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The 2019 International Skeletal Dysplasia Society nosology update lists 441 genes for

which mutations result in rare human skeletal disorders. These genes code for enzymes

(33%), scaffolding proteins (18%), signal transduction proteins (16%), transcription

factors (14%), cilia proteins (8%), extracellular matrix proteins (5%), and membrane

transporters (4%). Skeletal disorders include aggrecanopathies, channelopathies,

ciliopathies, cohesinopathies, laminopathies, linkeropathies, lysosomal storage diseases,

protein-folding and RNA splicing defects, and ribosomopathies. With the goal of

evaluating the ability of mouse models to mimic these human genetic skeletal

disorders, a PubMed literature search identified 260 genes for which mutant mice

were examined for skeletal phenotypes. These mouse models included spontaneous

and ENU-induced mutants, global and conditional gene knockouts, and transgenic

mice with gene over-expression or specific base-pair substitutions. The human X-linked

gene ARSE and small nuclear RNA U4ATAC, a component of the minor spliceosome,

do not have mouse homologs. Mouse skeletal phenotypes mimicking human skeletal

disorders were observed in 249 of the 260 genes (96%) for which comparisons are

possible. A supplemental table in spreadsheet format provides PubMed weblinks to

representative publications of mutant mouse skeletal phenotypes. Mutations in 11

mouse genes (Ccn6, Cyp2r1, Flna, Galns, Gna13, Lemd3, Manba, Mnx1, Nsd1, Plod1,

Smarcal1) do not result in similar skeletal phenotypes observed with mutations of

the homologous human genes. These discrepancies can result from failure of mouse

models to mimic the exact human gene mutations. There are no obvious commonalities

among these 11 genes. Body BMD and/or radiologic dysmorphology phenotypes

were successfully identified for 28 genes by the International Mouse Phenotyping

Consortium (IMPC). Forward genetics using ENU mouse mutagenesis successfully

identified 37 nosology gene phenotypes. Since many human genetic disorders

involve hypomorphic, gain-of-function, dominant-negative and intronic mutations, future

studies will undoubtedly utilize CRISPR/Cas9 technology to examine transgenic mice

having genes modified to exactly mimic variant human sequences. Mutant mice will

increasingly be employed for drug development studies designed to treat human genetic

skeletal disorders.

SIGNIFICANCE

Great progress is being made identifying mutant genes responsible for human

rare genetic skeletal disorders and mouse models for genes affecting bone mass,
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architecture, mineralization and strength. This review organizes data for 441 human

genetic bone disorders with regard to heredity, gene function, molecular pathways,

and fidelity of relevant mouse models to mimic the human skeletal disorders. PubMed

weblinks to citations of 249 successful mouse models are provided.

Keywords: skeletal dysplasia, skeletome, mouse models, genetic disease, nosology

INTRODUCTION

Rare human genetic diseases cumulatively affect about 1 in
200 individuals and involve an estimated 7,000 genes. Major
research efforts are underway to identify these mutant genes
and characterize their disease phenotypes. Knowledge gained
can guide therapies and provide hypotheses to develop future
treatments. As recently summarized (1), “Genome sequencing
has revolutionized the diagnosis of genetic diseases. Close
collaborations between basic scientists and clinical genomicists
are now needed to link genetic variants with disease causation.
To facilitate such collaborations, we recommend prioritizing
clinically relevant genes for functional studies, developing
reference variant-phenotype databases, adopting phenotype
description standards, and promoting data sharing.”

Rare human genetic skeletal dysplasias affect about 1 in 5,000
individuals (2) and account for 5% of all birth defects (3). The
International Skeletal Dysplasia Society (ISDS, https://www.isds.
ch), promotes scientific progress in the field of skeletal dysplasias
and dysostoses, meets every second year, and published skeletal
nosology summaries during 2001 (4), 2006 (5), 2010 (6), 2015
(7), and 2019 (8). There are presently 441 skeletal nosology genes,
with an average of 20 new genes identified yearly (Figure 1). The
classification aims to (i) identify metabolic pathways active in
cartilage and bone, and their regulatory mechanisms; (ii) identify
cellular signaling networks and gene expression sequences
implicated in skeletal development; (iii) identify candidate genes
for genetic disorders; (iv) facilitate integration of data coming
from spontaneous and genetically engineeredmousemutants; (v)
help in developing diagnostic strategies; (vi) stimulate the design
and exploration of new therapeutic possibilities; and (vii) provide
a knowledge framework accessible to physicians as well as to basic
scientists and thus to facilitate communication between clinical
genetics and pediatrics and the basic sciences (4).

