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Radiation therapy (RT) is emerging as an interventional modality in the cancer-immunity
cycle, augmenting the activation of an adaptive immune response against tumors. RT,
particularly in combination with immunotherapy, can enhance immune memory effects
and shape the tumor-directed T-cell populations. However, a single cycle of RT delivered
to a limited number of polymetastatic lesions is rarely sufficient to achieve systemic
control. We hypothesize that several rounds of RT, akin to several rounds of
immunotherapeutic drugs, is likely to provide greater clinical benefit to patients with
metastatic disease. We propose that the repeated exposure to tumor antigens released
by “pulsed-RT” (i.e., treating 2-4 tumor lesions with 3 irradiation cycles given one month
apart) may amplify the adaptive immune response by expanding the tumor-specific T-cell
receptor repertoire, the production of high-affinity tumor antibodies, and the generation of
memory lymphocytes and thereby improve immune control of systemic disease.

Keywords: radiation therapy, immunotherapy, metastatic cancer, adaptive immunity, memory effect
INTRODUCTION

Radiation therapy (RT), along with surgery and chemotherapy, are the three original pillars of
cancer treatment. More than half of patients with newly diagnosed cancer receive RT as part of
treatment (1). The clinical effectiveness of RT results not only from local control via induction of
DNA damage at the treatment site but also from the ability to induce immune-mediated systemic
antitumor effects that may control metastatic disease (2–4). RT is referred to as an “in-situ vaccine”
owing to its ability to trigger antigen-specific, adaptive immunity (2). RT affects many of the steps in
the cancer-immunity cycle, which begins with the release of cancer-associated neoantigens and
proceeds through the activation of innate and adaptive immune responses, culminating in tumor
killing (3). Although RT given with immune checkpoint blockade has led to unprecedented
responses in some patients, these responses mostly remain rare and transient. In this article, we
first discuss the biological rationale for RT-mediated “vaccination” to enhance systemic immune
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responses. We then outline current challenges in treating
polymetastases with RT. Next, we propose the concept of
“pulsed-RT,” which we define as three cycles of treatment
given to 2-4 lesions per cycle, and describe the potential
mechanisms that seem to support the effectiveness of pulsed-RT.
RT INDUCES SYSTEMIC ANTITUMOR
IMMUNE RESPONSES

Converting Tumors Into In-Situ Vaccines
RT is known to prompt the release of neoantigens and activate
antigen-presenting cells (APCs). At 30 to 60 hours after
irradiation with moderate doses (e.g., 10Gy), tumor cells
undergo immunogenic cell death, which leads to release of
tumor antigens (5). Irradiated tumors can express somatic
mutations that generate neoepitopes, which can serve as targets
of more robust immune responses (6, 7). One case report of a
patient with non-small cell lung cancer (NSCLC) who
experienced a complete response to RT and CTLA4 blockade
demonstrated a rapid in vivo expansion of CD8+ T-cells that
recognized a neoantigen encoded in a gene upregulated by RT
(8). Thus, RT may increase the expression of immunogenic
mutations in the irradiated tumor, which subsequently leads to
the formation of neoantigens and activation of tumor specific
CD8+ T-cells.

