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Abstract

Complement is an important pathway in innate immunity, inflammation, and many disease

processes. However, despite its importance, there are few validated mathematical models

of complement activation. In this study, we developed an ensemble of experimentally vali-

dated reduced order complement models. We combined ordinary differential equations with

logical rules to produce a compact yet predictive model of complement activation. The

model, which described the lectin and alternative pathways, was an order of magnitude

smaller than comparable models in the literature. We estimated an ensemble of model

parameters from in vitro dynamic measurements of the C3a and C5a complement proteins.

Subsequently, we validated the model on unseen C3a and C5a measurements not used for

model training. Despite its small size, the model was surprisingly predictive. Global sensitiv-

ity and robustness analysis suggested complement was robust to any single therapeutic

intervention. Only the simultaneous knockdown of both C3 and C5 consistently reduced

C3a and C5a formation from all pathways. Taken together, we developed a validated math-

ematical model of complement activation that was computationally inexpensive, and could

easily be incorporated into pre-existing or new pharmacokinetic models of immune system

function. The model described experimental data, and predicted the need for multiple points

of therapeutic intervention to fully disrupt complement activation.

Introduction

Complement is an important pathway in innate immunity. It plays a significant role in inflam-

mation, host defense as well as many disease processes. Complement was discovered in the late

1880s where it was found to ‘complement’ the bactericidal activity of natural antibodies [1].

However, research over the past decade has suggested the importance of complement extends

beyond innate immunity. For example, complement contributes to tissue homeostasis [2]. It

has also has been linked with several diseases including Alzheimers, Parkinson’s, multiple scle-

rosis, schizophrenia, rheumatoid arthritis and sepsis [3, 4]. Complement also plays positive

and negative roles in cancer; attacking tumor cells with altered surface proteins in some cases,

while potentially contributing to tumor growth in others [5, 6]. Lastly, several other important
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biochemical systems are integrated with complement including the coagulation cascade, the

autonomous nervous system and inflammation [6]. Thus, complement is important in a vari-

ety of beneficial and potentially harmful functions in the body. Despite its importance, there

have been few approved complement specific therapeutics, largely because of safety concerns

and challenging pharmacokinetic constraints, however, progress is being made [7].

The complement cascade involves many soluble and cell surface proteins, receptors and

regulators [8, 9]. The outputs of complement are the Membrane Attack Complex (MAC), and

the inflammatory mediator proteins C3a and C5a. The membrane attack complex, generated

during the terminal phase of the response, forms transmembrane channels which disrupt the

membrane integrity of targeted cells, leading to cell lysis and death. On the other hand, the

C3a and C5a proteins act as a bridge between innate and adaptive immunity, and play an

important role in regulating inflammation [5]. Complement activation takes places through

three pathways: the classical, the lectin and the alternative pathways. The classical pathway is

triggered by antibody recognition of foreign antigens or other pathogens. A multimeric pro-

tein complex C1 binds antibody-antigen complexes and undergoes a conformational change,

leading to an activated form with proteolytic activity. The activated C1-complex cleaves soluble

complement proteins C4 and C2 into C4a, C4b, C2a and C2b, respectively. The C4a and C2b

fragments bind to form the C4bC2a protease, also known as the classical pathway C3 conver-

tase (C4bC2a). The lectin pathway is initiated through the binding of L-ficolin or mannose

binding lectin (MBL) to carbohydrates on the surfaces of bacterial pathogens. These com-

plexes, in combination with mannose-associated serine proteases 1 and 2 (MASP-1/2), also

cleave C4 and C2, leading to additional C4bC2a. Thus, the classical and lectin pathways, initi-

ated by different cues on foreign surfaces, converge at C4bC2a. On the other hand, the alterna-

tive pathway is activated by a ‘tickover’ mechanism in which complement protein C3 is

spontaneously hydrolyzed to form an activated intermediate C3w; C3w recruits factor B and

factor D, leading to the formation of C3wBb. C3wBb cleaves C3 into C3a and C3b, where the

C3b fragment further recruits additional factor B and factor D to form C3bBb, the alternative

