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Abstract

Background: In bacteria, sigma factors and other transcriptional regulatory proteins recognize
DNA patterns upstream of their target genes and interact with RNA polymerase to control
transcription. As a consequence of evolution, DNA sequences recognized by transcription factors
are thought to be enriched in intergenic regions (IRs) and depleted from coding regions of
prokaryotic genomes.

Results: In this work, we report that genomic distribution of transcription factors binding sites is
biased towards IRs, and that this bias is conserved amongst bacterial species. We further take
advantage of this observation to develop an algorithm that can efficiently identify promoter boxes
by a distribution-dependent approach rather than a direct sequence comparison approach. This
strategy, which can easily be combined with other methodologies, allowed the identification of
promoter sequences in ten species and can be used with any annotated bacterial genome, with
results that rival with current methodologies. Experimental validations of predicted promoters also
support our approach.

Conclusion: Considering that complete genomic sequences of over 1000 bacteria will soon be
available and that little transcriptional information is available for most of them, our algorithm
constitutes a promising tool for the prediction of promoter sequences. Importantly, our
methodology could also be adapted to identify DNA sequences recognized by other regulatory

proteins.
Background tion of all genes. However, promoter recognition is
Adaptation is essential to the survival of any biological effected by an interchangeable sigma (o) factor that asso-
organism and requires appropriate transcriptional regula-  ciates to RNAP, directs the newly formed holoenzyme to

tion to modulate gene expression profiles. In prokaryotes,  a promoter and contributes to transcription initiation [1].
RNA polymerase (RNAP) is responsible for the transcrip-  Transcription levels can be further modified by additional
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regulators (activators and repressors) that affect the
recruitment or the activity of RNAP holoenzymes at vari-
ous promoters [2]. A common feature of ¢ factors and
transcriptional regulators is their ability to recognize spe-
cific DNA patterns in order to modulate gene expression.
It is presumed that, as a result of evolutionary pressure,
these regulatory sequences were selected upstream of
some genes or operons and excluded from the rest of the
genome.

Bacterial genomes usually encode many ¢ factors. Of
these, the principal ¢ factor would be responsible for the
expression of housekeeping function genes. The remain-
ing o factors are thought to direct the expression of genes
required for specialized functions such as stress responses
or sporulation [1]. ¢ factors can also be classified accord-
ing to their structural homology to either 670 or 654 of
Escherichia coli. 670-related factors, which constitute the
vast majority of known ¢ factors, are composed of two
major DNA-binding domains capable of sensing a certain
spacing range when associated to RNAP [3,4]. These ¢ fac-
tors usually recognize two DNA boxes (herein referred as
the promoter) of approximately six base pairs (bp)
located roughly at 10 and 35 bp upstream of the transcrip-
tion start site (TSS). Spacing between these two boxes gen-
erally ranges from 16 to 20 bp [5]. ¢ factors similar to 654
also recognize two DNA boxes in the promoter region.
However these elements are located approximately 12 and
24 bp upstream of the TSS. Other major differences
between 654 and 670 family members are the ability of 654
to bind DNA in absence of RNAP and the requirement of
an isomerization step by an activator to render 654-con-
taining holoenzymes processive.

o factors can tolerate a variety of mismatches from their
consensus sequence. For example, a typical E. coli 670 pro-
moter sequence contains two mismatches within both the
-35 and -10 hexanucleotide elements [6]. However, there
is generally a direct relationship between promoter
strength and the similarity to the corresponding consen-
sus sequence [7]. Variations over three orders of magni-
tude have been reported in ¢70-dependent promoter
strength in E. coli [8]. In some cases, an extended -10 pro-
moter box may be observed and may substitute for the
absence of a clear -35 element. Extended -10 promoter
boxes were reported to be present in 20% of promoter
sequences in E. coli [6] and 45% in Bacillus subtilis [5].

A variety of techniques have been used to identify TSS and
to characterize o factor-DNA interactions. However, the
formal identification of promoters by molecular methods
can be tedious and is currently not amenable to genome-
wide applications. Consequently, it is important to
develop algorithms that can rapidly and accurately evalu-
ate the presence of promoters, without the need for exten-
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sive biochemical studies. Current algorithms for promoter
detection, typically developed for a specific bacterium,
exploit different characteristics of promoter sequences.
Some approaches are based on sequence representation or
statistical overrepresentation. Other methodologies have
also been described for the detection of DNA motifs in
sets of regulatory sequences [9-12] or by comparing the
upstream regions of orthologous genes from different spe-
cies [13-17]. A method based on the weaker stability of
the DNA double-helix in promoter regions was also
recently used to identify promoter regions [18]. However,
most of these procedures are not suitable for the identifi-
cation of precise prokaryotic promoters because of the
inherent variability in promoter sequences and because
they do not allow variable spacers between two DNA
motifs.

