification accuracy of four different fault diagnosis
methods within 30 running times. The computers used in this paper are configured as
Windows 10 operating system, Intel Core i5-9400f CPU and 16 G RAM. As is shown in
Figure 9, The average accuracy of RCMMFDE-JMIM-SVM is 98.757%, and the maximum
classification accuracy is 99.252%. This shows that the method is effective for the diagnosis of
gear fault data set. The classification accuracy of RCMMFE-JMIM-SVM is between 97.867%
and 97.305%. Compared with the method presented in this paper, the diagnostic accuracy
of RCMMFE-JMIM-SVM is slightly lower. The classification accuracy of RCMMPE-JMIM-
SVM method was the lowest, between 93.217% and 94.045%. Furthermore, the processing
time of RCMMFDE-JMIM-SVM for a single sample was 10.32s, 0.53s slower than that of
RCMMSE-SVM, which was nearly 90 times slower than that of RCMMFDE-JMIM-SVM. The
reason why RCMMFDE-JMIM-SVM achieves excellent performance is that the fluctuation
between adjacent elements of each channel of the multivariate time series is considered, and
the features can be extracted from the multivariate time series between different signals,
and the influence of noise and fluctuation can be resisted.
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To analyze the relationship between the recognition accuracy and the number of train-
ing samples, we randomly selected training samples from the total samples under different
proportions (10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%) and calculated the average recogni-
tion accuracy of different diagnostic methods in the running time of 50 times respectively.
Figure 10 shows the average classification accuracy under different proportions of training
samples. As shown in Figure 10, the accuracy of different classification methods increases
with the proportion of training samples. Although the proportions of training samples
are different, RCMMFDE-JMIM-SVM can achieve the highest diagnostic accuracy. Even if
10% of the samples are used for training, the diagnostic accuracy can reach 97.896%, and
when the proportion of training samples increases to 30%, the accuracy reaches 98.961%.
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It can be found that if sufficient training data samples are available, all the four methods
can achieve high average diagnostic accuracy. However, too many training samples will
lead to a significant increase in training time. Therefore, to balance the training time and
accuracy, the proportion of training samples was set at 40%.

Table 4. Diagnostic accuracy of different diagnostic methods.

Method Max Accuracy Min Accuracy Average Accuracy Run Time

RCMMFDE-JMIM-SVM 99.252 98.518 98.757 1.67

RCMMSE-JMIM-SVM 96.882 96.215 96.648 1.14

RCMMPE-JMIM-SVM 94.045 93.217 93.554 148.79

RCMMFE-JMIM-SVM 97.867 97.305 97.694 8.28Entropy 2021, 23, x 13 of 19 
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3.1.4. RCMMFDE-JMIM-SVM Performance Verification

To better present the performance of RCMMFDE-JMIM-SVM, this paper also uses
the common feature of vibration signal and the SVM (CFVS-SVM) to verify performance
of proposed method. Common features we take in this paper are time-domain features,
frequency-domain features, and time-frequency features. We take 18 features including
mean value, standard deviation, peak-to-peak value, median, interquartile range and etc.
as the time domain features. The frequency-domain features are median mean, interquartile
range, percentile deviation, and Fourier transform features. The time-frequency domain
features are the six energy features and their normalized energy features obtained by the
five-stage wavelet transform.

Table 5 shows the results of four entropy fault diagnosis methods and CFVS-SVM
diagnosis methods trained with 40% training samples. The classification accuracy of Table 5
is the average value of 20 times’ result. The Table 5 shows that in G2, G4 and G5 and G8
condition, CFVS-SVM and RCMMPE-JMIM-SVM accuracy have plunged, the accuracy
of the RCMMSE-JMIM-SVM and RCMMFE-JMIM-SVM have appeared in the different
amplitude of falling, but in this paper, fault identification accuracy of the presented method
still remain more than 99%, fully shows in different fault conditions, the proposed method
of feature extraction is better than the other three methods.
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Table 5. Different methods each fault state accuracy rate.