C3 convertase (AP C3 convertase) [10]. The role of classical and alternative C3 convertases is

varied. First, AP C3 convertases mediate signal amplification. AP C3 convertases cleave C3

into C3a and C3b; the C3b fragment is then free to form additional alternative C3 convertases,

thereby forming a positive feedback loop. Next, AP/C4bC2as link complement initiation with

the terminal phase of the cascade through the formation of C5 convertases. Both classical and

alternative C3 convertases can recruit C3b subunits to form the classical pathway C5 conver-

tase (C4bC2aC3b, CP C5 convertase), and the alternative pathway C5 convertase (C3bBbC3b,

AP C5 convertase), respectively. Both C5 convertases cleave C5 into the C5a and C5b frag-

ments. The C5b fragment, along with the complement proteins C6, C7, C8 and multiple C9s,

form the membrane attack complex. On the other hand, both C3a and C5a are important

inflammatory signals involved in several responses [8, 9]. Thus, the complement cascade

attacks invading pathogens, while acting as a beacon for adaptive immunity.

The complement cascade is regulated by plasma and host cell surface proteins which bal-

ance host safety with effectiveness. The initiation of the classical pathway via complement pro-

tein C1 is controlled by the C1 Inhibitor (C1-Inh); C1-Inh irreversibly binds to and deactivates

the active subunits of C1, preventing chronic complement activation [11]. Regulation of

upstream processes in the lectin and alternative pathways also occurs through the interaction

of the C4 binding protein (C4BP) with C4b, and factor H with C3b [12]. Interestingly, both

factor H and C4BP are capable of binding their respective targets while in convertase com-

plexes as well. At the host cell surface, membrane cofactor protein (MCP or CD46) can interact

with C4b and C3b, which protects the host cell from complement self-activation [13]. Delay

accelerating factor (DAF or CD55) also recognizes and dissociates both C3 and C5 convertases
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on host cell surfaces [14]. More generally the well known inflammation regulator carboxypep-

tidase-N has broad activity against the complement proteins C3a, C4a, and C5a, rendering

them inactive by cleavage of carboxyl-terminal arginine and lysine residues [15]. Although car-

boxypeptidase-N does not directly influence complement activation, it silences the important

inflammatory signals produced by complement. Lastly, assembly of the MAC complex itself

can be inhibited by vitronectin and clusterin in the plasma, and CD59 at the host surface

[16, 17]. Thus, there are many points of control which influence complement across the three

activation pathways.

Developing quantitative mathematical models of complement could be crucial to fully

understanding its role in the body. Traditionally, complement models have been formulated as

systems of linear or non-linear ordinary differential equations (ODEs). For example, Hirayama

et al., modeled the classical complement pathway as a system of linear ODEs [18], while Koro-

taevskiy and co-workers modeled the classical, lectin and alternative pathways as a system of

non-linear ODEs [19]. More recently, large mechanistic models of sections of complement

have also been proposed. For example, Liu et al., analyzed the formation of the classical and

lectin C3 convertases, and the regulatory role of C4BP using a system of 45 non-linear ODEs

with 85 parameters [20]. Zewde and co-workers constructed a detailed mechanistic model of

the alternative pathway which consisted of 107 ODEs and 74 kinetic parameters and delineated

between the fluid, host and pathogen surfaces [17]. However, these previous studies involved

large models. The central challenge of complement model identification is the estimation of

model parameters from potentially limited experimental measurements. Unlike other impor-

tant cascades, such as coagulation where there are well developed experimental tools and pub-

licly available data sets, the data for complement is relatively sparse. Data sets with missing or

incomplete data, and limited dynamic data also make the identification of large mechanistic

complement models difficult. Thus, reduced order approaches which describe the biology of

complement using a limited number of species and parameters could be important for phar-

macokinetic model development, and for our understanding of the varied role of complement

in the body.