Linking Innate and Adaptive Immunity
by Priming T-Cells
During immunogenic cell death, radiation-damaged tumor cells
subsequently activate APCs by translocating or releasing
endogenous damage-associated molecular patterns (DAMPs)
such as, calreticulin, ATP, and high-mobility-group-box-1
(HMGB1) that activates TLR4. These signals collectively lead
to a potent inflammatory cytokine response that promotes DC
maturation, upregulation of costimulatory signals that facilitate
cross-priming of cytotoxic CD8+ T-lymphocytes, and
upregulation of chemokine receptors (4). This cascade of
events will eventually activate and attract effector adaptive
immune cells to elicit antitumor functions. Moreover, RT-
induced damage results in production of cytoplasmic DNA
fragments, the presence of which activates the cGAS/STING
pathway (9). Specifically, the damaged nuclei of tumor cells
release double-stranded DNA fragments into the cytosol. The
cytosolic protein cGAS converts those fragments into cGAMP,
which activates the protein STING. This leads to the production
of type-I interferons (IFNs), which promote the recruitment and
activation of DCs and lead to adaptive immune activation
(9–11).
Reprogramming the Tumor
Microenvironment
Tumors are known to use several mechanisms to evade immune
surveillance, including downregulation of MHC-I expression,
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suppression of effector cytokines and chemokines, and
production of inhibitory soluble factors such as TGF-b (4, 12).
Poorly immunogenic tumors can also impair effector T-cells by
expressing inhibitory checkpoint ligands, such as PD-L1, leading
to exhausted/nonfunctional phenotype. In addition, since
tumors lack the expression of costimulatory molecules (CD80,
CD86, OX40L, 4-1BBL) amongst others, the T-cells become
anergic and get eliminated. Moreover, inhibitory immune cells,
such as M2 macrophages, myeloid-derived suppressor cells
(MDSCs), regulatory T-cells (Tregs), and stromal fibroblasts,
can also drive T-cell suppression and apoptosis (13–15).
Optimized RT at the right dose and fractionation schedule,
could promote an inflammatory response in tumors by
inducing IFNs and chemokines that attract T-cells (16, 17).
Low-dose RT (<2Gy), for example, leads to repolarization of
tumor-associated macrophages from M2 to iNOS+ M1 cells (18),
and promotes the infiltration of effector CD4+ T- and NK-cells,
accompanied by reduction in TGF-b cytokine (19). The RT
induction of chemokines such as CXCL9, CXCL10, CXCL11,
and CXCL16 facilitates the homing of T-cells to tumors (18, 20–
22). The upregulation of MHC-I molecules, Fas, and natural
killer group 2 member D (NKG2D) on residual tumor cells in
response to higher doses of RT allows recognition by incoming
T-cells, with subsequent release of effector cytokines and killing
of tumor targets (4).

Synergistic Combination of RT
and Immunotherapy
Given the ability of metastatic tumors to disguise and evade
immunity by armoring themselves with suppressive cellular and
physical barriers, especially by forming an inhibitory stroma, the
abscopal effect remains quite rare in the clinic (12). This indicates
that RT by itself is insufficient to activate and maintain antitumor
immunity, thus there has been increased interest in combining
RT with immunotherapy. Our group previously showed that a
single cycle of SBRT (12Gy×3 fractions) combined with a
costimulatory OX40 agonist produced abscopal responses in
a murine model of PD1-resistant lung adenocarcinoma while
RT or OX40 agonist alone did not (23). Additionally, immune
checkpoint inhibitors such as anti-CTLA4 and anti-PD1/PD-L1
liberate T-cells from immunosuppression and reduce exhaustion
(24–26). Alternative immunotherapies (TIM-3, LAG-3, and
TIGIT) are also under investigation to overcome T-cell
exhaustion (27). Clinical findings have provided some evidence
of added benefits of combining RT and immunotherapy (28–33).
For example, in a phase II single-arm study, patients with
oligometastatic NSCLC given pembrolizumab after completing
locally ablative RT to all known sites of disease showed a median
PFS of 19.1 months, which exceeded the historical median of 6.6
months (P=0.005), with no reduction in quality of life (34). In
another randomized trial, the combination of pembrolizumab and
SBRT (to onemetastatic site) in patients with oligometastatic NSCLC
did not extend PFS or OS (29). These findings suggest collaboration
between RT and immunotherapy, but the inconsistencies underscore
the need to explore new treatment strategies, such as increasing the
number of RT cycles or irradiating additional metastatic lesions.
August 2021 | Volume 11 | Article 737425
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CLINICAL CHALLENGES OF TREATING
POLYMETASTATIC DISEASE WITH RT

