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In this review, we attempt to make a case for the establishment of a limited number of
heavy ion cancer research and treatment facilities in the United States. Based on the basic
physics and biology research, conducted largely in Japan and Germany, and early phase
clinical trials involving a relatively small number of patients, we believe that heavy ions have
a considerably greater potential to enhance the therapeutic ratio for many cancer types
compared to conventional X-ray and proton radiotherapy. Moreover, with ongoing
technological developments and with research in physical, biological, immunological,
and clinical aspects, it is quite plausible that cost effectiveness of radiotherapy with heavier
ions can be substantially improved.
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INTRODUCTION

The purpose of this article is to heighten awareness within the oncology research and therapy
community that major academic medical centers in the United States find the need to re-establish
heavy ion cancer therapy in the United States. We want to emphasize that bringing heavy ion cancer
therapy back to the United States is a national effort, and not just a wild idea of a few individuals. We
provide this article to summarize the rationale to support the re-establishment effort and to publish
our ideas and recommendations for how this should be accomplished.

More than 60% of all cancer patients in the United States (U.S.) are treated with one or more
courses of radiotherapy during the continuum of their cancer care (1–3). Despite their physical and
biological limitations, most radiation treatments worldwide are delivered with high energy X-rays
generated either by linear electron accelerators or radioactive sources. The physical advantages of
dose delivery with protons started its application to radiotherapy in 1954 in the U.S. at Lawrence
Berkeley National Laboratory (LBNL), and to date a relatively small percentage of cancer patients
globally (<1%) receive proton radiotherapy (4–6).

Heavy ion therapy is a unique form of radiotherapy for the treatment of cancer. It deposits
ionizing radiation in cancer cells via accelerated charged particles that are heavier than protons.
First, a narrow beam of heavy ions is accelerated in a particle accelerator to give enough energy to
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the ions to penetrate to the depth of the cancer within the human
body and kill cancer cells. In general, the speed of the ion
correlates with the energy it carries. For example, a speed of
approximately 2/3 to ¾ the speed of light is needed for the ions to
achieve the energy needed to reach a deeply located tumor (30
cm) in a large patient. After the ions reach the desired speed and
energy, they are extracted from the accelerator and are
magnetically guided to patient treatment rooms. The ions leave
the magnetic transport system and are focused on cancers. They
enter through the patient’s skin and travel to the cancer to
deposit the therapeutic dose of ionizing radiation. The narrow
incident beam is magnetically scanned, and its energy changed to
effectively form a broad beam to “paint” the entire volume of the
tumor target with ionizing radiation. Typically, multiple such
broad beams, incident from different directions, are used to
lower the dose outside the tumor and to optimally spare the
surrounding normal tissues.
WHAT ARE THE ADVANTAGES OF HEAVY
ION THERAPY?

Like protons, heavy ions have a finite range in tissue. The speed
of heavy ions is tuned in the accelerator in such a way that when
they reach the cancer, they deposit most of their initial energy
within the cancer, i.e., the ions abruptly stop within the cancer
and only a minor, often clinically insignificant energy spills
beyond the cancer target. The heavier the ion is, the more
significant this spillage would be due to its fragmentation,
thereby limiting therapeutic benefit to ions no heavier than
oxygen. High energy X-rays, used conventionally to treat solid
cancers, do not stop; they continue to travel and deposit energy
to healthy tissue beyond the cancer until they exit the patient’s
body. The maximum energy deposition for X-rays occurs when
they enter the body upstream of the cancer in healthy tissues.

Unlike X-rays or protons, heavy ions do not significantly
scatter sideways in tissue, i.e., they have a sharper lateral
penumbra, meaning the dose fall-off in the lateral direction
perpendicular to the direction of the heavy ion beam outside
the treatment volume is very rapid. This allows the therapeutic
heavy ion beam to pass more safely closer to healthy organs on
their way to cancers than protons or X-rays could. This property
can be exploited in using heavy ions to treat cancers that are
closer to organs at risk and would otherwise be too risky to treat
with conventional X-ray or proton radiotherapy.