Materials and methods

Formulation and solution of the complement model equations

We used ordinary differential equations (ODEs) to model the time evolution of complement

proteins (xi) in the reduced order model:

1

ti

dxi

dt
¼
XR

j¼1

sijrj x; �; kð Þ i ¼ 1; 2; . . . ;M ð1Þ

where R denotes the number of reactions and M denotes the number of proteins in the

model. The quantity τi denotes a time scale parameter for species i which captures unmodeled

effects. For the current study, τ scaled with the level of initiator (z) for C5a and C5b; τi = z/z�

for i = C5a, C5b where z� was 1 mg/ml, τi = 1 for all other species. The quantity rj(x,�,k)

denotes the rate of reaction j. Typically, reaction j is a non-linear function of biochemical and

enzyme species abundance, as well as unknown model parameters k (K� 1). The quantity σij

denotes the stoichiometric coefficient for species i in reaction j. If σij > 0, species i is produced

by reaction j. Conversely, if σij < 0, species i is consumed by reaction j, while σij = 0 indicates

species i is not connected with reaction j. Species balances were subject to the initial conditions

x(to) = xo. Initial conditions were possible were table from Rother [21] and shown in S1 Table.

A reduced order model of complement
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Rate processes were written as the product of a kinetic term (�rj) and a control term (vj) in

the complement model. The kinetic term for the formation of C4a, C4b, C2a and C2b, lectin

pathway activation, and C3 and C5 convertase activity was given by:

�rj ¼ kmax
j �i

xZ
s

KZ
js þ xZ

s

� �

ð2Þ

where kmax
j denotes the maximum rate for reaction j, �i denotes the abundance of the enzyme

catalyzing reaction j, η denotes a cooperativity parameter, and Kjs denotes the saturation con-

stant for species s in reaction j. We used mass action kinetics to model protein-protein binding

interactions within the network:

�rj ¼ kmax
j

Y

s2m�j

x� ssj
s

ð3Þ

where kmax
j denotes the maximum rate for reaction j, σsj denotes the stoichiometric coefficient

for species s in reaction j, and s 2mj denotes the set of reactants for reaction j. We assumed all

binding interactions were irreversible.

The control terms 0� vj� 1 depended upon the combination of factors which influenced

rate process j. For each rate, we used a rule-based approach to select from competing

control factors. If rate j was influenced by 1, . . ., m factors, we modeled this relationship as

vj ¼ I jðf1jð�Þ; . . . ; fmjð�ÞÞ where 0� fij(�)� 1 denotes a regulatory transfer function quantifying

the influence of factor i on rate j. The function I jð�Þ is an integration rule which maps the out-

put of regulatory transfer functions into a control variable. Each regulatory transfer function

was modeled using a Hill function. In this study, we used I j 2 fmin;maxg [22]. If a process

has no modifying factors, vj = 1. The model equations were implemented in Julia and solved

using the CVODE routine of the Sundials package [23, 24].

Model code repository. The model code, objective functions, experimental data and

parameter ensemble used in this study are available under an MIT software license from the

Varnerlab GitHub repository [25]. The model equations and kinetic rate expressions are

encoded in Balances.jlwhich is called by the SolveBalances.jl driver function.

Note, the user should not directly call SolveBalances.jl. Rather, multiple parameter sets

can be simulated by calling the driver function from a script. The kinetic and other model

parameters are encoded in DataFile.jl as a dictionary. The parameters stored in this dic-

tionary can be updated in memory to run different simulations. An example script to simulate

the model over the parameter ensemble is encoded in sample_ensemble.jl.Plotting

routines are encoded in the PlotLib.jl library; these routines plot the experimental data

contained in the data subdirectory. The objective functions, which compute the squared

residual between the simulations and experimental measurements, are encoded in the

complement_lib.jl library. Lastly, we included a set of routines e.g., Make_Fig_2A.
jl to solve the model equations, and plot the results versus the experimental data for each sim-

ulation figure in this study.

Estimating complement model parameters

A single initial parameter set was estimated using the Dynamic Optimization with Particle

Swarms (DOPS) technique [26]. DOPS is a novel hybrid meta-heuristic which combines a

multi-swarm particle swarm method with the dynamically dimensioned search approach of

Shoemaker and colleagues [27]. DOPS minimized the squared residual between simulated and

C3a and C5a measurements with and without zymosan as a single objective. The best fit set

A reduced order model of complement
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estimated by DOPS served as the starting point for multiobjective ensemble generation using

Pareto Optimal Ensemble Technique in the Julia programming language (JuPOETs) [28].