Sequence representation strategies designed for promoter
identification are usually based on a prior knowledge of
some characterized sequences. These algorithms are thus
trained to recognize sequences that are similar to a previ-
ously defined representation of a promoter. This
approach was first used by Galas et al. [19]. As reported by
Stormo, numerous false positives (FP) are however
obtained with this strategy [20]. For example, allowing
two mismatches in the 670 consensus -10 hexanucleotide
produces roughly one hit per 30 nucleotides (nt) in the
complete genome of E. coli. A more accurate representa-
tion of DNA-binding motifs consists of position-specific
weight matrices (PSWM) [21], and online tools such as
Virtual Footprint [22] are available to facilitate their anal-
ysis in the context of bacterial gene expression. Nonethe-
less, searching for full E. coli 670 consensus promoter
sequences using more flexible mismatch restrictions
offered by PSWM also generates a vast amount of hits
[23]. More recently, Huerta and Collado-Vides used a
PSWM-derived methodology and detected approximately
15 putative promoters/100 nt in IRs [24]

By adding several constraints such as grouping sequences
and filtering with the distance from the start codon, they
achieved a sensitivity of 86% with an average of 1.88 puta-
tive promoters/100 nt. Several groups have also used gen-
eral neural networks but no significant improvements
have been achieved over the PSWM [25]. Hidden Markov
Models (HMM) have also been trained to identify pro-
moter sequences recognized by the principal ¢ factor in B.
subtilis [26] and Campylobacter jejuni [27]. A learning
approach based on a Support Vector Machine (SVM)
employing a variant of the mismatch string kernel was
also recently described [28]. Importantly, all above-men-
tioned approaches depend on a previously established or
trained description of promoters, and were not designed
to function with organisms for which promoter informa-
tion is insufficient.

Page 2 of 14

(page number not for citation purposes)



BMC Bioinformatics 2006, 7:423

Statistical overrepresentation approaches can identify
short DNA sequences that are present more frequently in
a subset of sequences than what would be expected by
chance according to the background distribution. Using
such a procedure, Vanet et al. have proposed a description
of the promoter sequences recognized by the principal o
factor of Helicobacter pylori from different sets of IRs [29].
More recently, the MITRA algorithm, which also evaluates
the spacing between promoter boxes and the positional
bias from the start codon, was applied to 20 bacterial
genomes. Four of these genomes generated statistically
strong signals possibly corresponding to principal ¢ fac-
tor-dependent promoter sequences, including the ones
from H. pylori and B. subtilis [30]. Using a different
approach, the principal ¢ factor consensus sequence was
identified among over-represented motifs in B. subtilis,
although the methodology was not designed especially
for that purpose [31]. The latter study was based on the
method of Li et al., designed to identify regulatory protein
binding sites in E. coli [32]. It has been noticed that the E.
coli 670 consensus sequence was not identified by this or
other approaches, a failure that was attributed to the
greater variability of promoter sequences within this
organism [32]. A similar method was also unable to dis-
tinguish a motif related to the principal ¢ factor promot-
ers in the complete genome of Streptomyces coelicolor [33].
In general, although some statistical approaches had lim-
ited success, these methods do not seem appropriate in
their current form for the identification of promoter
sequences in a variety of organisms.

In this paper, we describe a novel approach based on
matrices representing the genomic distribution of hexanu-
cleotide pairs, and designed to predict precise promoter
sequences using any annotated prokaryotic genome. This
approach can be applied to organisms for which almost
no transcriptional data is available, without the need for
extensive biochemical characterization. The strategy is
based on the observation that, although promoter
sequences can vary for every ¢ factor and according to the
GC content of each genome [34], promoters are over-rep-
resented in IRs relative to the whole genome. Since this
bias appears to be conserved throughout evolution, the
characteristic distribution of promoter sequences is thus
used to identify promoters in a variety of prokaryotic
organisms. Briefly, a score is calculated based on the sim-
ilarity between a matrix representing the genomic distri-
bution of most promoter sequences reported in the
literature and a matrix representing the genomic distribu-
tion of a putative promoter sequence. A Z-score is next cal-
culated according to the background. To assess the
validity of our method, over 680 characterized promoter
sequences from ten genomes were gathered from data-
bases and from the literature, and tested using various sta-
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tistical indicators. Experimental validations of promoter
prediction also supported our approach.