Currently, the most accepted clinical indication for curative-
intent RT in metastatic cancer is for oligometastatic disease
(having 1-5 metastatic lesions) (35). Several randomized trials
support using consolidative SBRT for oligometastases. The first
trial involved 49 NSCLC patients with three or fewer metastatic
deposits remaining after first-line systemic therapy (36). Long-
term follow-up (median 39 months) confirmed a durable PFS
benefit from consolidative SBRT (14.2 vs. 4.4 months, P=0.022)
as well as significantly longer OS (41.2 vs. 17.0 months, P=0.017).
Another trial used upfront systemic therapy and allowed up to
five lesions (37). The trial was stopped early after an interim
analysis (29 patients) revealed a significant improvement in
median PFS in SBRT group (9.7 vs. 3.5 months, P=0.01) at a
median follow-up time of 10 months. Similarly, the SABR-
COMET trial with 99 randomized patients allowed up to 5
metastatic lesions to be irradiated with SBRT (up to three in
any single organ system). Despite experiencing grade-2 or
greater adverse events (including three deaths), the SBRT
group had a longer median OS (41 vs. 28 months, P=0.09) and
longer median PFS (12 vs. 6 months, P=0.001) compared to the
control palliative therapy group (38). The benefit of consolidative
SBRT for patients with larger numbers of metastatic lesions (>5)
remains unclear given the lack of adequate representation in the
aforementioned trials (37–39). One concern is that increasing the
number of sites to be treated with SBRT substantially increases
the clinical workload, as distinct clinical RT plans are required
for each lesion. Thus, the clinical workflow may restrict the
number of metastatic sites that can be treated at one time. We
propose to circumvent workflow-based restrictions by using
pulsed-RT, in which 2-4 larger lesions are treated per cycle for
three cycles. Moreover, irradiating multiple lesions (>5)
simultaneously in one setting may add unwanted toxicity that
may be avoided by pulsed-RT strategy. Emerging data suggests
that pulsed-RT may have distinct biologic advantages when
compared with single course treatment, as outlined below.
HOW MIGHT PULSED-RT ACHIEVE
SYSTEMIC CONTROL?

Similar to conventional vaccines that may require “booster cycles”
to generate long-term memory, the concept of pulsed-RT,
involving repeated RT cycles, may rely on generating tumor-
associated antigens with each treatment cycle to build cellular and
humoral memory. Together, given the systemic antitumor
immune effects induced by RT, the limitations of using SBRT
for widespread metastases (especially 5 or more lesions), and the
knowledge gleaned from vaccine agents, we propose that pulsed-
RT, in which 2-4 lesions are treated per cycle for three cycles, may
improve systemic disease control. A recently published preclinical
study using personalized ultra-fractionated stereotactic adaptive
radiotherapy (PULSAR) in combination with a-PD-L1
demonstrated that spacing radiation fractions 10 days apart
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would achieve better tumor control and immunological
memory in “cold” tumors in comparison to traditional daily
fractions (40). Our cytokine data discussed below, comparing RT
to pulsed-RT with or without anti-CTLA-4 checkpoint inhibitor,
confirms the observed outcomes with repeated cycles of RT
regarding immune stimulation and systemic activation.

Activation of Innate and Adaptive
Immunity by Pulsed-RT
To demonstrate that pulsed-RT could enhance macrophage and
T-cell stimulation and effector functions, we have developed a
bilaterally transplanted murine model of lung adenocarcinoma.
The right hind legs of 129Sv/Ev mice were subcutaneously
implanted with 2.5×105 344SQ-P cells to establish primary
tumors, while the left legs were concurrently implanted with
1×105 cells on day 0 to establish secondary tumors. Primary
tumors were irradiated with 12Gy×2 on days 9 and 10, while
secondary tumors were irradiated on days 15 and 16 with the
same dose as primary. We also included control groups where
only primary tumors were irradiated, and additional groups
where anti-CTLA4 was given i.p. (50µg/injection). Sera were
collected on day 19 post-tumor inoculation and analyzed by
multiplex cytokines panel (BioRad #M60009RDPD). When
comparing RT to pulsed-RT (Figure 1A), IL-1a (P=0.21) and
IL-1b (P=0.04) proinflammatory cytokines were upregulated
with pulsed-RT, which is indicative of innate immune-cell
activation. IL-12(p70) cytokine was also upregulated (P=0.09)
along with IFN-g (P=0.13), which shifts the balance towards Th1
antitumor responses. Moreover, the monocyte chemoattractant
protein-1 (MCP-1/CCL2) was increased (P=0.07), which usually
helps attract monocytic precursors to the TME, that can further
differentiate into M1 or M2 macrophages, therefore making
MCP-1 act as a double-edged sword. At last, TNF-a cytokine
was elevated with pulsed-RT treatment (P=0.10) which is
previously shown by others to mediate abscopal responses (41)
and favor M1 macrophage polarization (42). We next sought to
investigate if using systemic anti-CTLA4 might augment the
efficacy of pulsed-RT (Figure 1B). Indeed, IL-12 (40) cytokine
(P=0.03) and KC (CXCL1) chemokine (P=0.01) were
significantly upregulated, while there was no change detected
in the Th2-polarazing IL-6 cytokine (P=0.73) (43).