JuPOETs is a multiobjective approach which integrates simulated annealing with Pareto opti-

mality to estimate model ensembles on or near the optimal tradeoff surface between compet-

ing training objectives. JuPOETs minimized training objectives of the form:

OjðkÞ ¼
XT j

i¼1

ðM̂ij � ŷ ijðkÞÞ
2
þ

M0

ij � max yij

M0

ij

 !2

ð4Þ

subject to the model equations, initial conditions and parameter bounds L � k � U . The first

term in the objective function measured the shape difference between the simulations and

measurements. The symbol M̂ij denotes a scaled experimental observation (from training

set j) while the symbol ŷ ij denotes the scaled simulation output (from training set j). The quan-

tity i denotes the sampled time-index and T j denotes the number of time points for experi-

ment j. The scaled measurement is given by:

M̂ij ¼
Mij � min iMij

max i Mij � min i Mij
ð5Þ

Under this scaling, the lowest measured concentration become zero while the highest equaled

one, where a similar scaling was defined for the simulation output. The second-term in the

objective function quantified the absolute error in the estimated concentration scale, where

the absolute measured concentration (denoted by M0

ij) was compared with the largest simu-

lated value. In this study, we minimized two training objectives, the total C3a and C5a residual

w/o zymosan (O1) and the total C3a and C5a residual for 1 mg/ml zymosan (O2). JuPOETs

identified an ensemble of N = 2100 parameter sets which were used for model simulations and

uncertainty quantification subsequently. JuPOETs is open source, available under an MIT soft-

ware license. The JuPOETs source code is freely available from the JuPOETs GitHub reposi-

tory [29].

The simulation and prediction performance of the complement model was measured using

the Akaike information criterion (AIC) [30]. In this study, we implemented the AIC as:

AIC ¼ 2Np þ Nm ln
1

kMk

X

t

ðxt � ytÞ
2

 !

ð6Þ

where Np, Nm denote the number of parameters, and the number of experimental measure-

ments, respectively. The summation term in Eq (6) denotes the residual between the model

simulation (x) and experimental measurements (y), where the residual is normalized by the

scale of the experimental data (kMk). We compared the AIC for the model parameters esti-

mated in this study, with a random parameter control generated to have a similar order of

magnitude. The mean and standard deviation of the AIC was calculated over the parameter

ensemble and the random parameter control were reported in this study.

Global sensitivity analysis. We conducted global sensitivity analysis to estimate which

parameters and species controlled the performance of the reduced order model. We computed

the total variance-based sensitivity index of each parameter relative to the training residual for

the C3a/C5a alternative and C3a/C5a lectin objectives using the Sobol method [31]. The sam-

pling bounds for each parameter were established from the minimum and maximum value for

that parameter in the parameter ensemble. We used the sampling method of Saltelli et al. to

compute a family of N(2d + 2) parameter sets which obeyed our parameter ranges, where N

A reduced order model of complement
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was the number of trials per parameters, and d was the number of parameters in the model

[32]. In our case, N = 400 and d = 28, so the total sensitivity indices were computed using

23,200 model evaluations. The variance-based sensitivity analysis was conducted using the

SALib module encoded in the Python programming language [33].

Pairwise sensitivity analysis and clustering. We perturbed each pair of model parame-

ters by 10% of their nominal value, and then calculated the euclidian distance between the per-

turbed and nominal system states for physiological conditions. We repeated this calculation

for each member of the parameter ensemble, and calculated the mean differences between the

perturbed and nominal states. We then clustered the resulting log10 transformed mean dis-

tances using the Clustergram routine in MATLAB (The Mathworks, Natick MA). We con-

sidered three clusters, high, medium and low displacement.

Robustness analysis. Robustness coefficients quantify the response of a marker to a struc-

tural or operational perturbation to the network architecture. Robustness coefficients were cal-

culated as shown previously [34]. Log-transformed robustness coefficients denoted by

âði; j; to; tf Þ were defined as:

âði; j; to; tf Þ ¼ log
10

Z tf

to

xiðtÞdt
� �� 1 Z tf

to

xðjÞi ðtÞdt
� �" #

ð7Þ

Here, to and tf denote the initial and final simulation time, while i and j denote the indices for

the marker and the perturbation, respectively. A value of âði; j; to; tf Þ > 0, indicates increased

marker abundance, while âði; j; to; tf Þ < 0 indicates decreased marker abundance following

perturbation j. If âði; j; to; tf Þ � 0, perturbation j did not influence the abundance of marker i.
In this study, we perturbed the initial condition of C3 or C5 or a combination of C3 and C5 by

50%, 90% and 99% and measured the area under the curve (AUC) of C3a or C5a with and

without lectin initiator. We computed the robustness coefficients for a subset of the parameter

ensemble (N = 65) and reported the mean robustness value.