Results

Genomic distribution of regulatory sequences is biased and
conserved

Transcription initiation is an important step in the regula-
tion of most bacterial cell processes [35,36]. For this rea-
son, it is thought that transcription factor binding sites
have been evolutionary selected in some IRs, and gener-
ally excluded from the rest of prokaryotic genomes in
order to avoid aberrant gene expression. Since regulatory
sequences can often tolerate a variety of mismatches with
respect to the corresponding DNA motif consensus
sequence and still be efficiently bound by their cognate
DNA binding protein, these degenerated sequences are
also believed to be subjected to a similar selective pres-
sure. Therefore, the genomic distribution of transcription
factor consensus DNA binding sequences and close deriv-
atives is expected to be biased towards IRs possibly
involved in transcription initiation relative to the whole
genome. To test this latter hypothesis, we have analyzed
the genomic distribution of consensus sequences repre-
senting, respectively, the recognized sequences of a princi-
pal o factor, an alternative ¢ factor and a transcriptional
regulator of three bacterial species (Figure 1 and data not
shown). The global distribution of these DNA sequences
is reported in "distribution matrices", which consists of
tables of dimension 4 x 4 where lines and columns corre-
spond respectively to the number of mismatches in the
proximal and distal boxes of a particular DNA sequence.
For every matrix cells, the proportion of hits in putative
promoter-containing IRs (P) relative to the whole genome
(G) was calculated, with respect to a defined spacing range
between the two hexanucleotide boxes forming the evalu-
ated sequences. Light colored cells correspond to low P/G
ratios while darker cells represent higher frequencies. For
example, the genome-derived distribution matrix of the E.
coli 670 consensus promoter sequence shows that 65% of
genome sequences bearing one mismatch in the -35 ele-
ment (distal box) but a perfect -10 (proximal) box are
localized in P regions relative to the whole genome. At
three mismatches in each box (50% degeneracy of the
analyzed sequence), about 16% of the hits are found in P
regions, which roughly corresponds to the proportion of
IRs in the genome. Such sequences are thus considered
randomly distributed in the genome. Results presented in
Figure 1 thus demonstrate that transcription factor con-
sensus DNA binding sites and related mismatch(es)-con-
taining derivatives tend to be preferentially localized
inside IRs. Moreover, the genomic distribution of these
sequences shows related patterns in all tested bacterial
species (Figure 1).
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Genome-derived distribution matrices generated for consensus sequences from transcription factors of three
different organisms. (A) E. coli, (B) B. subtilis, and (C) M. tuberculosis. The name of the transcription factor is identified above
each matrix. The mismatch number of each cell is indicated on both sides of matrices. The analyzed consensus sequence is
shown under each matrix, along with the allowed spacing range. The first row corresponds to principal ¢ factors, the second
row to alternative G factors, and the third row to transcriptional regulators.

Principal o factor promoter sequences

Because principal ¢ factor promoter sequences are readily
available and relatively abundant in many bacterial spe-
cies, we decided to further explore their genomic distribu-
tion. Figure 2 (upper and middle rows) shows genome-
derived distribution matrices of experimentally identified
promoter sequences from E. coli, B. subtilis and M. tubercu-
losis. As expected, these matrices contain patterns similar
to those observed with the corresponding principal ¢ fac-
tor consensus sequences (Figure 1). Importantly, the
genomic distribution of sequences from the coding region
of the rpoB genes from the same bacterial species did not
show any enrichment inside of P regions (Figure 2, last
row and data not shown). These results suggest that tran-
scription factor DNA binding sites from various bacterial
species have a genomic distribution significantly different
from that of non-regulatory sequences.

Synthetic matrices

From these observations, we hypothesized that a particu-
lar genome-derived distribution matrix may appropriately
represent several promoters. Hence, it could be possible to
calculate a score reflecting the similarity between the dis-
tribution matrix of a typical promoter and the genome-
derived distribution matrix of any hexanucleotide pair
from the same organism. A high score would indicate a
strong probability that the tested sequence is also a pro-
moter. However, the best reference matrix should not nec-
essarily be obtained from an existing promoter sequence.
In fact, an interpolated matrix could indeed offer more
flexibility and be much more effective. We therefore
decided to synthetically generate distribution matrices
according to the values observed in each cell of the
genome-derived distribution matrices for all available
experimentally identified principal ¢ factor-dependent
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Specific examples of genome-derived distribution matrices generated for characterized principal ¢ factor-
dependent promoter sequences and non-regulatory sequences from three different organisms. (A) E. coli, (B) B.
subtilis, and (C) M. tuberculosis. Gene names and experimentally identified promoter sequences, as reported in the literature,
are indicated above each matrix. The first row corresponds to characterized promoter sequences closely resembling to the
proposed consensus. The second row presents experimentally identified promoters containing more mismatches relative to
the proposed consensus. The last row shows distribution matrices of hexanucleotide pairs with approximately 3 mismatches

position per box, which were extracted from the middle of the rpoB coding sequence (bona fide non-promoter sequences).

promoter sequences (see Additional file 1: A schematic
description of the procedures used in this work). A range
of ratios was next determined for each cell, resulting in
over 248 million different synthetic matrices (see Addi-
tional file 2: Detailed information on the generation of
synthetic matrices). Synthetic matrices are thus not affili-
ated to any hexanucleotide pairs, but are rather produced
from the genome-derived distribution matrices of experi-
mentally identified promoters. Moreover, it could be pos-
sible to identify synthetic matrices suitable to detect
promoter sequences for a specific organism ("organism-
specialized matrix"), and perhaps for all bacteria ("general
matrix").

Using distribution matrices to detect promoters

To measure the ability of synthetic matrices to correctly
identify promoter sequences, we tested them on 684 char-
acterized principal o factor dependent promoter
sequences from ten bacterial species (Table 1). Complete
IRs containing these promoters were extracted from their
respective genomes along with 30 nt on each side. These
"enlarged IRs" were next scanned using two hexanucle-
otide windows with respect to the allowed spacing ranges.
For each hexanucleotide pair, a genome-derived distribu-
tion matrix was generated and used to calculate a score
based on its similarity to the synthetic matrix under eval-
uation (see Additional file 3: Detailed example of score
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Table I: Analysis of characterized promoter sequences in ten bacterial genomes.