Pulsed-RT May Further Activate B and
NK-Cells
RT-induced antitumor immune responses are predominantly
attributed to MHC-I−restricted CD8+ cytotoxic T-cells, but
MHC-II−restricted B- and NK-cells are also important drivers
of antitumor immunity. Tumor-infiltrating B-cells are
heterogeneous and have distinct functional subsets that can be
either tumor-promoting or suppressing (44). For example,
IL-10- and TGF-b-producing regulatory B-cells exert several
protumor functions, while B-cells that are associated with
tertiary lymphoid structures (TLSs), seem to be associated with
more favorable clinical outcomes (44–47). TLSs are ectopic
structures arising in inflamed, infected, or cancerous tissues
that can generate an adaptive immune response (45–48). In
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one study of patients with melanoma, chemokine gene-
expression signatures predicted the presence of TLSs and
linked the presence of tumor TLSs with better OS (49). B-cells
role can be summarized as 1) sampling local tumor antigens for
presentation, 2) maturation to plasma cells and production of
antibodies that mediate antibody-dependent cellular cytotoxicity
(ADCC), 3) promote antitumor immunity by secreting IFN-g
and IL-12 as well as Granzyme B and TRAIL, which directly kill
tumor cells (50). In the hypothesized process of pulsed-RT, a
portion of effector B-cells differentiate into memory B-cells with
each cycle (Figure 2A, blue curve), and can rapidly become
effector cells again upon re-exposure to the same tumor-specific
antigen. This translates into faster antibody production,
facilitated ADCC through NK-cells engagement, and enhanced
production of antitumor cytokines with subsequent RT cycle(s).
Additional studies are warranted to further dissect how pulsed-
RT may impact memory B-cell generation. On the other hand,
NK-cells can also be activated via the NKG2D receptor, and RT
has been shown to upregulate its ligand on various tumors (51,
52). Gathering the above, pulsed-RT treatment may enhance the
crosstalk between B- and NK-cells and reprogram the TME in
favor of antitumor outcomes.
Frontiers in Oncology | www.frontiersin.org 4
The RT−Immune Memory Effect
As noted previously, RT acts to prime and enhance the adaptive
immune system. Pulsed-RT might enhance RT-immune
memory effects, leading to the production of long-lived
immune memory cells, which could be amplified by the
addition of immunotherapy (Figure 2A). Tumor-rechallenge
experiments in previous preclinical studies showed complete
tumor rejection as well as increased antigen-specific memory
CD8+ T-cells in mice that cleared initial tumors after
combination therapy of RT and anti–PD-1/PD-L1 (26, 53).
One supporting study with PULSAR radiation (given in two
cycles, 10 days apart) showed better immunological memory
upon MC38 tumors rechallenge, that was medicated by CD8+ T-
cells (40). Moreover, the existence of an RT-immune memory
effect is supported by a secondary analysis of KEYNOTE-001,
suggesting that patients previously treated with RT had better
response to anti-PD1 (pembrolizumab) given afterwards (54).
Other immunotherapeutic agents, such as IL-2 with RT also
seemed to produce synergistic immune-memory effects,
especially in patients with a history of previous RT (median
OS 8.8 vs. 7.34 months without previous RT, P=0.0116) (55).
Although these findings from clinical studies are encouraging,
A B