Results

In this study, we estimated an ensemble of experimentally validated reduced order comple-

ment models using multiobjective optimization. The modeling approach combined ordinary

differential equations with logical rules to produce a complement model with a limited num-

ber of equations and parameters. The reduced order model, which described the lectin and

alternative pathways, consisted of 18 differential equations with 28 parameters. Thus, the

model was an order of magnitude smaller than comparable models in the literature. We esti-

mated an ensemble of model parameters from in vitro time series measurements of the C3a

and C5a complement proteins. Subsequently, we validated the model on unseen C3a and C5a

measurements not used for model training. Despite its size, the model was surprisingly predic-

tive. After validation, we performed global sensitivity and robustness analysis to estimate

which parameters and species controlled model performance. Sensitivity analysis suggested

CP C3 and C5 convertase parameters were critical, while robustness analyses suggested com-

plement was robust to any single therapeutic intervention; only the knockdown of both C3

and C5 consistently reduced C3a and C5a formation for all cases. Taken together, we devel-

oped a reduced order complement model that was computationally inexpensive, and could

easily be incorporated into pre-existing or new pharmacokinetic models of immune system

function. The model described experimental data, and predicted the need for multiple points

of intervention to disrupt complement activation.

A reduced order model of complement
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Reduced order complement network

The complement model described the initiation of the alternative and lectin pathways, and the

downstream integration of the lectin and classical pathways (Fig 1). A trigger event initiated

the lectin pathway (encoded as a logical rule), which activated the cleavage of C2 and C4 into

C2a, C2b, C4a and C4b, respectively. In this study, we did not explicitly model classical path-

way activation mediated by the C1 protein. Instead we described the integration of the lectin

and classical pathways at the level of C2 and C4 activation and the formation of the Classical

Pathway (CP) C3 convertase (C4aC2b). However, in future studies classical pathway activation

could be easily described by simply adding additional terms to the C2/C4 and C2a, C2b, C4a

and C4b balances, leaving all other components largely unchanged. Classical pathway (CP) C3

convertase (C4aC2b) then catalyzed the cleavage of C3 into C3a and C3b. The alternative path-

way was initiated through the spontaneous hydrolysis of C3 into C3a and C3b. The C3b frag-

ments generated by hydrolysis (or by C4bC2a) could then form the alternative pathway (AP)

C3 convertase (C3bBb). However, in this study we considered lumped alternative pathway

activation; we did not consider C3w or C3wBb formation. Instead, we formulated a lumped

initiation step in which C3a and C3b were formed directly from spontaneous C3 hydrolysis,

and factor B was treated as non-limiting. We did this to reduce the complexity both in terms

of the number of species as well as the number of parameters that appear in the model. C3b

formed from this lumped hydrolysis step then formed the AP C3 convertase. Both the CP and

AP C3 convertases catalyzed the cleavage of C3 into C3a and C3b. A second C3b fragment

could then bind with either the CP or AP C3 convertase to form the CP or AP C5 convertase

(C4bC2aC3b or C3bBbC3b). Both C5 convertases catalyzed the cleavage of C5 into the C5a

and C5b fragments. In this study, we simplified the model by assuming both factor B and fac-

tor D were in excess. However, we did explicitly account for the action of two other control

proteins, factor H and C4BP. Lastly, we did not consider MAC formation, instead we stopped

at C5a and C5b. Lectin pathway activation, and C3/C5 convertase activity were modeled using

a combination of saturation kinetics and non-linear transfer functions, which resulted in a sig-

nificant size reduction of the model, while maintaining performance. Binding interactions

were modeled using mass-action kinetics, where we assumed all binding was irreversible.