The objectives of the present review include further
characterizations of these 441 skeletal nosology genes and
evaluating the reliability of mutant mouse models to mimic these
human skeletal disorders.

HISTORICAL HIGHLIGHTS

Short stature and other visually obvious skeletal dysplasias were
apparent throughout human history (9). The discovery of X-rays
byWilhelm Röntgen (10) was quickly followed by the description
of osteopetrosis by Albers-Schönberg (11) and many skeletal
dysplasias during the following decades (12). Dual-energy X-
ray absorptiometry (DXA) technology, developed during the
1980s (13), permitting quantitation of bone mineral density
(BMD), and continued advances in computed tomography (CT),

providing 3 dimensional images, lead to increasing sophisticated
understanding of bone dysmorphology. The first nosology gene
identified wasCA2 (carbonic anhydrase 2, osteopetrosis), initially
in 1983 using electrophoretic, enzymatic and immunologic
techniques on red blood cell extracts (14), and subsequently
by genetic mutation analysis in 1991 (15). The first genetic
mutation for any human disease to be identified by WES
was DHODH (dihydroorotate dehydrogenase), responsible for
postaxial acrofacial dysostosis, in 2010 (16).

NOSOLOGY

Nosology is the classification of diseases, which in its simplest
form involves symptoms and pathogenic mechanisms. No
classification system is perfect and there are often multiple ways
to classify a given disorder. At the extremes, “lumpers” and
“splitters” prefer few and many categories, respectively (17).
Heredity can be X-linked, autosomal dominant, or autosomal
recessive. Skeletal dysplasias can affect the skeleton only, or
be part of pleiotropic syndromes affecting multiple organs.
Mutations of various genes within a molecular pathway can each
produce similar phenotypes. Loss-of function (LoF) mutations
completely disrupt the activities of their encoded proteins
but hypomorphic mutations allowing reduced protein activities
occur. Gain-of-function (GoF) mutations increase the activities
of enzymes and receptors and produce different phenotypes than
LoF mutations. Dominant-negative mutations adversely affect
functions of wild-type proteins. Mutations can occur within the
protein-coding region of the genome (exome), within introns,
or between gene coding regions. Mutations include deletions,
duplications, and inversions.

The 2019 edition of the ISDS Nosology and Classification
of Skeletal Disorders database organizes mutant human skeletal
phenotypes into 42 groups, based on clinical observations
and known gene/phenotype relationships (8). A total of 461
disorders and 441 genes are provided, when all 10 genes
listed within the Notes sections of the tables (Table 1) are
included. Updated HGNU gene symbols for 11 genes (Table 2)
are employed. Supplemental Table 1 provides an alphabetical
list in spreadsheet format of all 441 genes, with information
on heredity, gene function and mouse model status. Genetic
disorders are not listed, as mutations in many genes result in
multiple phenotypes. Inheritance patterns are 242 autosomal
recessive, 135 autosomal dominant, 34 autosomal recessive or
autosomal dominant depending upon the exact mutation in
the gene, 21 X-linked and 11 non-inherited, somatic mutations.
Three genes can have either germline or somatic mutations.

RMRP encodes an RNA regulating DNA transcription,
RNU4ATAC encodes an RNA that is a component of an enzyme

Frontiers in Endocrinology | www.frontiersin.org 2 February 2020 | Volume 10 | Article 934

https://www.isds.ch
https://www.isds.ch
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles


Brommage and Ohlsson Human Skeletal Disorder Mouse Models

FIGURE 1 | ISDS Nosology gene identification.

TABLE 1 | Genes identified in 2019 Nosology notes section.