Biologically, heavy ions cause a different type of damage to the
cancer DNA and microenvironment than protons or X-rays. The
reason for this is that they deposit a very large amount (~100 eV)
of densely ionizing energy (high linear energy transfer, LET) on
the DNA strand scale (nanometers) near the end of their range in
tissue. Because of this, heavy ions cause primarily clusters of
double-stranded DNA breaks which are more difficult for cancer
cells to repair (7, 8) making these ions biologically more effective
(higher relative biological effectiveness, RBE), especially in
malignancies that are resistant to traditional X-ray and proton
radiotherapy, such as hypoxic tumors (i.e., tumors lacking
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oxygen which are typically resistant to protons and X-rays (9–
12) or tumor initiating cells (13–15). In the region upstream of
the cancer where healthy cells are present, heavy ions deposit
significantly lower sparsely ionizing energy (low LET) than in the
tumor, generating simpler and more readily repairable DNA
damage like X-rays and protons.

The biological effectiveness of X-rays in the cancer is much
lower than that of heavy ions and since the physical properties of
X-rays do not allow for sparing of normal tissues as mentioned
above, the therapeutic benefit is much lower than heavy ions. For
protons, their biological effectiveness in the tumor is like that of
X-rays, except for a small region near the end of their range
where their RBE also increases due to an increased LET (16, 17).
If using conventional fractionation heavy ion therapy, a variable
RBE can be applied to make the RBE-weighted dose the same as
an X-ray prescription, delivering less dose for the same biologic
effect. However, hypofractionation is feasible and preferred for
heavy ions and may, along with their lower OER, be responsible
for the superior effectiveness for radiation-resistant tumors.

To achieve the same cancer cell kill, one needs to deposit less
energy with heavy ions than with protons or X-rays, leading to
significant sparing of healthy tissues, especially distal and lateral to
the tumor. The exact amount of increased cancer cell kill (9, 11, 18–
21) and healthy tissue sparing depends on the cancer and normal
tissue type, type of ion, treatment factors and other parameters.
These are subjects of intense research (22–25). Since standard
fractionation (25-40 treatments, 1.8-2.1 Gy per fraction) of X-ray
or proton radiotherapy in many cancers is designed to allow for
normal tissue repair between each treatment to mitigate late
toxicity, sparing normal tissues with heavy ions would allow for
larger doses of radiotherapy to be given with each fraction, leading
to fewer treatment days overall, a regimen called hypofractionation.
This increases the convenience and lowers costs for the patient.This
type of radiotherapy with heavy ions has been demonstrated to be
safe and effective (26, 27).

Heavy ions seem to present immunogenic effects such as an
increased production of tumor associated antigens and
antitumor effects, which may result in reduced ability to
metastasize or recur (28–36). The heavier the ion, the more
pronounced these effects seem to be (37). Mouse studies (38) also
indicate that combining heavy ion radiotherapy with
immunotherapy may lead to a novel and effective route of
treating cancer, creating a hope for patients who have distant
metastases present. Such combination of therapies may be
amongst the most effective forms of cancer therapy (39, 40).

The effectiveness of immunotherapy depends on the health of
the immune system. It is well known that conventional
radiotherapy with photons can severely damage the immune
system, which can lead to adverse clinical outcomes. Recent
findings indicate that proton therapy, due to the compact nature
of its dose distribution patterns, can significantly spare the
immune system, and improve survival (41–46). Radiotherapy
with heavier ions is likely to be significantly more sparing of the
immune system compared to protons due to the fact that heavy
ion dose distributions are even more compact and their clinical
application employs hypofractionated regimens.
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HEAVY ION THERAPY STARTED IN THE
U.S. IN 1973 AT LAWRENCE BERKELEY
NATIONAL ACCELERATOR
LABORATORY (LBNL)

At this nuclear physics research facility, the Bevalac accelerator was
used in 1973 to treat the first patient with neon nuclei and in 1977
with carbon ions (47, 48). Between 1977 and 1992 multiple early
phase clinical trials were conducted with these ions and helium.
These initial treatments suffered from numerous limitations at the
time, including inadequate imaging, inadequate treatment dose
calculation algorithms, lack of biological modeling, and unreliable
access to beam in facilities intended for physics research. Anatomic
imaging (primarily CT scanning at the time) was in its infancy and
was not adequately visualizing cancer targets; dose calculation
algorithms were simple without accounting for tissue
heterogeneity and organ motion and no biological effectiveness
modelingwas used toguide treatmentplanning.The ion accelerator
and beam delivery technology were laboratory research grade and
not reliable for routine clinical patient care. Two thousandfifty-four
patients were treated with helium ion beams and 433 with neon ion
beams. The patients who received helium ions presented with
primary skull base tumors, such as chondrosarcomas, chordomas,
meningiomas and ocular melanomas. Patients treated between
1987 and 1992 had better control of their treated tumors
compared to those in the earlier period, representing the
influence of improved immobilization, treatment planning and
delivery, and introduction of MRI for cancer visualization.
HEAVY ION THERAPY STOPPED IN THE
U.S. IN 1993