Thus, while the reduced order complement model encoded significant biology, it was highly

compact consisting of only 18 differential equations and 28 model parameters. Next, we esti-

mated an ensemble of model parameters from time series measurements of the C3a and C5a

complement proteins.

Estimating an ensemble of reduced order complement models

A critical challenge for the development of any dynamic model is the estimation of model

parameters. We estimated an ensemble of complement model parameters using in vitro time-

series data sets generated with and without zymosan A, a complement pathway activator. The

data used for model training was taken from the study of Morad et al. [35] and is given in the

Supporting Information (S2 Table). In this study, we assumed zymosan A differentially acti-

vated the lectin pathway, consistent with the study of Morad et al [35] and several previous

studies [36–38]. However, the role of zymosan may be more complex, as it may activate all

three complement pathways under certain conditions. The residual between model simula-

tions and experimental measurements was minimized using the Pareto Optimal Ensemble

Technique (JuPOETs), starting from a initial guess generated by the dynamic optimization

with particle swarms (DOPS) routine. Unless otherwise specified, all initial conditions were

assumed to be at their mean physiological values. While we had significant training data, the

parameter estimation problem was underdetermined (we were not able to uniquely determine

A reduced order model of complement
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Fig 1. Simplified schematic of the human complement system. The complement cascade is activated through three pathways: the classical, the lectin,

and the alternative pathways. Complement initiation results in the formation of classical or alternative C3 convertases, which amplify the initial complement

response and signal to the adaptive immune system by cleaving C3 into C3a and C3b. The C3 convertases further react to form C5 convertases which

catalyze the cleavage of the C5 complement protein to C5a and C5b. C5b is critical to the formation of the membrane attack complex (MAC), while C5a

recruits an adaptive immune response.

https://doi.org/10.1371/journal.pone.0187373.g001
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model parameters). Thus, instead of using the best-fit yet uncertain parameter set, we esti-

mated an ensemble of probable parameter sets to quantify model uncertainty (N = 2100, see

Materials and methods). The complement model ensemble captured the behavior of both the

alternative and lectin pathways (Fig 2). To estimate alternative pathway model parameters, we

used C3a and C5a measurements in the absence of zymosan (Fig 2A and 2B). On the other

hand, lectin pathway parameters were estimated from C3a and C5a measurements in the pres-

ence of 1 mg/ml zymosan (Fig 2C and 2D). The reduced order model reproduced a panel of

alternative and lectin pathway data sets in the neighborhood of physiological factor and inhibi-

tor concentrations. The model fit for parameter sets estimated by JuPOETs, quantified by the

Akaike information criterion (AIC), was statistically significantly different than a random

parameter control for each case at a 95% confidence level. However, it was unclear whether the

reduced order model could predict new data, without updating the model parameters. To

Fig 2. Reduced order complement model training. An ensemble of model parameters was estimated using multiobjective optimization from dynamic

C3a and C5a measurements with and without zymosan. The model was trained using C3a and C5a measurements in the absence of zymosan (A–B) or

in the presence of 1 mg/ml zymosan (C–D). The solid black lines show the simulated mean value of C3a or C5a for the ensemble, while the dark shaded

region denotes the 99% confidence interval of mean. The light shaded region denotes the 99% confidence interval of the simulated C3a and C5a

concentration. The experimental training data (points) was taken from Morad et al [35]. All initial conditions not specified by the experimental condition

were assumed to be at zero or their physiological serum levels unless otherwise noted (S1 Table).

https://doi.org/10.1371/journal.pone.0187373.g002

A reduced order model of complement

PLOS ONE | https://doi.org/10.1371/journal.pone.0187373 November 20, 2017 9 / 21

https://doi.org/10.1371/journal.pone.0187373.g002
https://doi.org/10.1371/journal.pone.0187373


address this question, we fixed the model parameters and simulated data sets not used for

model training.