State Testing Samples
Accuracy/%

RCMMFDE-JMIM-SVM RCMMFE-JMIM-SVM RCMMSE-JMIM-SVM RCMMPE-JMIM-SVM CFVS-SVM

G1 180 99.425 98.627 98.129 96.951 97.273

G2 180 99.354 97.056 97.281 91.488 94.445

G3 180 97.812 95.627 98.835 97.538 97.758

G4 180 99.489 97.566 95.756 92.157 95.561

G5 180 99.105 97.634 96.018 92.266 93.891

G6 180 99.281 98.461 96.485 94.137 96.659

G7 180 99.577 97.343 97.528 94.513 96.562

G8 180 98.907 96.932 94.414 93.064 94.827

Total 900 99.173 97.782 96.619 93.751 94.658

In order to demonstrate the effectiveness of RCMMFDE-JMIM feature extraction,
Figure 11 shows the feature distribution visualization diagram of all samples extracted
by RCMMFDE-JMIM algorithm by T-SNE method [27]. It can be seen from Figure 11 that
each fault sample has a high degree of intra-class clustering and inter-class separation,
but the distance between classes is small in some states of G3 and G4, which leads to the
relatively low accuracy of this method in G3 state, but it does not affect the performance of
RCMMFDE-JMIM-SVM method. In order to demonstrate the effectiveness of RCMMFDE-
JMIM feature extraction, Figure 11 shows the feature distribution visualization diagram of
all samples extracted by the RCMMFDE-JMIM algorithm by the T-SNE method [28]. It can
be seen from Figure 11 that each fault sample has a high degree of intra-class clustering
and inter-class separation, but the distance between classes is small in some states of G3
and G4, which leads to the relatively low accuracy of this method in the G3 state, but it
does not affect the performance of RCMMFDE-JMIM-SVM method.
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3.2. Verification of Rolling Bearing Fault Data
3.2.1. Description of Rolling Bearing Fault Data Set

The test platform is the threshing cylinder part of the combine harvester, which is
mainly composed of the motor driving part, threshing assembly, and data acquisition
system. The test bearing is the 6307 deep-groove ball bearing at the back end of the
threshing roller. The outer ring of the bearing is fixed on the bearing pedestal, and the
inner ring rotates with the threshing roller shaft. Other bearings of the system are normal
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bearings. In the test, three common fault types of 6307 deep-groove ball bearings were
considered, including Inner Ring Fault (IRF), Outer Ring Fault (ORF), and Composite Fault
(CF) occurring simultaneously in the inner ring. The detailed parameters of each fault
are shown in Table 6. Bearing faults of different types and sizes are simulated by EDM
pitting technique. Figure 12 shown rolling bearings with combined faults of inner ring,
outer ring and inner ring, respectively. The acceleration sensor is fixed at the measuring
point through the magnetic base. The voltage sensitivity of the 1# to 4# acceleration sensors
is 101.6 mV/g, 99.1 mV/g, 101.2 mV/g, and 101.3 mV/g, respectively. The installation
locations of acceleration sensors and speed sensors are shown in Figure 13. The threshing
cylinder rotation speed was set at 80 r/min, 160 r/min, 240 r/min, and 320 r/min to collect
the bearing vibration signal through the data acquisition system, the sampling frequency is
5120 Hz, each group of sampling time 50 s, The sampling number of each sample is 2048,
each bearing status get 500 samples, a total of 5500 samples. The time domain waveform of
the original four-channel signals of different fault types is shown in Figure 14.

Table 6. Table of parameters of different fault state of bearing.

Bearing State Abbreviation Fault Width (mm) Fault Depth (mm) Threshing Cylinder Speed (r/min)

Normal Normal 0 0 80/160/240/320
Outer Ring Fault 1 IRF07 0.7 3.7 80/160/240/320
Outer Ring Fault 2 IRF10 1.0 3.7 80/160/240/320
Outer Ring Fault 3 IRF12 1.2 3.7 80/160/240/320
Outer Ring Fault 4 IRF15 1.5 3.7 80/160/240/320
Outer Ring Fault 1 ORF07 0.7 3.2 80/160/240/320
Outer Ring Fault 2 ORF10 1.0 3.2 80/160/240/320
Outer Ring Fault 3 ORF12 1.2 3.2 80/160/240/320
Outer Ring Fault4 ORF15 1.5 3.2 80/160/240/320
Composite Fault 1 CF05 0.5/0.5 3.2/3.7 80/160/240/320
Composite Fault 2 CF10 1.0/1.0 3.2/3.7 80/160/240/320
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3.2.2. Rolling Bearing Fault Data Analysis