In the early 1990’s, this primarily nuclear physics research
accelerator was decommissioned making it the last time the
U.S. had a therapeutic heavy ion beam for humans. While the
U.S. has several high energy accelerator labs, it is challenging to
operate a clinical environment in a research laboratory where all
the necessary basic clinical infrastructure is missing. Also,
therapeutic beam quality and beam reliability are difficult to
achieve in non-clinically oriented physics research labs causing
therapy interruptions. On days when access to the ion accelerator
prevented treatment due to downtime, treatment with low LET
radiotherapy, such as X-rays, is often not at or near the same
facility. Moreover, in physics research labs the therapeutic
program is highly dependent on the research direction of the
lab and on the available beam time as these beams are also used
for other research projects.
HEAVY ION THERAPY MIGRATED
OUTSIDE OF THE U.S.

After the closing of the world’s first heavy ion therapy center,
three nuclear research facilities around the world adopted heavy
Frontiers in Oncology | www.frontiersin.org 3
ion therapy. In 1994 Japan opened its first carbon ion
radiotherapy (CIRT) center, HIMAC, at the National Institute
of Radiological Sciences (NIRS) in Chiba, Japan (now QST
Hospital). They currently have an active program and have
treated the largest number of patients in the world with carbon
ions. The German nuclear research center, GSI Helmholtz
Centre for Heavy Ion Research (GSI), commissioned a CIRT
treatment room in 1997 and China commissioned a CIRT beam
line at the Heavy Ion Research Facility in Lanzhou as part of the
Institute of Modern Physics of the Chinese Academy of Science.
Six more Japanese, three Chinese, one Italian, one Austrian, and
two German sites have been built, all as clinical facilities
dedicated for patient treatment. Each has a dedicated heavy
ion therapy accelerator and multiple patient treatment rooms
served by the same accelerator.

The benefit of using heavy ions for cancer treatment was
recognized by the government in these countries leading to
insurance coverage for the cost of treatment for several cancer
types (49–51). Typical examples of insurance coverage include
high- and intermediate-risk prostate cancer in Japan,
chordomas, chondrosarcomas, osteosarcomas, salivary gland
tumors, and tumor re-irradiation in Japan, Italy, Germany, and
Austria. In addition, in Austria, other high-risk indications can
selectively receive insurance coverage when experts from the
appropriate tumor board recommend CIRT due to its potential
benefit over X-rays. In the U.S. heavy ion therapy for clinical
research and routine clinical care will require FDA clearance of
the equipment and possibly clearance for each cancer indication
along with the establishment of CPT codes for billing and
reimbursement models.
HEAVY ION THERAPY TECHNOLOGY
DEVELOPMENT CONTINUED AFTER
CLINICAL HEAVY ION THERAPY
APPLICATIONS LEFT THE U.S.

Technological development of heavy ion systems continued
outside of the U.S. with implementation of significant
improvements to the first system. For example, a novel beam
delivery method for protons called raster scanning, which uses
strong magnets to scan a narrow ion beam across the cancer for
dose delivery while modulating the beam energy, was developed
in Japan in 1984 (52). GSI developed and implemented raster
scanning for CIRT (53). This is unlike the previously used
“scattering” method, where the narrow beam was spread out to
cover a large cross-sectional area of the cancer by various bulky
beam scattering, shaping and compensating devices custom-
designed and fabricated for each specific patient. The
implementation of scanning beams helped to further conform
dose more tightly to the cancer volume.

Both NIRS and GSI have generated their own models to
calculate the biological effective dose for carbon ion beams and
they have implemented these models in their treatment planning
systems (54–59). A German vendor, Siemens, developed the
world’s first heavy ion rotating gantry system for ion beam
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delivery that used conventional, non-superconducting magnets
(60). Toshiba Corporation developed a more compact and
lighter weight commercially available gantry using super
conducting magnet technology which was installed and is in
clinical use at QST Hospital (61). Moreover, techniques to
mitigate the motion of the tumor and surrounding normal
organs (such as breath hold, rescanning, and respiratory gated
ion beam deliveries) have also been developed and implemented
to treat moving targets with scanning beams (62). These
technological advancements have been adopted by commercial
vendors (three Japanese and one European) to transform a
system that had previously existed as an experimental system
in physics research labs into commercial clinical solutions, which
are currently in clinical operation at the 14 international centers
listed above. Further development is continuing to make heavy
ion equipment more compact and affordable.
ENCOURAGING PRELIMINARY CLINICAL
OUTCOME DATA FOR HEAVY
ION THERAPY