Gene Model status Nosology notes comments

AFF3 (LAF4 in notes) Mouse model Microdeletion on Chr 2

C2CD3 Mouse model OFD phenotypes

COG1 No data CDG type 2G

EED Mouse Weaver syndrome

LMBR1 Mouse model Deletion affecting SHH ZRS

MACROH2A1

(H2AFY in notes)

Mouse model Deletion—PITX1 ectopic activation

RASGRP2 Mouse Osteopetrosis—leukocyte adhesion

SDC2 Mouse Chr 8q22.1 duplication

SUZ12 Mouse model Weaver syndrome

VANGL1 (STB2) Mouse Caudal regression—OMIM 600145

complex, andMIR140 is a microRNA. Proteins (and the 3 RNAs)
function as enzymes (146, 33%), scaffold components (79, 18%),
ligand/receptor signaling molecules (72, 16%), transcription
factors (62, 14%), cilia components (36, 8%), matrix proteins
(23, 5%), membrane transporters (19, 4%), and cohesionopathy
proteins (4, 1%). These eight gene function categories are
informative but arbitrary, and other categories can be envisioned.
For example, 23 enzymes are involved in the synthesis,
processing, and degradation of protein and glycosaminoglycan
matrix components. Skeletal disorders include malfunctions of
lysosomal function. Signaling genes can be assigned to BMP, FGF,
WNT, and other pathways.

There are no orthologous mouse genes for human ARSE
(arylsulfatase E) and RNU4ATAC (RNA, U4atac small nuclear,
U12-dependent splicing). Supplemental Table 1 summarizes
published data on the availability and fidelity of mouse
models for the 439 human rare bone disease genes. Mutant
mice with bone phenotypic data exist for 260 of the 439
genes (59%) with similar bone phenotypes observed for
249 (96%) genes. Supplemental Table 2 contains PubMed
hyperlinks to publications for all 249 genes provided in
Supplement Table 1 having mutant mouse bone phenotypes.
These two supplemental tables should provide a major resource
for the bone research community.

TABLE 2 | Gene symbol nomenclature.

Nosology gene symbol HGNC gene symbol

CIAS1 NLRP3

CDC45L CDC45

PPGB CTSA

DHPAT GNPAT

EVC1 EVC

FAM58A CCNQ

HSGNAT HGSNAT

LEPRE1 P3H1

PCNT2 PCNT

WISP3 CCN6

ZAK MAP3K20

HGNC, Human genome organization gene nomenclature committee.

Mutant mouse bone data are inconsistent with human skeletal
phenotypes for 11 genes (Ccn6, Cyp2r1, Flna, Galns, Gna13,
Lemd3, Manba, Mnx1, Nsd1, Plod1, Smarcal1). There are no
obvious explanations for or commonalities among these human-
mouse phenotype inconsistencies. For 97 genes (22%) mutant
mice have been generated and examined, but no skeletal data
were reported.Mutantmice do not appear to have been examined
for 82 genes (19%) and 36 (8%) of these genes belong to
the understudied Ignorome/Dark Genome (18–20). Individual
laboratories and/or consortia are encouraged to examine these
genes, now known to contribute to poorly understood human
rare bone diseases.

The number of bone nosology genes continues to increase
as novel genes affecting skeletal metabolism are identified
in human subjects. The genes described in this report form
an arbitrary “snapshot” taken during August 2019 and will
undoubtedly increase. Skeletal disorders for which mutant
genes have not been identified include CDAGS syndrome
(OMIM 603116), cherubism with gingival fibromatosis (OMIM
266270), chondrodysplasia punctata tibial-metacarpal type
(OMIM 118651), dysplasia epiphysealis hemimelica (OMIM
127800), femur fibula ulna syndrome (OMIM 228200),
hemifacial microsomia (OMIM 1642100, genochondromtosis
(OMIM 1373600, Moreno–Nishimura–Schmidt syndrome
(OMIM 608811), pachydermoperiostosis (OMIM 167100), and
thoracolaryngopelvic dysplasia (OMIM 187760).

Formation of a normal skeleton involves BMP, FGF, andWNT
signaling pathways and mutations in multiple genes within these
pathways often produce skeletal dysplasias. Bone cells respond to
parathyroid hormone, the active vitamin D metabolite calcitriol,
and circulating FGF23 as part of the calcium-phosphate
homeostatic system and disruptions in these hormones
produce skeletal endocrinopathies. Skeletal disorders involving
aggrecanopathies (13), channelopathies (21), ciliopathies
(22, 23), cohesinopathies (24), lamiopathies (25), linkeropathies
(26), protein-folding defects (27), ribosomopathies (28),
spliceosomopathies (29), and transcription factors (30) show
the importance of pathways not often thought to be involved in
bone development.
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SKELETAL DISORDER VIGNETTES

This section briefly summarizes selected skeletal disorders
resulting from various mutations, highlighting the wide range of
transcription and translation events that can be disrupted.