Organism-specialized matrices General matrix

Organism GC Prom. IRs Nt Spacing
E. coli 50.8% 377 335 117238 16-20
B. subtilis 43.5% 148 142 43446 16-20
C. glutamicum 53.8% 34 33 13572 16-20
M. pneumoniae 40.0% 30 27 7662 15-19
M. tuberculosis 65.6% 28 25 7812 1620
S. coelicolor 72.1% 17 17 5756 16-20
H. pylori 38.9% 17 16 4725 19-23
C. jejuni 30.5% 14 14 2872 16-20
B. japonicum 64.1% I I 4229 16-20
S. aureus 32.9% 8 5 2206 16-20

Sensitivity  FP/100 nt Name Sensitivity  FP/100 nt
42.4% 1.13 229794169 31.0% 1.09
56.8% 0.99 113362653 50.0% 0.93
29.4% 1.36 223574489 14.7% 1.36
43.3% 1.08 235984178 30.0% 1.07
57.1% 0.74 223574908 50.0% 0.84
58.8% 1.42 248361134 47.1% 1.27
47.1% 0.53 91939249 35.3% 0.70
42.9% 0.84 107109675 35.7% 0.77
90.9% 0.73 192892765 90.9% 0.97
37.5% 0.59 24624174 37.5% 1.13

For each organism, the GC content, the number of gathered characterized promoter sequences, the number of distinct IRs containing these
promoters, the total number of nt in these IRs, and the allowed spacing between hexanucleotide pairs are indicated. The sensitivity and FP rate
obtained with the best synthetic matrix (organism-specialized) and the general matrix are also shown.

calculation). Different metrics have been tested and the
selected one provided the best outcome (data not shown).
Since the -10 box has a more important role in transcrip-
tion [37], the mean of scores sharing the same -10 box was
calculated. This latter averaged score had to be greater
than the threshold to consider the corresponding
sequence as a candidate promoter. Furthermore, since the
distance between the TSS and the proximal hexanucle-
otide box can slightly vary (which may cause the experi-
mental identification of -10 boxes to be inaccurate),
signals located at + 4 nt of an experimentally identified
proximal hexanucleotide box were considered as true pos-
itives (TP, see Methods). Indicators such as sensitivity,
specificity, precision, and performance were calculated for
each synthetic matrix [38]. We chose to present the FP rate
per 100 nt rather than the precision indicator to facilitate
comparison since the precision indicator does not take
into account the length of analyzed regions (Table 1). In
contrast with other studies [24,39], the analyzed regions
were not limited to a maximum length, longer regions
producing more FPs.

"Organism-specialized" synthetic matrices (selected on
the basis of the performance and sensitivity indicators)
gave interesting results for each tested organism (Table 1).
For instance, the synthetic matrix #113362653 identified
almost 60% of promoters among the set of 148 character-
ized promoter sequences from B. subtilis with approxi-
mately one FP/100 nt. Overall, the sensitivity of the best
matrix for each organism ranges from 29.4% to 90.9%
with 0.53 to 1.42 FP/100 nt (Table 1). Amongst the FP,
some could be uncharacterized real promoter sequences.
Performance, precision and specificity indicators ranged
respectively between 4.6-23.8%, 5.2%-24.4% and 98.6-
99.5% (data not shown). Cross-validation tests were also
conducted with E. coli and B. subtilis promoter datasets
and matrices very similar to the organism-specialized syn-

thetic matrices were identified. Moreover, the sensitivity
and FP rate of these cross-validation matrices were compa-
rable to the organism-specialized matrices obtained using
complete datasets, demonstrating the robustness of the
approach and suggesting that the various organism-spe-
cialized matrices are appropriate (see Additional file 4:
Three fold cross-validation results).

Interestingly, several synthetic matrices identified a signif-
icant fraction of promoter sequences in all tested
genomes. We thus undertook to find a matrix that would
be the best compromise for promoter detection in all bac-
teria. This was achieved by summing up the relative per-
formance indicator of each matrix on all genomes. The
best "general" synthetic matrix (#45012859) (Figure 3A
and Additional file 3) usually showed a slight decrease in
sensitivity relative to organism-specialized synthetic
matrices (Table 1). Nonetheless, the sensitivity of this gen-
eral synthetic matrix ranged from 14.7% to 90.9% with
0.70 to 1.36 FP/100 nt (Table 1), which is comparable to
other approaches for an equivalent FP rate (see Additional
file 5: Comparison with other bacterial promoter predic-
tion approaches). Furthermore, we have replaced our
scoring function by a function based on PSWM. The
results obtained with E. coli and B. subtilis normalized
PSWM promoter datasets, showed a significantly
decreased sensitivity and a lower FP rate in our design,
suggesting that the genomic distribution of promoter
sequences is more flexible, and hence more portable
between species than current promoter sequence models
(see Additional file 6: Comparison with normalized
PSWM scoring function).

The scores of all possible hexanucleotide pairs for a spe-
cific enlarged IR can be presented in a graph. As an exam-
ple, Figure 3 shows graphs obtained using the enlarged IRs
containing the characterized promoter sequences pre-
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Graphs of enlarged IRs containing characterized promoter sequences presented in Figure 2. The green arrow
represents the characterized promoter sequence. The start codon of the gene of interest is located at "0" on the X-axis of the
enlarged IR. The Y-axis coordinate shows the calculated score. The threshold of each region is shown (dashed grey line). The
sequence of all candidate promoters above the threshold is shown (5 merged overlapping -35 boxes from the different allowed
spacings along with the shared -10 box). (A) The general synthetic matrix (#45012859) used to calculate the scores presented
in the graphs. The name of the gene located downstream of the selected enlarged IR is indicated in each graph. E. coli (B), B.
subtilis (C) and M. tuberculosis (D). Scores obtained for the full E. coli rboB coding sequence were also plotted.

sented in Figure 2 for E. coli (Figure 3B), B. subtilis (Figure
3C) and M. tuberculosis (Figure 3D). The rpoB scanning
is also presented for E. coli since identical results were
obtained using the B. subtilis and M. tuberculosis
sequences (Figure 3 and data not shown). Interestingly,
Figure 3C (Bsu-lonA) shows one of many examples where
a -10 promoter box (consensus TATAAT) is coupled to a
ribosome binding site (RBS, consensus AGGAGG).