Despite widespread proliferation of proton centers worldwide,
only a small number of randomized clinical trials comparing
proton radiotherapy to conventional X-ray radiotherapy have
been completed to define the benefits from the improved proton
physical dose distribution (63–65). A search of clinicaltrials.gov
on October 27, 2021 revealed 16 phase III and 4 randomized
phase II clinical trials for proton therapy including a wide range
of malignancies: prostate, oropharynx, early-stage tonsil, early
and advanced stage non-small cell lung, esophagus, breast, rectal,
liver, unilateral head and neck, glioblastoma multiforme, head
and neck, grade II and III glioma, and nasopharynx. NRG
Oncology is sponsoring randomized clinical trials for non-
small cell lung cancer, hepatocellular carcinoma, glioblastoma
multiforme and esophageal carcinoma. Heavy ions in theory will
bring additional enhancement of benefits due to their superior
physical characteristics and different biological effectiveness. This
will need to be confirmed with randomized clinical trials.

At the 14 clinical heavy ion facilities currently in operation
worldwide, more than 37,000 patients have been treated with
heavy ions; most of these patients received CIRT. The clinical
indications are radiation resistant malignancies, such as adenoid
cystic carcinoma, mucosal melanoma, non-small cell lung
cancer, liver cancer, bone and soft tissue sarcoma; recurrent
previously irradiated cancers (especially rectal cancer), advanced
gynecological malignancies, esophageal cancer, and pancreatic
cancer and hypoxic malignancies. For these, conventional X-ray
and proton radiotherapy typically cannot deliver enough
therapeutic dose to be effective due to the high risk of severe
toxicities of adjacent organs at risk.

Locally advanced unresectable pancreatic cancer is a typical
example where CIRT has shown benefit over conventional
radiotherapy. The physical and biological characteristics of
carbon ions allows for the delivery of larger and more effective
doses than X-rays or protons. The Japanese centers conducted a
Frontiers in Oncology | www.frontiersin.org 4
phase II single arm clinical trial in patients with unresectable
locally advanced pancreatic cancer where the 2-year overall
survival in patients receiving CIRT reached a remarkable rate
of 42 percent in comparison to the 12 to 30 percent achievable
with conventional radiotherapy (66, 67). Additional data on
patients who received higher CIRT dose than the previously
published cohort confirmed the promising results with a 2-year
survival of ~60% (68). The results of CIRT compared to
conventional treatment methods for selected tumors with the
focus on overall survival are shown in the Table 1. These results
were derived from phase I/II clinical trials and were compared to
historical controls with all the caveats associated with early phase
non-randomized single arm studies; therefore, there is a crucial
need for controlled randomized phase III trials to address all the
potential biases and confounders or alternate approaches to
generate level I evidence (115).
HEAVY ION THERAPY TECHNOLOGY
DESIGN AND CAPABILITIES ARE
CONTINUOUSLY IMPROVING

With the ongoing construction and commissioning of the
present heavy ion clinical centers, technology innovation
continues. The systems that are under construction continue to
benefit from the latest technological advancements. For example,
a CIRT facility in Yamagata prefecture in Japan and one under
construction at Yonsei University in Seoul have the latest
superconducting rotating gantry that is 2/3 the size of the
gantry in QST Hospital, Japan. This is due to a more compact
novel design of scanning magnets that are 1/3 smaller than the
existing ones at QST Hospital and an increase of the magnetic
field strength in the superconducting magnets (116).

The next generation of heavy ion systems will feature even
more utilization of superconductivity to further reduce system
size which should translate into cost reduction. Operational cost
will decrease with further automation of the accelerator control
system. It will utilize high power ion sources that can provide an
order of magnitude higher dose rate, which is crucial for large
dose hypofractionated treatments. Fast magnetic field changing
transport magnets should be installed in the entire heavy ion
accelerator and beam transport system. Together with
appropriate accelerator control system software modifications,
such changes will enable ultrafast (on the order of 1 minute)
switching times between various ion types which is crucial for
personalized optimization of treatment plans based on biological
effect capabilities (117). Novel, fast particle detectors utilized in
control systems will enable very precise particle control and
highly accurate dose delivery even at the highest dose rates (118).
Novel imaging methods will enable volumetric imaging at the
isocenter, highly precise range verification, and uncertainty
reduction leading to better utilization of the sharp Bragg peaks
of heavy ions. Fast and precise dose calculation engines coupled
with deep learning algorithms in treatment planning will enable
efficient adaptive re-planning, a necessary tool to implement
heavy ion treatment.
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For CIRT, two biological effect models have been used, the
Japanese microdosimetric kinetic model (MKM) and the
German local effect model (LEM) (54–59). A commercially
available treatment planning system for CIRT is available that
uses both models (from RaySearch Laboratories AB, Stockholm,
Sweden). Undoubtedly, with further research and experience,
these models will continue to improve, and new models will be
developed within the U.S. The largest number of patients with
the longest follow up treated on phase I/II clinical trials have
been treated with the MKM model. Gantry-less systems for
upright patient positioning (standing or sitting in a chair) for
imaging and treatment delivery are under development and will
result in substantial equipment cost reductions.