• Mutations can be benign with healthy nutrition but produce
disease when key nutrients are lacking. All humans have an
inactivatingmutation in GULO, encoding an enzyme involved
in the synthesis of ascorbic acid, and develop scurvy without
sufficient dietary intake of vitamin C. The ascorbate synthetic
pathway, involving aldehyde and aldose reductases, was only
fully characterized in 2010 (31). Ascorbic acid is a required
cofactor for the hydroxylation of proline and lysine residues in
collagen and disruption of the mouse gulonolactone oxidase
gene results in spontaneous bone fractures (32). Similarly,
human and mouse HAAO and KYNU genes are involved in
the synthesis of the enzymatic cofactor NAD and inactivating
mutations in these human and mouse genes can result in
congenital malformations (33).

• X-linked human mutations comprise 6% of the total skeletal
disorders. X-inactivation of one of the two X chromosomes
in women by long non-coding RNA specific transcript XIST
occurs, but about 20% of X chromosome genes escape this
inactivation (34). AMER1 and PORCN are X-linked genes that
code for components of the WNT signaling pathway, with
dominant mutations in women causing osteopathia striata
with cranial sclerosis and focal dermal hypoplasia (including
osteopathia striata), respectively. Due to developmental
lethality male patients are extremely rare, but a few males
having post-zygotic mosaic mutations have been identified
(35, 36). Amer1 mutations in mice disrupt bone architecture
(37) and treating adult mice with inhibitors of the PORCN
enzyme reduces bone mass (38).

• Somatic gene mutations in 11 genes (AKT1, FLBN, GNAS,
GREM1, HRAS, IDH1, IDH2, MAP2K1, NOTCH2, NRAS,
PIK3CA) arise in the developing zygote and are not
transmitted genetically. Loeys-Dietz syndrome includes
several skeletal dysplasias and can result from mutations
in SMAD2, SMAD3, TGFB2, TGFB3, TGFBR1, or TGFBR2
and 75% of affected subjects have somatic mutations (39).
Melorheostotic, dense hyperostotic bone lesions are caused by
somatic mosaic mutations in KRAS (40) and MAP2K1 (41).
MAP2K1mutations are thought to arise after the formation of
dorso-ventral plane (42). KRAS andMAP2K1 are not included
among the 441 Nosology disorders. Mutations in COL11A1,
EZH2, andMET can be either germline or somatic.

• Deleterious mutations can occur at multiple sites within genes.
For example, there are 1053 COL1A1 DNA variants in the
Osteogenesis Imperfecta Variant Database as of September
2019 (https://oi.gene.le.ac.uk/home.php?select_db=COL1A1,
accessed 13 December, 2019).

• Splicing mutations that disrupt normal exon transcription
within the spliceosome are estimated to contribute to
15% of human genetic diseases (43, 44). Acrofacial and
mandibulofacial dysostosis often involve spliceosome defects
and mutations in EFTUD2, EIF4A3, and SF3B4 genes each

result in distinct craniofacial phenotypes. Splice site mutations
in AIFM1 (45), SERPINF1 (46), and TRAPPC2 (47) result in
skeletal dysplasias.

• MicroRNAs are non-protein coding single-stranded RNAs
(48) that regulate gene expression in bone and other tissues.
Mouse studies show that microRNA-140 is involved in growth
plate development (49, 50). A gain-of function mutation in
microRNA-140 results in human skeletal dysplasia (51).

• Subjects with intragenic duplications of IFT81 (tandem
duplication of exons 9 and 10) and MATN3 (tandem
duplication of exons 2–5), detected by WGS, have skeletal
dysplasias similar to subjects with LoF mutations in these
genes (52).

• Autosomal-dominant syndactyly, synpolydactyly, and
brachydactyly types D and E can result from dominant-
negative mutations in the homeobox gene HOXD13.
Duplications of the HOXD gene cluster locus produce
mesomelic dysplasia with shortened limbs (53, 54).
Similar Hoxd locus GoF alterations in ulnaless mutant
mice, generated by X-irradiation, produce similar bone
phenotypes (55, 56).