To assess the significance of our results, the analyses were
repeated on two types of shuffled genome sequences.
While retaining all the original genome information, the
shuffling destroys its structure, which is used by our meth-
odology to identify promoter sequences. The first shuf-
fling procedure was accomplished by repositioning

mononucleotides one region (gene or IR) at a time, thus
keeping the AT bias intact in each IR [40]. The second
shuffling was performed independently of gene annota-
tions, thus dispersing the GC content uniformly through
a genome. We surmised that most regulatory sequences,
and by extension their genomic distribution, would be
affected differently by these procedures. The overall sensi-
tivity obtained with shuffled genomes should thus be
decreased. Indeed, genome-derived distribution matrices
were completely different if calculated from the real
genome or from shuffled genomes (data not shown). As
expected, the second shuffling was much more detrimen-
tal to the observed sensitivity. For instance, the calculated
sensitivity with the general synthetic matrix dropped
respectively from 31% (intact genome) to 14% and 0.6%
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(shuffled genomes) for E. coli, and from 50% to, respec-
tively 17% and 0.5% for B. subtilis. The same trend has
been observed for other genomes (data not shown). Shuf-
fling performed with longer nucleotides blocks than
mononucleotide gave intermediate results (data not
shown).

Coupling sequence information to genome distribution
For some bacteria, consensus promoter sequences repre-
senting the sequences recognized by principal ¢ factors
are well characterized. For example, the consensus pro-
moter sequence for B. subtilis and E. coli is TTGACA <
>TATAAT [5]. We have thus examined the possibility of
decreasing the occurrence of FPs by introducing a very
simple sequence-dependent filter. Approximately half FPs
were eliminated by allowing up to three mismatches in
the -35 (distal) box and up to two mismatches in the -10
(proximal) box (the latter being more conserved in these
organisms). For instance, a sensitivity of 49% with 0.50
FP/100 nt for the specialized matrix and 44% with 0.44
FP/100 nt for the general synthetic matrix was obtained
for B. subtilis. Since fewer FPs were observed, the threshold
could be lowered, which can improve the sensitivity of the
algorithm. For example, the reduction of the IR specific
threshold (see Methods) from three to two standard devi-
ations upon sequence filtering gave a sensitivity of 58%
with 0.80 FP/100 nt in B. subtilis using the general syn-
thetic matrix. Figure 4 illustrates how the application of a
filter may allow the identification of an otherwise missed
promoter.

Prediction and biochemical validation of promoters

In addition to the IRs used to evaluate synthetic matrices,
we have applied our promoter detection algorithm on the
remaining IRs from the ten genomes mentioned in Table
1. Some predicted promoters from B. subtilis, E. coli and
M. tuberculosis were chosen for further investigation using
a biochemical approach. RNA was extracted from expo-
nentially growing cultures and TSS were determined by
primer extension analyses. The seven candidate promoters
for which a transcription signal was observed matched the
predicted sequence (Table 2). The distance between the
observed TSS and the potential -10 box was in all cases
either 5 or 6 nt. These results demonstrate that our algo-
rithm represent a valuable tool for the identification of
prokaryotic promoter sequences. Complete prediction
lists for these three organisms, and others, are available
upon request.

Discussion

In this work, we present evidences suggesting that regula-
tory sequences and their close derivatives have a biased
distribution pattern for IRs that may support transcription
initiation. Furthermore, our data support the idea that the
preferential location of regulatory sequences is shared
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The application of a simple sequence-dependent fil-
ter and the subsequent diminution of the threshold
allows the detection of an otherwise missed pro-
moter. Graphs reporting scores calculated for all hexanucle-
otide pairs located in the enlarged IR upstream of the B.
subtilis ftsA gene. (A) No filter applied. (B) Sequence-depend-
ent filtering (3 mismatches and 2 mismatches allowed respec-
tively in the -35 and -10 boxes relative to the B. subtilis
principal ¢ factor consensus sequence) followed by the
reduction of the region-specific threshold from 3 to 2 stand-
ard deviations above of the mean.

between bacterial species. In order to clearly demonstrate
the potential of genomic distribution as an indicator of
DNA motif function, we have developed an algorithm
that can identify a significant fraction of principal ¢ fac-
tor-dependent promoters in any prokaryotic organism,
using only a genome annotation and a synthetic matrix
(i.e. the general matrix, which was obtained from a train-
ing set composed of experimentally identified promoters
from ten bacterial species). Promoter predictions were
also made and experimentally verified, thus highlighting
the potential of our approach for promoter identification
in various prokaryotic organisms. Overall, our strategy
yielded results similar to those from other studies consid-
ering an equivalent amount of FP/100 nt (see Additional
file 5: Comparison with other bacterial promoter predic-
tion approaches). However, our algorithm took advan-
tage of a yet unexploited concept, can be used in a wide
variety of organisms, required almost no previous knowl-
edge of promoter sequences to be effective, and can be
combined with other methodologies. The fact that our
general matrix allowed the detection of more promoters
in all tested genomes relative to the E. coli and B. subtilis
principal ¢ factor normalized PSWM (see Additional file
6: Comparison with normalized PSWM scoring function)
also supports the idea that genomic distribution of pro-
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Table 2: Experimental validation of predicted transcriptional start sites.