While it is true that a future system bearing these novel
features at low cost is an attractive idea worth research and
development, we first need to establish the clinical role and
efficacy of heavy ions in patients. Therefore, we argue that
current commercially available heavy ion solutions are
adequate for today’s needs and if the first U.S. heavy ion
centers are constructed now, novel clinical trials can
immediately begin investigating the role of heavy ions in U.S.
cancer care. Such a center could be operated more cost effectively
if most of the treatments are hypofractionated.
THE U.S. IS CONTRIBUTING TO
RESEARCH EFFORTS TO IMPROVE
HEAVY ION THERAPY TECHNOLOGY

Heavy ion therapy has not been re-established in the U.S. due to
the capital cost of equipment, operational costs, lack of FDA
cleared equipment and lack of CPT billing codes and a
reimbursement model. Despite its lack of a therapeutic heavy
ion center, the U.S. has significantly contributed towards
improving understanding of the biological effects of heavy ions
and the heavy ion technology for medical use. In 2013, the
Department of Energy (DOE), along with the National Cancer
Frontiers in Oncology | www.frontiersin.org 5
Institute (NCI) hosted a Community Input Workshop on Ion
Beam Therapy (119). The workshop identified clinical
applications and radiobiological requirements for the use of
heavy ions in cancer therapy, assessed beam requirements and
delivery systems for future heavy ion beam facilities, and
identified research and development activities needed to bridge
the gap between the current capabilities and future requirements
that are needed to maximize the medical benefit of the heavy ion
accelerator and delivery systems.

In 2015 the DOE launched the Accelerator Stewardship
program to make particle accelerator technology widely
available to science and industry by supporting use-inspired
basic research in accelerator science and technology, including
medical applications for advanced cancer therapies (120). From
2015 to 2017 there were a total of 23 awards, among which four
were dedicated to improving heavy ion therapy.

The NCI also awarded several research grants aimed at high
LET and heavy ion technology development. These included a
grant investigating On-line PET Based Intra-Beam Range
Verification and Delivery Optimization for Improved Particle
Radiation Therapy and investigating Large-Area Plasma Panel
Detectors for Particle Beam Radiation Therapy. In early 2020, the
NCI announced a request for applications to investigate
“Radiobiology of High Linear Energy Transfer (High LET)
Exposure in Cancer Treatment” and awarded three to five
grants. The private industry sector has also invested in
developing an advanced cancer therapy accelerator (121).
CANCER PATIENTS IN THE U.S. NEED
ACCESS TO CLINICAL HEAVY ION
THERAPY SYSTEMS FOR
CLINICAL RESEARCH

In April 2016, the NCI hosted a multidisciplinary workshop on
the biology of charged particle therapy where internationally
TABLE 1 | Comparison of heavy ion therapy with conventional radiotherapy clinical results – examples indicating the potential benefit of heavy ion therapy.

Disease Conventional CIRT Note

Pancreatic Cancer 12-30% (67) 42% (66) & 60% (68) 2y OS, locally advanced, unresectable
Pancreatic Cancer 12-32% (68) 46% (69, 70) 5y OS, pre-op
Rectal Cancer 20-46% (71–76) 50% (77) 5y OS, post-op, recurrent, surgery
Rectal Cancer 3-49% (78–81) 50% (77), 5y OS, post-op, recurrent, chemo+RT
Sacral Chordoma 52% (surgery) (82–84), 74% (82–84), 10y OS, surgery badly impacts QoL
Sacral Chordoma 62% (surgery+X-ray) (82–84), 74% (82–84), 10y OS
Osteosarcoma 10-14% (85, 86) 33-47% (87–90) 5y OS, inoperable
H&N Mucosal Melanoma 35% (+/-surgery, +/- chemo) (91–93) 54% w/chemo (94–97) 5y OS, see (91–97) for more results
Chordoma 15-54% (98, 99) 80% (100) 10y LC, skull base
H&N adenoid cystic
carcinoma