We tested the predictive power of the reduced order complement model with data not used

during model training (Fig 3). The data used for model validation was taken from the study of

Morad et al. [35] and is given in the Supporting Information (S2 Table). Six validation cases

were considered, three for C3a and C5a each, respectively. Similar to model training, we com-

pared the AIC for each prediction case to a randomized parameter family. All model parame-

ters and initial conditions were fixed for the validation simulations (with the exception of

zymosan, and other experimentally mandated changes). The ensemble of reduced order mod-

els predicted the qualitative dynamics of C3a formation (Fig 3, top), and C5a formation (Fig 3,

bottom) at three inducer concentrations. For each training case, the AIC was statistically sig-

nificantly different than the random parameter control for a 95% confidence level. The rate of

C3a formation and C3a peak time were directly proportional to initiator dose. Similarly, the

C5a plateau and rate of formation were also directly proportional to initiator dose, with the lag

time being indirectly proportional to initiator exposure for both C3a and C5a. However, there

were shortcomings with model performance. First, while the overall C3a trend was captured

(within the 99% confidence interval), the C3a dynamics were too fast with the exception of the

low dose case. We believe the C3a time scale was related to our choice of training data, how we

modeled the tickover mechanism, and factor B and D limitation. We trained the model using

Fig 3. Reduced order complement model predictions. Simulations of C3a and C5a generated using 0.1 mg/ml, 0.01 mg/ml, and 0.001 mg/ml zymosan

were compared with the corresponding experimental measurements. The solid black lines show the simulated mean value of C3a or C5a for the

ensemble, while the dark shaded region denotes the 99% confidence interval of mean. The light shaded region denotes the 99% confidence interval of the

simulated C3a and C5a concentration. The experimental validation data (points) was taken from Morad et al [35]. All initial conditions not specified by the

experimental condition were assumed to be at zero or their physiological serum levels unless otherwise noted (S1 Table).

https://doi.org/10.1371/journal.pone.0187373.g003
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either no or 1 mg/ml zymosan, but predicted cases in a different initiator range; comparing

training to prediction, the model performance e.g., the shape of the C3a trajectory was biased

towards either high or very low initiator doses. Next, tickover was modeled as a first-order

generation processes where C3wBb formation and activity was lumped into the AP C3 conver-

tase. Thus, we skipped an important upstream step which could influence AP C3 convertase

formation by attenuating the rate C3 cleavage into C3a and C3b. We also assumed both factor

B and factor D were not limiting, thereby artificially accelerating the rate of AP C3 convertase

formation. The C5a predictions followed a similar trend as C3a; we captured the long-time

C5a behavior but over predicted the time scale of C5 cleavage. However, because the C5a time

scale depends strongly upon C3 convertase formation, we can likely correct the C5 issues by

fixing the rate of C3 cleavage. Despite these shortcomings, we qualitatively predicted experi-

mental measurements not used for model training typically within the 99% confidence of the

ensemble, for three inducer levels. Next, we used global sensitivity and robustness analysis to

determine which parameters and species controlled the performance of the complement

model.

Global analysis of the reduced order complement model

We conducted sensitivity analysis to estimate which parameters controlled the performance of

the reduced order complement model. We calculated the total sensitivity of the C3a and C5a

residual to changes in model parameters with and without zymosan (Fig 4). In the absence of

zymosan (where only the alternative pathway is active), the most sensitive parameter was the

rate constant governing the assembly of the AP C3 convertase, as well as the rate constant con-

trolling basal C3b formation via the tickover mechanism. The C5a trajectory was sensitive to

the AP C5 convertase kinetic parameters (Fig 4A). Interestingly, neither the rate nor the satu-

ration constant governing AP C3 convertase activity were sensitive in the absence of zymosan.

Thus, C3a formation in the alternative pathway was more heavily influenced by the spontane-

ous hydrolysis of C3, rather than AP C3 convertase activity, in the absence of zymosan. In the

presence of zymosan, the C3a residual was controlled by the formation and activity of the

C4bC2a, as well as tickover and degradation parameters. On the other hand, the C5a residual

was controlled by the formation and activity of CP C5 convertase, and tickover C3b formation

in the presence of zymosan (Fig 4B). The lectin initiation parameters were sensitive, but to a

lesser extent than CP convertase kinetic parameters and tickover C3b formation. Thus, sensi-

tivity analysis suggested that CP C3/C5 convertase formation and activity dominated in the

presence of zymosan, but tickover parameters and AP C5 convertase were more important

without initiator. AP C3 convertase assembly was important, but its activity was not. Next, we

compared the sensitivity results to current therapeutic approaches; pathways involving sensi-

tive parameters have been targeted for clinical intervention (Fig 4C). In particular, the sensitiv-

ity analysis suggested AP/CP C5 convertase inhibitors, or interventions aimed at attenuating

C3 or C5 would most strongly influence complement performance. Thus, there was at least a

qualitative overlap between sensitivity and the potential of biochemical efficacy. However,

total sensitivity coefficients quantify how simultaneous changes in many parameters e.g., rate

or saturation constants affect model performance (in this case model fit). To better understand

the role of each parameter, and parameter combination, we explored how finite changes in

parameter combinations influenced model performance.