Organism Gene Name Promoter sequence Z-Score
E. coli yfeA GTGGGCTTTGTCACGAGCACACAGACGGTCTTATACTGTATGATAAC 14.07
E. coli yefE AAAAGGGCTTGTCTCTTCTCATCAGGGTAGCTATAGTGTCGCCCCTT 9.74
E. coli secE ATCATTGCTGAGACAGGCTCTGTTGAGGGCGTATAATCCGAAAAGCT 7.75
E. coli tag ATATTATTGTCATTGTATGAAGGATATCGGGCATAGTAGCCCTGTAT 5.90
B. subtilis proB AAAAACCTTGACAAGTGTCTTTTTTCTTTGCATAATATAAAAAAATC 14.20
B. subtilis ImrA AATTTITCTTGACAATTGATGATTGAATCAAGATAATAGACCAGTCA 11.58
M. tuberculosis rpsA GACCGAGTTTGTCCAGCGTGTACCCGTCGAGTAGCCTCGTCAGGTAC 4.69

Bacterial species, gene names, predicted promoter sequences (underlined -35 and -10 boxes), experimentally identified transcriptional start sites (in
bold) and the corresponding Z-scores are shown for all tested IRs where a primer extension signal was detected.

moter sequences is easier to transfer across organisms
with regards to current promoter sequence models.

Although our approach is based on the genomic distribu-
tion of hexanucleotide pairs rather than a direct sequence
evaluation, it is still important to know the approximate
spacing range that is tolerated by a ¢ factor to efficiently
detect the corresponding promoter boxes (data not
shown). However, this distance appears to be very similar
in most bacteria. The spacing range limitation restrains
putative promoter signal contamination by irrelevant hex-
anucleotide pairs.

An important assumption in our method is that all pro-
moter sequences share a related genomic distribution pat-
tern. However, it is possible that some promoters fall in
distinct biological categories or slightly differ between
bacterial species. As a consequence, specific matrices
could be more adapted to different promoter types. For
example, a matrix could be more suitable for promoters
containing an extended -10 promoter box. Similarly, very
weak promoter sequences could bear an altered distribu-
tion pattern when compared to strong promoters.

Another important consideration in our study is the rela-
tively small size of prokaryotic genomes. Since many of
these contain only a few million bp, some hexanucleotide
pairs are particularly absent from IRs and/or from the
whole genome. Therefore, blanks (or 0) in mismatch con-
taining cells can be found in some genome-derived distri-
bution matrices, thus strongly altering the resemblance
with the synthetic matrix. Nonetheless, a few promoter
sequences containing a blank cell are identified by our
approach (see Mtb-rrs in Figures 2C and 3C), although
most of them are not (data not shown). Since the score is
calculated from the mean of hexanucleotide pairs sharing
the same proximal box, a blank occurring only at a partic-
ular spacing may not be too detrimental to the overall
score of a sequence.

An additional possibility to explain our inability to iden-
tify some promoters is that, although present in the
genome, some mismatch combinations may be relatively
rare, and a small variation in absolute numbers may have
a significant impact on P/G ratios. In addition, some pro-
moter sequences contain nt triplets corresponding to
codons frequently used in translation, which may flatten
their distribution bias for IRs. For instance, 19% of the TP
and 44% of the FN hexanucleotide pairs of E. coli evalu-
ated with the organism-specialized matrix (22% and 41%
respectively with the general synthetic matrix) include a
triplet which is used as a codon more frequently than
average. Thus, almost half of the FN in E. coli seem to have
an impaired distribution profile because of the inclusion
of at least one frequent codon.

In spite of the fact that our algorithm was designed for
fully sequenced and annotated genomes, preliminary tests
suggest that a genomic distribution calculated from a
closely related organism can be used as a reference with
similar results (data not shown). Similarly, errors in
genomes annotation could theoretically have an impact
on the results, albeit we have not observed any significant
deterioration of predictions using older versions of the E.
coli and B. subtilis genome annotations (data not shown).

We have shown that combining different detection strate-
gies by applying a very simple sequence-dependent filter
to our promoter predictions significantly decreases the FP
rate. Since accuracy is a trade-off between sensitivity and
the FP rate, this procedure could allow the reduction of
the threshold, thus leading to the detection of more TP
and increasing the sensitivity. The integration of a more
sophisticated sequence-dependent method to our strategy
could be used to further reduce the FP rate. Distance filters
were also successfully used by other groups to decrease the
number of FPs [24,39]. However, this can hardly be justi-
fied in biological terms as underlined by Huerta and Col-
lado-Vides [24]. Moreover, such filters may not be
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suitable for alternative ¢ factor-dependent promoters or
other transcription regulators. We have thus decided not
to exploit distance constraints, although it remains possi-
ble for an eventual user to determine if a putative pro-
moter is located at an appropriate distance from a gene of
interest.