27-56% & 24-59% (101, 102) 74% & 68% (101, 102) 5y LC & 5y OS, mostly inoperable, see (97, 101–110) for more results

H&N bone and soft
tissue sarcoma

21-58% (108–110) 80% (68) 5y LC, Bone & Soft Tissue Sarcoma

Liver Cancer Protons 50% & 39% (111) ~70% & 45% (111) 3y OS & 5y OS, HCC, less acute toxicities
Prostate Cancer 70-78% (112, 113) >80% (114) 5y OS, biochemical free, high risk, G2 or higher urinary and

rectal toxicities 4.1% and 0.4% for CIRT. Higher for other modalities.
Y, year; chemo, chemotherapy; OS, Overall Survival; H&N, Head and Neck; LC, Local Control; HCC, Hepatocellular carcinoma; G2, grade 2; CIRT, carbon ion radiotherapy; RT,
radiotherapy; QoL, quality of life.
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recognized experts gathered to discuss the current knowledge of
particle therapy in cancer acknowledging the limitations of the
research data generated so far to show biological benefits of
heavy ions and identifying knowledge gaps that need to be filled
with ongoing or future research (122). Therefore, we need to
continue conducting basic science investigations to uncover the
full potential of heavy ions.

However, we would like to stress that the need for continuing
basic science research should not be the primary reason for
establishing heavy ion centers in the U.S. Presently, options,
though limited, do exist to secure heavy ion beam time to
perform scientific experiments either in the U.S (123–125) or
internationally (126–131). However, it is neither convenient nor
cost effective for U.S. investigators to travel abroad and ship
biological samples to conduct experiments. Although these
convenience factors do hamper active investigations in heavy
ions, limited research activities are being performed. The NCI is
actively guiding heavy ion biology researchers to collect relevant
global data that can be compared across centers and countries for
generation of consensus statements and reporting guidelines. In
2017, the NCI commissioned a panel of internationally
renowned experts to review the current state of heavy ion
research and to generate guidelines for reporting the physical
parameters of the particle beams for biological research and
future clinical applications.

Although clinical data has been collected on more than 37,000
patients worldwide suggesting potential clinical benefit for heavy
ion therapy over standard X-ray radiotherapy for selected
cancers (26, 27, 132) none of these patients were treated on
randomized clinical trials. Therefore, we need to design
prospective randomized clinical trials using the current
knowledge and the latest technologies available for
radiotherapy to definitively establish level 1 evidence of benefit.
We need to treat all patients whose cancer is suitable for heavy
ion treatment on novel clinical trials to uncover the full benefit of
this therapy. It is challenging and not feasible for U.S. physicians
to design and conduct heavy ion related clinical trials at non-U.S.
heavy ion centers. In addition to the coordination of logistics, the
cost of travel, food and housing, treatment, and follow-up at
foreign sites can be substantial.

The NCI has mobilized the international community and
funded a dose escalation phase I trial “A Prospective Phase I
Clinical Trial of Carbon Ion Radiation Therapy for Locally
Advanced, Unresectable Pancreatic Cancer” which irradiates
Chinese patients at the Chinese Proton and Heavy ion center
in Shanghai (133). To date, no U.S. citizen has been treated on a
phase III clinical trial using heavy ion treatments abroad. Only 15
U.S. citizens have been able to travel abroad for CIRT
(manuscript under review). Global pandemics have made
international travel even more restrictive.

Despite the clear need to construct heavy ion clinical
treatment centers in the U.S., there are fundamental practical
challenges to overcome in the process. These include the lack of
FDA clearance and the lack of a heavy ion therapy
reimbursement model in the U.S. The lack of FDA clearance
and a reimbursement model will make it impossible to recover
Frontiers in Oncology | www.frontiersin.org 6
the facility initial capital investment and ongoing operating costs.
Without a realistic reimbursement model, health care
organizations will not be able to create a viable business plan
without substantial governmental or philanthropic support. The
price of the heavy ion equipment at the first U.S. facility is at the
mercy of international vendors and is strongly influenced by
the global political and economic climate. The U.S. has no
commercial vendor to offer a solution.
THE U.S. SCIENTIFIC AND MEDICAL
COMMUNITIES ARE ANXIOUS TO RE-
ESTABLISH HEAVY ION THERAPY
IN THE U.S.