FIGURE 1 | Effector cytokines produced by pulsed-RT, bridging innate and adaptive immunity. (A, B) The right hind legs of 129Sv/Ev mice were subcutaneously
implanted with 2.5×105 344SQ-P cells to establish primary tumors, while the left legs were concurrently implanted with 1×105 cells on day 0 to establish secondary
tumors. Primary tumors were irradiated with 12Gy×2 on days 9 and 10, while secondary tumors were irradiated on days 15 and 16 post-tumor inoculation for the
pulsed-RT group. Where applicable anti-CTLA4 was given i.p. on days 6 and 12. Sera were collected on day 19 (n=5 mice/group) and subjected to multiplex
cytokine/chemokine analysis. Plates were read with Luminex platform and values were compared using Student’s t-tests.
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FIGURE 2 | (A) Systemic effects of traditional vs. pulsed radiation therapy with anti-CTLA4. 1). Used with traditionally fractionated radiation therapy (RT), CTLA4
inhibitors boost the activation of T-cell clones with high-affinity T-cell receptors (TCRs) and expand the peripheral TCR repertoire, resulting in more robust activation
of tumor-reactive T-cells and formation of memory T-cells (Tm). However, this combination usually fails to reach the assumed abscopal threshold, which may explain
why abscopal effects are so rarely observed in the clinic. 2). With pulsed-RT, the host immune system has a greater chance of being repeatedly exposed to the
same tumor antigen, leading to immediate differentiation of memory cells into effector cells (Teff). Similarly, memory B-cells that differentiate into plasma cells would
produce 10 to 100 times the number of antibodies than were produced during the primary response. As a result, the adaptive immune response triggered by
pulsed-RT would presumably reach the abscopal threshold and have a greater chance of producing systemic response, which would be further improved by the
concurrent use of anti-CTLA4. (B) Schematic overview of known and hypothesized functional interactions between lymphocytes in antitumor adaptive immune
responses triggered by traditional vs. pulsed radiation therapy. 1). Traditional radiation therapy (RT) induces immunogenic cell death in cancer cells, releasing tumor
neoantigens and activating antigen-presenting dendritic cells (DCs), which in turn migrate to local lymph nodes. In the lymph node, activated DCs present antigens to
CD8+ T-cells through MHC-I molecules and CD4+ T-cells through MHC-II molecules. Clones of activated helper T-cells produce cytokines that initiate B-cells and
CD8+ T-cells, which become cytotoxic T-cells. The latter ultimately leave the lymph node and travel to sites where cells bearing the target antigen reside, initiating a
cytotoxic antitumor response. Conversely, at the time of the initial response to antigen, CTLA4 expressed on regulatory T-cells (Tregs) binds to CD80/CD86 on
antigen-presenting cells (APCs) and inhibits T-cell activation. 2). In pulsed-RT, the initiated B-cells mature into effector B-cells and can further differentiate into plasma
cells, which can produce antibodies against tumor-specific antigens. These antibodies in turn directly against their target proteins, triggering NK-cells−directed
antibody-dependent cellular cytotoxicity (ADCC) or complement-dependent cytotoxicity (CDC) reactions. Effector B-cells can also enhance T-cell responses by
producing stimulatory cytokines. As T and B-cells mature into effector cells, a subset of each differentiates into memory cells and can immediately become effector
cells upon re-exposure to the same tumor-specific antigen. As a result, a secondary exposure to a given antigen would trigger an immune response that is much
more rapid and more vigorous than that seen with the first pulsed-RT exposure. Conversely, regulatory B-cell (Bregs) can act in concert with Tregs to suppress
antitumor immune responses. IFN, interferon; IL, interleukin; TGF, tumor growth factor; TNF, tumor necrosis factor.
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the mechanisms underlying these observations have yet to be
elucidated. One possibility is the presence of a T-cell subtype
with tissue-resident memory (TRM), which is correlated with
favorable prognosis in several types of cancer (56, 57). In one
recent study, a proportion of T-cells showed increased motility
and higher production of IFN-g after RT and shared
transcriptional-level similarities with TRM T-cells (58). These
findings led the investigators to speculate that T-cells capable of
surviving irradiation are more likely to have a TRM-like
phenotype (58). With that rationale, pulsed-RT regimen may
lead to the accumulation of more TRM T-cells with each cycle
and prevent future tumor recurrence.
Expanding and Diversifying Tumor-
Specific T-Cell Receptor Repertoire
With Pulsed-RT
Cancer vaccines aim to activate and stimulate the proliferation of
tumor antigen-specific T-cells, however, this approach is limited
by the fact that every patient’s tumor has a unique set of
mutations. A melanoma study for patients who responded to
epitope-loaded DC vaccine showed expansion of T-cells specific
to the epitope, but also several other nonvaccine tumor antigens,
suggesting that mobilization of a broad T-Cell Receptor (TCR)
repertoire is required for tumor control (59). Preclinical work
has demonstrated that RT-mediated tumoricidal effects largely
hinge on both the presence and the specificity of cytotoxic T-cells
(60). Addition of checkpoint inhibitors, such as anti-CTLA4 has
been shown to augment RT to expand T-cell populations and
increase diversity in TCR clonotypes (24, 53). For example, in a
mouse model of triple-negative breast cancer showed that RT
combined with anti-CTLA4 controlled both primary and
metastatic tumors via tumor-infiltrating CD8+ T cells with a
diverse TCR repertoire (61). Also, a recent clinical study revealed
that a diverse and persistent TCR repertoire was associated with
abscopal responses to RT and ipilimumab in patients with
NSCLC (8). Similarly, our phase I-II clinical trial of SBRT plus
ipilimumab in patients with metastatic tumors in lung or liver,
partial response or stable disease (≥6 months) was associated
with a higher number of peripheral CD8+ T-cells, higher CD8+/
CD4+ ratios, and an increased number of either activated (4-1BB
expressing) or potentially exhausted (PD1 expressing) CD8+ T-
cells (62). RT has shown to induce the production of potential
tumor antigens that leads to a phenomenon known as ‘epitope
spreading’ (63–65), activating an array of T-cells, which in turn
target the tumor to release another wave of antigens, creating a
positive feedback loop (66, 67). These findings suggest that
multiple rounds of RT (directed to a different lesion at each
round) would increase the quantity and diversity of tumor-
specific T-cells and further enhance this loop. Moreover, given
the antigenic diverse nature of metastatic lesions, irradiating
those tumors with a second or third pulse of RT will not only
release tumor antigens shared with primary irradiated tumor, but
will also release neoantigens specific to the metastatic site(s). The
release of any identical antigens from the first and subsequent
cycles of RT will contribute to the TCR repertoire clonality and
Frontiers in Oncology | www.frontiersin.org 6
the building of immunological memory in an incremental
fashion (68), while releasing of neoantigens at metastatic sites
will contribute to TCR repertoire diversity. Both clonality and
diversity are important to prevent future recurrence and to
generate systemic antitumor response.
FUTURE DIRECTIONS WITH PULSED-RT