• ISDS nosology includes skeletal disorders resulting from
disruptions of calcium-phosphate homeostasis, including
various endocrinopathies. Regulation of calcium and
phosphorus homeostasis involves ALPL, CASR, DMP1,
ENPP1, FAM20C, FGF23, GALANT3, HRAS, KL, NRAS and
TRPV6 genes. Parathyroid hormone synthesis and action
involve CDC73, FAM111A, GCM and PTH1R. Vitamin D
synthesis and actions involve CYP2R1, CYP27B1 and VDR.
Normal Ca and P homeostasis occurs in humans (57) and
mice (58) with deletions of the GC gene and thereby lacking
the circulating vitamin D-binding protein (DBP) that binds
serum 25-OH-D. Multiple neonatal bone fractures were
observed due to maternal hypoparathyroidism and vitamin D
deficiency (59).

HEREDITY OF BONE MASS WITHOUT
SKELETAL DYSPLASIA

Osteoporosis is a common skeletal disease in which reduced
amounts of otherwise normal bone lead to fragility and fractures.
Adult bone mass, even within the normal range, has a strong
heredity influence (60, 61) and identifying the genes involved in
bone mass accumulation during growth and loss during aging
has received great interest within the context of the etiology
and treatment of osteoporosis. GWAS studies over the past
decade described an increasing number of genes affecting BMD,
with 518 loci identified in the 2019 UK Biobank analysis (62).
Juvenile osteoporosis, although not a true dysplasia as bone
architecture is normal, usually has genetic causes (63, 64).
There are healthy subjects with unexplained high bone mass
(65, 66) and attempts are underway to identify the genes
responsible. Recent discoveries of such genes include LRP6 (67)
and SMAD9 (68).
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MOUSE MODELS

All models are wrong, but some are less imperfect than others, and
many are useful - George Box

Mouse models make important contributions to
understanding and treating human diseases (69–72), including
skeletal disorders (73, 74). Mutant mice that model human
phenotypes also model successful drugs (75), help identify
genes responsible for human genetic disorders and can provide
insights for osteoporosis drug development (76). Bone mass
and architecture vary in healthy humans and among laboratory
mouse strains, with the most commonly studied C57BL/6 mouse
strain an outlier having limb bones with high diameters and low
cortical thickness (77–81).

Themajority of mouse data summarized in this review involve
individual investigator-initiated studies examining possible
skeletal phenotypes in transgenic mice with specific alterations
in genes chosen by the investigator. This approach, known
as reverse genetics, utilizes the expertise of the laboratories
involved.

In contrast, human studies involve forward genetics,
with genes responsible for known skeletal phenotypes
identified. Forward genetics is also employed in mouse
studies, as genes responsible for spontaneous and mutagen-
induced skeletal malformations are identified. The Jackson
Laboratories (JAX), with a long history of studying mouse
strains, recently employed WES to identify 14 genes having
spontaneous mutations causing bone phenotypes (82, 83).
Several laboratories employed N-ethyl-N-nitrosourea (ENU)
in chemical mutagenesis campaigns to produce mouse
lines having a wide-range of phenotypes. This approach
yielded 41 genes having mutations causing bone phenotypes
similar to the corresponding human skeletal disorders.
These 41 genes with relevant citations are provided in
Supplemental Table 3.

Two high-throughput mouse reverse genetics gene knockout
phenotyping campaigns have been undertaken (84). The
International Mouse Phenotyping Consortium (IMPC,
www.mousephenotype.org) aims to characterize knockout
mouse phenotypes for all 20,000 genes (74, 85). Lexicon
Pharmaceuticals’ Genome5000TM effort examining the druggable
genome confirmed known bone phenotypes for 23 genes
and identified 11 genes, including Notum (86), for which
bone phenotypes were not previously characterized (87).
Importantly, skeletal phenotypes were described for Fam20c
(non-lethal Raine syndrome), Lrrk1 (osteosclerotic metaphyseal
dysplasia), Pappa2 (short stature), Sfrp4 (Pyle’s disease), and
Slc10a7 (skeletal dysplasia) prior to knowledge of the human
skeletal dysplasias when mutated in humans (84). For the 439
mouse genes discussed in this review, 149 genes have been
examined by the IMPC, yielding 63 viable adult homozygous
mouse mutants. Skeletal phenotypes (either body BMD or
radiological dysmorphology) were observed for 28 genes.
Results from the IMPC phenotyping campaign are summarized
in Table 3.