The 100 samples of each bearing state are taken as training data, and the other 25 samples
are taken as test data, thus forming the rolling bearing fault data set. In the rolling bearing
fault data analysis, the RCMMFDE-JMIM-SVM method parameters determined in 3.1 are
used. The comparison results of RCMMFDE-JMIM-SVM, RCMMFE-JMIM-SVM, RCMMSE-
JMIM-SVM, RCMMPE SVM and CFVS-SVM are shown in Table 7. As can be seen from
Table 7, the accuracy of all methods on the rolling bearing data set is significantly higher
than that on the gear data set. The accuracy of RCMMFDE-JMIM-SVM and RCMMFE-
JMIM-SVM reaches 100%, and the accuracy of RCMMSE-JMIM-SVM RCMMPE-JMIM-SVM
and CFVS-SVM is also greater than 96%. The reasons for this phenomenon may be the
relatively ideal test environment and the good performance of the data acquisition system,
which makes the characteristics of the signal data more easily to identify. It also shows that
RCMMFDE-JMIM-SVM has good performance.

Table 7. The results of different diagnostic methods were compared.

Bearing State Testing Samples RCMMFDE-JMIM-SVM RCMMFE-JMIM-SVM RCMMSE-JMIM-SVM RCMMPE-JMIM-SVM CFVS-SVM

MCR Acc/% MCR Acc/% MCR Acc/% MCR Acc/% MCR Acc/%

Normal 25 0 100.00 0 100.00 0 100.00 0 100.00 CF05 96.00

IRF07 25 0 100.00 0 100.00 IRF10 96.00 IRF12 88.00 IRF10 92.00

IRF10 25 0 100.00 0 100.00 0 100.00 IRF07 96.00 0 100.00

IRF12 25 0 100.00 0 100.00 0 100.00 0 100.00 IRF10 96.00

IRF15 25 0 100.00 0 100.00 IRF12 96.00 0 100.00 0 100.00

ORF07 25 0 100.00 0 100.00 0 100.00 0 100.00 ORF10 88.00

ORF10 25 0 100.00 0 100.00 0 100.00 ORF15 96.00 0 100.00

ORF12 25 0 100.00 0 100.00 ORF12 92.00 ORF10 96.00 0 100.00

ORF15 25 0 100.00 0 100.00 0 100.00 0 100.00 ORF12 96.00

CF05 25 0 100.00 0 100.00 0 100.00 CF10 96.00 0 100.00

CF10 25 0 100.00 0 100.00 0 100.00 0 100.00 CF05 96.00

Total 275 0 100.00 0 100.00 4 99.27 7 97.46 9 96.73

Note: MCR represent the misclassification result; Acc represent the Accuracy.

To demonstrate the effectiveness of RCMMFDE-JMIM-SVM in the bearing fault data
set, Figure 15 shows the visualization of the feature distribution of all samples by t-SNE
method. It can be seen from Figure 15 that the separation between classes of each fault
feature is high and the separation is also high at different speeds of different faults.
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4. Conclusions

In this paper, a new complexity assessment method of multivariable nonlinear time
series based on RCMMFDE is proposed. Compared with RCMMFE, RCMMSE, and
RCMMPE, RCMMFDE has a better stability. This method takes into account the informa-
tion of different scale sequences of each channel in the original multicomponent signal
and obtains more stable and reliable characteristics by using the fine composite analysis
technique. Use the JMIM method to select the more sensitive feature. In the classification
step, the SVM classifier is trained to classify sensitive feature samples. This method can
effectively process multivariate time series data.

The simulation signals with different combinations of WGN and 1/f show that
RCMMFDE has better resolution and stability. The research on the two-channel stim-
ulation signal of noise power variation shows that RCMMFDE has excellent anti-noise
performance. Meanwhile, the use of four-channel WGN signal indicates that RCMMFDE is
not sensitive to the length of time series signal. Taking gear fault data set and bearing fault
data set as examples, the effectiveness of RCMMFDE-JMIM-SVM method is verified. The
results show that this method has the advantages of high classification accuracy and short
calculation time.

The research in this paper shows that the RCMMFDE-JMIM-SVM method is suitable
for the diagnosis of gear and bearing faults, and the effectiveness of this method on other
data sets can be further studied.
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