When traditionally fractionated RT is used, the addition of CTLA4
inhibitors boosts the activation of T-cell clones with high-affinity TCRs
and expands the peripheral TCR repertoire (69). However, RT alone or
even with certain checkpoint inhibitors may fail to reach the assumed
threshold for optimal induction of abscopal effects. When RT is
delivered in pulses, the immune system is repeatedly exposed to the
same tumor antigens, leading to faster deployment of memory T-cells.
Similarly, memory B-cells that differentiate into plasma cells can
produce 10-100 times more antibodies than those secreted during
the primary immune response. Therefore, the adaptive immune
response triggered by pulsed-RT could reach the abscopal threshold
and have a greater chance of producing a systemic response that is
further improved by concurrent use of anti-CTLA4 (Figure 2A). In
conclusion, given the potential of pulsed-RT to generate more tumor-
associated antigens, the pulsed-RT will act as an evolving “therapeutic
vaccine” that improves systemic control. A schematic overview of
known and hypothesized functional interactions between lymphocytes
in antitumor adaptive immune responses triggered by traditional RT vs.
pulsed-RT is illustrated in Figure 2B. Delivering RT in pulses may be
especially beneficial for polymetastatic disease, in that it would provide
a feasible and safe way to irradiate more metastatic lesions, while using
current techniques and current clinical workflows. The optimal
treatment schemes and potential mechanisms underlying this
approach are worthy of further investigation.
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