TABLE 3 | Summary of International Mouse Phenotyping Campaign

(IMPC) models.

Category Number of genes

Total mouse protein-coding genesa 437 (100%)

Genes not assigned for IMPC analyses 52 (12% of total)

Genes with ES cells generated, but no mice 183 (42% of total)

Mice generated without phenotyping 56 (13% of total)

Mouse phenotyping completed 149 (34% of total)

Embryonic and preweaning lethality 86 (58% of 149 phenotypes)

Subviable (Few surviving homozygous mice)b 7 (5% of 149 phenotypes)

Lack of bone datac 5 (3% of 149 phenotypes)

No observed bone phenotypesd 23 (15% of 149 phenotypes)

Bone phenotypese 28 (19% of 149 phenotypes)

aNo mouse genes for human ARSE and RNU4ATAC; Mir140 and Rmrp are RNA-

coding genes.
bCant1, Chst14, Dnajc21, Dnmt3a, Dock6, Egot, and Zswim6.
cSkeleton not tested for Dmp1, Map3k20, Snx10 and Sulf1; no BMD data for Ltbp2.
dBgn, Bhlha9, Cc2d2a, Cfap410, Cyp2r1, Gpc6, Haao, Ick, Idh1, Idh2, Knyu, Npr3, Orc4,

Picb4, Ptdss1, Pycr1, Serpinf1, Smarcal1, Tctex1d2, Thpo, Tmem165, and Trappc2.
eLow BMD for Hdac8, Lpin2, Nek1, P3h1, Phex, Plod1, Pls3, Setd2, Sparc and

Wnt10b; high BMD for Col1a2, Fuca1, Gnas, Hgsnat, Lrrk1, and Sgsh; skeletal

dysmorphology for Col9a2, Creb3l1, Ctsk, Ift80, Mmp9, Plekhm1, Sh3bp2, Suz12; low

BMD and dysmorphology for Cyp27b1; homozygous lethality with adult heterozygous

dysmorphology for Pitx1 and Pthlp; and homozygous lethality with fetal dysmorphology

and adult heterozygous dysmorphology for Nxn.

Mouse models of human genetic disorders are employed
to evaluate potentially beneficial skeletal actions of therapies
approved for other disease indications. Teriparatide treatment
increases bone mass in Lrp5 KO mice mimicking humans with
osteoporosis pseudoglioma syndrome from loss of function LRP5
mutations (88, 89). Similarly, anti-sclerostin antibody treatment
increases bone mass in mutant mouse models with low bone
mass from gene disruptions (90) of Col1a1 (91, 92), Col1a2
(93, 94), Crtap (95), Dmp1 (96), Lrp5 (97), and Zmpste24 (98).
Mechanistic hypotheses can be tested, such as periostin treatment
retarding skull suture fusion in heterozygous Twist1 mice with
craniosynostosis (99).

MOUSE STUDY PRECAUTIONS

Several experimental pitfalls should be avoided when performing
mouse studies (100).

• Knockout of individual genes can disrupt the functions of
neighboring genes (101). Examples include the presence
of orofacial defects resulting from a hypomorphic Pax9
allele during knockout of the neighboring Slc25a21 gene
(102) and glycosaminoglycan accumulation resulting from
reduced expression of the Naglu gene during knockout of the
neighboring Hsd17b1 gene (103).

• Transgenic Cre mouse lines are invaluable for conditionally
activating or inactivating genes of interest. Several reporter
genes are available for visualizing bone cells at different stages
of development (104). But not all Cre lines are as specific as
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originally believed (105–107). Understanding these limitations
is critical for experimental design and interpretation.

• Quantitative PCR methods are often not optimized and
MIQE (Minimum Information for the publication of qPCR
Experiments) guidelines have been established (108, 109).
Selection of the appropriate reference gene(s) is important
(110–112).