In 2015, the NCI awarded two exploratory planning grants
entitled “Planning for a National Center for Particle Beam
Radiation Therapy Research” (134, 135). These grants were
aimed at assisting U.S. institutions that have been actively
working to establish heavy ion therapy centers in planning the
research component of such a center. A two-day heavy ion
dedicated annual symposium named the “International
Symposium on Heavy Ion Therapy (ISIT)” started in 2014 to
gather U.S. and international heavy ion experts to discuss topics
that are relevant in restoring clinical heavy ion therapy in the U.S
(136). The symposium also served as a forum to present scientific
results to help guide future research at the proposed centers.
Moreover, the symposium provides the opportunity for heavy
ion therapy vendors to present the latest advancements in their
system development to help inform the U.S. institutions on the
cutting-edge capabilities of heavy ion systems offered on
the market.

Every third year, the Particle Therapy Cooperative Oncology
Group (PTCOG) holds its annual meeting in the U.S. The
education section provides a valuable opportunity for U.S.
institutions to learn about heavy ion therapy benefits and the
details of system design and setup while the scientific section is
dedicated to presenting the latest basic science and clinical
research results from the world experts on particle therapy and
to stimulate research interest in the U.S (6). In addition to the
staunch effort of the U.S. scientific community to bring heavy ion
therapy technology back to this country for cancer treatment, the
U.S. congress has also expressed its support. Congress has issued
a statement on the Departments of Labor, Health, and Human
Services Section of the Omnibus Bill that encourages the NIH to
explore further the development of a state-of-the-art heavy ion
research facility in the U.S. Furthermore, the congressional
statement encourages the NIH to work with the Departments
of Defense and Energy, and other applicable Federal agencies to
equip the first U.S. heavy ion research center (137).

Mayo Clinic in Jacksonville, Florida has announced plans to
build the first clinical/medical grade heavy ion therapy facility in
the U.S./Americas. This facility will include a hybrid carbon ion
and proton particle accelerator (synchrotron) which will be fully
capable of accelerating other ions (such as helium). There will be
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two proton treatment rooms with gantries and one carbon ion
room with a single fixed horizontal port. Groundbreaking is
anticipated in the spring of 2022 with protons available for
commissioning in late 2025 and carbon ions available for
commissioning in 2026.

RECOMMENDATIONS FOR SUCCESSFUL
RE-INTRODUCTION OF HEAVY ION
THERAPY IN THE U.S.

The following recommendations are based on the reports of
workshops and discussions at conferences on heavy ion cancer
therapy including some organized by the authors (AP and HC)
and planning efforts supported by the Department of Health and
Human Services to plan for heavy ion cancer therapy research
(119, 122, 135, 136).

We note that there are ample clinical and scientific data
confirming that heavy ion treatments are safe, effective, and can
be beneficial in several cancer types.

Therefore, we propose the following:

1) The establishment of the first heavy ion therapy facilities in the
U.S. should follow a dramatically different path from that of
proton radiotherapy.

a. We propose to build a limited number (2–3) of modest sized (1
or 2 treatment rooms capable of treating 300 to 600 patients
per year) heavy ion centers, with capacity to accept the
appropriate number of patients needed for rapid accrual
into clinical trials but small enough to minimize the cost of
construction, equipment, and operation. Using the SEER
database cancer statistics and indications for heavy ion
therapy used in Japan and Germany, the Mayo Clinic in
Rochester, MN has estimated that there are approximately
44,340 patients diagnosed with cancers with indications for
heavy ion therapy each year in the U.S. The Mayo Clinic in
Rochester, MN treats approximately 1200 patients each year
with proton therapy. In reviewing these patients, it is
estimated that 12-13% would be eligible for heavy ion
therapy. Therefore, a limited number of heavy ion therapy
facilities in the U.S. would have negligible impact on the
existing and planned proton facilities. A review of the Mayo
Clinic Rochester Cancer Registry revealed that over 780
patients are evaluated each year who have indications for
heavy ion therapy. Practically, the first heavy ion facilities will
be developed sequentially rather than simultaneously. To
accelerate the completion of phase III clinical trials for each
indication for heavy ion therapy, near simultaneous
development would be ideal to accrue patients to clinical
trials expeditiously. Depending on the funding available,
some of the centers may be gantry-less configurations with
horizontal beams with upright (standing or sitting) patient
positioning for basic research as well as clinical trials for an
appropriate subset of disease sites.