Conclusion

A simple and intuitive concept about the preferential loca-
tion of regulatory sequences has allowed the identifica-
tion of principal o factor dependent-promoter sequences
in the genome of various bacteria. Minimal information
about the structure of the searched pattern was only
required for our algorithm to detect these promoters.
Moreover, it could be possible to predict promoters in
species for which little transcriptional information is
available using the proposed general matrix. Since a
biased distribution pattern also appear to be conserved for
alternative ¢ factors and other regulatory proteins in a
variety of prokaryotes, it should be possible to design dis-
tribution matrices to identify their corresponding DNA
binding sites.

Methods

Promoter sequences, corresponding genomes and IRs
datasets

Most of the E. coli and B. subtilis characterized promoter
sequence datasets were respectively gathered from EcoCyc
version 8.0 [41,42], and DBTBS release 3.1 [43,44], and
the literature [5,45]. To circumvent possible errors in pro-
moter datasets, consistency tests against corresponding
genomic sequences were performed [38] with the ASAP
gene annotation version m54 for E. coli K-12 strain
MG1655 [46,47], and SubtiList release R16.1 for B. subtilis
[48,49]. Binding sites that were not unambiguously
detected in their corresponding genome were excluded.
The complete corresponding IRs, to which 30 nt were
added on both sides, were then extracted from each
genome. This resulted in 377 characterized E. coli ¢79-
dependent promoter sequences from 335 different
enlarged IRs, and 148 B. subtilis cA-dependent promoter
sequences from 142 enlarged IRs. The procedure was also
applied to promoter sequences found in the MtbReglList
database release 1.1 for M. tuberculosis [50,51], and for
characterized promoters identified from the literature for
Corynebacterium glutamicum [52], M. pneumoniae [53], S.
coelicolor [54], H. pylori [55-57], C. jejuni [58], B. japonicum
[59-64], and S. aureus [65-69] (Table 1). Genome annota-
tions originated from: M. tuberculosis H37Rv (TubercuList
R6) [70,71], C. glutamicum ATCC13032 (NC_003450.3)
[72], M. pneumoniae M129 (NC_000912.1), S. coelicolor
A3(2) (NC_003888.3), H. pylori 26695 (PyloriGene R1.6)
[73,74], C. jejuni NCTC11168 (NC_002163.1), B. japoni-
cum  (NC_004463.1), and S. aureus Mu50
(NC_002758.2). Since there is no principal ¢ factor pro-

http://www.biomedcentral.com/1471-2105/7/423

moter consensus sequence clearly identified for M. tuber-
culosis, promoter sequences were selected as for groups A
and B of Table 1 in Gomez and Smith [75] using the
MtbRegList database. Similarly, only S. coelicolor promoter
sequences from Table 1 of Strohl [54] were considered.
Datasets are available in Additional file 7.

Genome-derived distribution matrices

Genomic distributions of hexanucleotide pairs were rep-
resented by a ratio of the number of hits in IRs located
upstream of a gene (P) to total hits in the whole genome
(G). Hits were counted only on the functional strand (on
the same strand than the following coding sequence) for
all spacings inside the allowed spacing range. Identical
hexanucleotide pairs with different spacer length will thus
have the same genome-derived distribution matrix pro-
vided that their respective spacings are included in the
allowed range. The genomic distribution of up to three
exclusive mismatches per hexanucleotide was also
reported in genome distribution matrices. Ratios at vari-
ous mismatches combinations were reported in genome-
derived distribution matrices of dimension 4 x 4 (Figurel,
2). Columns and rows respectively represent mismatches
in the -10 (proximal) and -35 (distal) boxes.

Synthetic matrices

248 371 200 distribution matrices were generated in silico
and referred to as "synthetic matrices". To create these, the
genome-derived distribution matrices of almost all char-
acterized promoter sequences available were analyzed,
and the range of variation in each cell was determined in
accordance with the observed ratios. The range and step
length was independently established in each cell.
Detailed information about synthetic matrices is available
in Additional file 2.

Score calculation

To calculate a score, the genome-derived distribution
matrix of a hexanucleotide pair was compared to a syn-
thetic matrix. The analytical approach was inspired by the
image processing field and involved four components,
each representing the mean of square differences between
matrices: R, is calculated on the raw data of the matrices,
and R, to R, are respectively calculated on the horizontal,
vertical and diagonal directional derivatives of matrices to
evaluate the three different slopes of the matrices. Each
slope is related to the representation of the genomic dis-
tribution of hexanucleotide pairs (proximal and distal
boxes). A weight (w) of % is next applied to each compo-
nent. The final score = 1/(WR;+ wWR,+ wR;+ WR,). See
Additional file 3 for a detailed example of score calcula-
tion.
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IR scanning