• Many antibodies suffer from a lack of specificity resulting
from cross-reactivity to similar epitopes present on multiple
proteins. Clifford Saper in 2005, as Editor-in-Chief of The
Journal of Comparative Neurology, repeatedly received “. . .
distressed communications from authors . . . to withdraw
papers because an antibody against a novel marker was found
to stain tissue in knockout animals . . . ” (113). Excellent
reviews (not cited here) provide guidelines for successful
antibody validation and the purposeful joviality in their
titles (“Antibody Can Get It Right . . . Antibody Anarchy . . .
Antibody Crimes . . . A Guide to the Perplexed . . . Garbage
In, Garbage Out . . . Hitchhiker Antigens . . . Not for the
Faint-Hearted . . . The Dark Side of the Immunohistochemical
Moon . . . The Good, Bad, and Really Ugly”) emphasizes the
seriousness of the problem. Antibodies claimed to be specific
for particular proteins should not react against tissues from
KO mice missing the gene of interest and validation of
antibody specificity using tissues from KO cells or mice is
strongly encouraged.

• Established cell lines employed in conjunction with mouse
studies can become contaminated and replaced by more
robust, faster growing cells (114). Cell line authentication
methods exist and should be employed (115, 116). MC3T3-E1
cell subclones vary as models of osteoblast biology (117).

LARGE ANIMAL AND ZEBRAFISH MODELS

Large animals can have advantages over rodents for
understanding human genetic disease and drug development.
Hypophosphatasia occurs in sheep (118) and dogs (119)
having mutations in ALPL. Canine genetic skeletal disorders
include mutations in ADAMTSL2—geleophysic dysplasia (120),
COL1A2—osteogenesis imperfecta (121), DVL2—Robinow
syndrome (122), HES7—spondylocostal dysostosis (123),
and SERPINH1—osteogenesis imperfecta (124). Spontaneous
mutations in chicken KIAA0586 (125) and LMBR1 (126) genes
result in the expected bone phenotypes.

Zebrafish are increasing contributing to our knowledge of
skeletal genomics (127, 128) and advantages over mouse models
include acquiring data more rapidly. Zebrafish mutants have
been described for several of the 441 genes in this review. One
complication of zebrafish studies is that zebrafish underwent
a teleost-specific whole genome duplication and have more
than 26,000 protein-coding genes (129). There is a one-to-
one relationship between 47% of human genes and a zebrafish
ortholog. There are multiple zebrafish genes associated to a single
human gene, and vice versa.

DRUG DEVELOPMENT

Exciting advances are being made in developing drug treatments
for patients with genetic skeletal disorders (130, 131) and
mouse models invariably contribute to this progress. These
advances are best reviewed by the laboratories involved, but
three examples are illustrative. An antibody to NOTCH2 reverses
osteopenia in a mouse model of Hajdu-Cheney syndrome
(132). Cinacalcet corrects hypercalcemia in a mouse model of
familial hypercalcemia type 2 (133). ENPP1 enzyme replacement
therapy improves blood pressure and cardiovascular function
in a mouse model of generalized arterial calcification of
infancy (134).

Understanding genetic skeletal disorders provides key
knowledge for developing osteoporosis therapies (76, 135).
Disruptions in genes coding for proteins in the RANK—
RANKL—osteoprotegerin signaling pathway involved in
osteoclast generation cause human skeletal disorders. The
RANKL neutralizing antibody denosumab is a successful
osteoporosis therapy. The recently approved anabolic
osteoporosis treatment romosozumab, a sclerostin neutralizing
antibody, was developed with knowledge gained from subjects
with osteosclerosis resulting from SOST gene mutations. Subjects
with pinocytosis have mutations in the cathepsin K coding gene
CTSK. Treatment with odanacatib, an inhibitor of cathepsin K in
osteoclasts, reduced bone fractures in postmenopausal women
but cardiovascular side effects precluded regulatory approval.

FUTURE DIRECTIONS

Since many human disorders involve hypomorphic, gain-of-
function, dominant-negative and intronic mutations, future
studies will undoubtedly utilize CRISPR/Cas9 technology
and other evolving techniques to examine transgenic mice
having genes modified to exactly mimic variant human
sequences (72, 136). RNA sequencing will increasingly be
employed for diagnosis and mechanistic understanding of
genetic diseases (137–141).

The IFMRS (International Federation of Musculoskeletal
Research Societies), in collaboration with the Broad Institute,
is establishing a Musculoskeletal Genomics Knowledge Portal
(MGKP) to integrate, interpret and present human data linked
to musculoskeletal traits and diseases (http://www.kp4cd.org/
about/bone).
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