b . We hypothes ize that the di fferent ia l RBE and
immunomodulatory effects of heavy ions in the cancer and
healthy tissue sets heavy ions apart from proton radiotherapy.
Frontiers in Oncology | www.frontiersin.org 7
Hypofractionation should be the approach to test and
implement heavy ion treatment clinically. If hypofractionation
proves to be the most efficacious approach to deliver heavy ions,
as appears to be the case based on past and ongoing trials in
Japan and Europe, new reimbursement models that consider
the entire course of treatment rather than per fraction
reimbursement can be developed. This will help to keep the
cost of a course of CIRT in line with a conventionally fractioned
course of intensity modulated radiotherapy or proton
radiotherapy. It will also allow for higher patient throughput.
More importantly, the patients will complete their radiation
treatment faster, return to work sooner, and require less support
from their family, friends, and employers. Less acute toxicity
also means requiring less costly supportive care and an
increased ability to receive more systemic therapy if needed
for the cancer treatment. Less acute and late toxicity also
translates into better function and improved quality of life
with lower costs associated with treating adverse events.
Improved cancer control will also translate into fewer costs
associated with treating recurrent cancer. The cost savings will
be quantified in prospective clinical trials.

c. We propose that the first U.S. heavy ion facilities be supported
for an initial period by Federal and State agencies, possibly in
partnership with commercial vendors and institutions to
conduct clinical trials to define the comparative
effectiveness and cost effectiveness of heavy ions until the
relevant regulatory approval and health care service
reimbursement models are established and implemented to
help sustain the operation of the centers.

2) The ideal heavy ion treatment facility would have existing
patient volumes to match the capacity of the facility, allow
easy, rapid and efficient access via responsive, respected
radiation oncologists with particle therapy and subspecialty
expertise who will communicate openly and in a timely
manner with referring physicians, patients and their
families; access to photon and proton therapy on site to
ease randomization, radiation therapists, certified medical
dosimetrists and medical physicists with particle therapy
expertise; educational infrastructure to train the next
generation of heavy ion therapy providers, research
infrastructure to conduct basic science and clinical research
with an established track record of clinical trial expertise, and
an NCI-de s i gna t ed comprehens i v e cance r and
comprehensive academic medical center to provide surgery,
medical therapy, rehabilitative services, social services,
psychologic support, chaplain services for spiritual support,
and concierge services to help patients and family members
with referrals, the intake process, transportation, food,
housing, entertainment, and insurance coverage.

3) To continue supporting research and development that will lead
to more compact, efficient, and less expensive heavy ion
technologies. These will help to make heavy ion treatment
accessible to more patients once its benefit is defined by the
clinical trials conducted in the initial U.S. centers. However, the
initial centers will need to be establishedwith the current state of
the art technology to conduct the trials as soon as possible.
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a. We expect that the initial U.S. heavy ion therapy systems, as
any other new technology in its infancy, need to be safe,
effective, and function reliably. Their primary function would
be to deliver clinical beam to conduct clinical trials with basic
and translational research components.

b. We theorize that if clinical trials prove the benefit of heavy ion
therapy in selected patients, these results, combined with
cost-effective treatment strategies and technology
advancements, will lead to appropriate proliferation of
heavy ion centers driven by reduced cost, increased health
care demands, and other market forces. But first, the U.S.
needs the establishment of a limited number of supported
heavy ion therapy centers now.

4) Private, federal, state, and philanthropic funding support are
essential to establish, construct, and equip a limited number
of heavy ion centers in the U.S. that utilize currently existing
technologies in the market.
DISCUSSION

There is strong basic physics, biology, immunomodulatory and
clinical evidence to document the safety, efficacy, and potential
benefits of heavy ion radiotherapy to the extent that it must be
clinically tested and implemented in the U.S. A limited number
of centers in the U.S. should be established and supported now to
conduct clinical trials in conjunction with basic and translational
research to ascertain the appropriate indications for heavy ion
Frontiers in Oncology | www.frontiersin.org 8
radiotherapy. In the meantime, technological development
should continue to develop more compact, efficient, and less
expensive sources of therapeutic energy heavy ion beams, ion
delivery systems, and dose verification processes. New
reimbursement approaches should consider the course of
treatment based on the hypofractionation benefit of heavy
ions, leading to improved oncologic, quality of life and
functional outcomes, and reduced health care costs in the long
term. We assert that, even with higher initial investments, the
overall value may be equivalent and possibly better than protons
and other conventional radiotherapy modalities.
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