IR scanning was accomplished by taking the first six most
upstream nt of an enlarged IR along with the downstream
hexanucleotide window located at the shortest distance
within the specified spacing range. A genome-derived dis-
tribution matrix was then generated and a score was calcu-
lated with the above described score metric. This
procedure was repeated for all allowed spacings by mov-
ing the downstream hexanucleotide window by one nt.
The upstream hexanucleotide was next moved by one nt
and the same procedure was repeated until all appropriate
hexanucleotide pairs of the region were processed. The
mean of values obtained for all hexanucleotide pairs shar-
ing the same proximal box were then plotted on a graph
(Figure 3). Using the maximum values instead of the
mean gave very similar results (data not shown). Two
thresholds were selected. The region threshold (tR) was
set at three standard deviations above the mean of all
points from a specific IR. The genome threshold (tG) was
set at two standard deviations from the mean of all points
from all IR of a genome. tR and tG were optimized using
E. coli and B. subtilis promoters data (data not shown). The
value of any point had to be higher than both thresholds
to be considered as a candidate promoter. All adjacent
points above thresholds were combined in one peak and
represented by their highest point. The widest peak has 6
points and the mean is 1.25 point per peak. A peak had to
be located within 4 nt of an experimentally identified TSS
to be considered as a TP. All other points above thresholds
were considered as FPs. Points representing characterized
hexanucleotide pairs below the highest threshold were
considered as FNs, while all other points below this
threshold were considered as TNs. According to Tompa et
al., sensitivity is defined as TP/(TP + FN), specificity as TN/
(TN + FP), precision (or positive predictive value) as TP/
(TP + FP), and performance as TP/(TP + FN + FP) [38].

Evaluation of synthetic matrices

The evaluation of over 248 million synthetic matrices on
the 625 enlarged IRs (containing 684 characterized pro-
moter sequences from the ten genomes mentioned in
Table 1) was performed on the Mammouth Linux cluster
of the Université de Sherbrooke (1808 processors, 7.6
Tflops, 5.5 TB of RAM, 160 TB of HD). The performance
score for each synthetic matrix was calculated and the best
matrix selected as the specific matrix for each genome
(Table 1). The general synthetic matrix was selected from
the sum of the relative performances of each matrix on
each genome following S = (sum;(perf;/maxPerf;)) where
perf; represents the performance score of a given matrix in
the organism j, and maxPerf; represents the maximum per-

j
formance score of all matrices in the organism j.
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Cross-validation tests

Three-fold cross-validation tests were conducted with 1%
of the synthetic matrices randomly chosen from the previ-
ously described set. The E. coli and B. subtilis datasets were
randomly divided into three groups, and all possible com-
binations of two groups were used to select new special-
ized synthetic matrices. The statistical indicators were next
calculated on the remaining group. Results are presented
in Additional file 4.

PSWM scoring function

The scoring function of our method was replaced by a
function based on PSWM scores. The rest of the IR scan-
ning procedure remained absolutely identical to the ini-
tial design. The promoter datasets of E. coli and B. subtilis
were used to construct PSWMs, which were normalized
according to the intergenic ATGC content of the tested
genome. Results are presented in Additional file 6.

Shuffled genome

Two shuffled genomes were created. First, the regions
(genes and IRs) were independently shuffled to conserve
the possible AT bias of IR [40]. The second type was made
on the entire genome so that no bias is kept. Shuffled
genomes were next used to calculate genome-derived dis-
tribution matrices to assess the same enlarged IRs previ-
ously analyzed (data not shown).

Codon usage evaluation

By definition, a hexanucleotide contains 4 overlapping
codons. The mean of the utilization ratio of the eight
codons of a hexanucleotide pair was thus compared to the
average usage frequency of a codon (15.62/1000 residues
for E. coli) to evaluate if there is a difference between hex-
anucleotide pair sequences precisely identified (TP) or
missed (FN) (data not shown). Codon usages were taken
from the Codon Usage Database [76].

Biochemical validation of predicted promoters

All IRs for which no promoter sequence is characterized in
B. subtilis, E. coli and M. tuberculosis, were analyzed with
their respective organism-specialized matrix to predict
putative promoters. In order to validate some predicted
promoters under the control of the housekeeping ¢ factor,
predictions were selected on the basis of the putative func-
tion of their corresponding gene, the Z-score, the loci
organization and the promoter sequences. Validation of
the M. tuberculosis prediction was made on the closely
related non-pathogenic M. bovis BCG-Russia. E. coli K12
ATCC10798 and B. subtilis NIG2001 [77] were grown in
LB medium. M. bovis BCG-Russia was grown in Middle-
brook 7H9 medium supplemented with Albumine-Dex-
trose-Saline, Tween 80 and cycloheximide. All cultures
were harvested at an OD,, between 0.6 and 0.8 and RNA
was extracted using the Ribopure RNA extraction kit
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(Ambion) or the RNeasy kit (Qiagen). RNA was quanti-
fied by spectrophotometry and integrity was verified on
formaldehyde denaturing gel. Primer extensions were per-
formed according to standard procedures. Between 30
and 60 pg of RNA were used for each reaction. Extension
products were migrated on 5M urea-6% acrylamide
sequencing gels along with sequencing reactions. IRs were
cloned in pCR2.1-TOPO TA cloning vector (Invitrogen) or
pdrive TA cloning vector (Qiagen). Oligonucleotide prim-
ers are listed in Additional file 8. Sequencing ladders were
produced with the Sequenase 2.0 kit (USB) according to
the manufacturer's instructions. Gels were scanned using
a Molecular Dynamics Storm 840 Phosphorimager.
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