Pairwise parameter perturbations identified crosstalk within the complement model

(Fig 5). We perturbed each pairwise parameter combination by 10%, and calculated the dis-

tance between the perturbed and nominal state for each parameter set in the ensemble. We

then clustered the mean response of each parameter combination based upon the euclidian
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distance between the perturbed and nominal states into low (green), medium (red) and high

(blue) response clusters. A low response (white) meant the parameter perturbations did not

significantly change the system state compared with the nominal case. Four of the 28 parame-

ters (or approximately 14% of the overall model parameters) were in the high response cluster

(Fig 5, blue cluster). These parameters included the rate constant controlling the basal forma-

tion of C3b (#12), C3a degradation (#26) as well as the catalytic rate constant governing

C4bC2a activity (#22). The only C5 related parameter in the high response group was the rate

constant controlling the formation of CP C5 convertase (#15). Approximately, 36%, or 10 of

the 28 model parameters, were clustered in the medium impact cluster (Fig 5, red cluster).

Three parameters (#10, #1, #27) were especially important in this cluster; The reaction order

governing C4bC2a activity was important (#10), along with the rate constant controlling C4a

and C4b formation from C4 in the lectin initiation pathway (#1), and the constant controlling

the inhibitory action of C4BP (#27). Lastly, 50% of the model parameters were clustered in the

Fig 4. Global sensitivity analysis of the reduced order complement model. Sensitivity analysis was conducted on the two objectives used for model

training. A: Sensitivity of the C3a and C5a residual w/o zymosan. B: Sensitivity of the C3a and C5a residual with 1 mg/ml zymosan. The bars denote the

mean total sensitivity index for each parameter, while the error bars denote the 95% confidence interval. C: Pathways controlled by the sensitivity

parameters. Bold black lines indicate the pathway involves one or more sensitive parameters, while the red lines show current therapeutics targets.

Current complement therapeutics were taken from the review of Morgan and Harris [39].

https://doi.org/10.1371/journal.pone.0187373.g004
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low response cluster (Fig 5, green cluster). Many of these parameters influenced complement

activation; for example, parameter #23 (the C4bC2a saturation constant) was important, just

not to the extent of other model parameters. Pairwise synergistic interactions between parame-

ters were also identified. For example, in the high impact cluster, three synergistic relationships

were identified, a single positive and two negative cases. Parameters #12 (rate constant govern-

ing basal C3b formation) and #15 (formation of CP C5 convertase) acted synergistically to

increase the system response. On the other hand, simultaneously changing parameters #12

and #22 or #15 and #26 decreased the system response relative to a single perturbation. How-

ever, the most striking examples of synergy occurred in the medium impact cluster; for exam-

ple, simultaneously increasing parameters #13 (rate constant governing AP C3 convertase

formation) and #19 (saturation constant governing AP C5 convertase activity) significantly

changed the model state. Changes in parameter #3 (rate constant governing C2a and C2b for-

mation from C2) showed both positive and negative synergistic effects depending upon the

other parameter that was perturbed. Taken together, sensitivity coefficients quantified how

changes in parameters or parameter combinations affected model performance. However,

individual parameters e.g., rate or saturation constants are not easily druggable. To more

closely simulate a clinical intervention e.g., administration of anti-complement inhibitors, we

performed knock-down analysis on the initial values of C3 and C5 in the absence and presence

of flow.

Fig 5. Pairwise sensitivity and clustering of complement model parameters in the presence of 1 mg/ml zymosan. The response of the

complement model was calculated for each parameter combination following a 10% increase in parameter combinations in the presence of 1 mg/ml

zymosan. The model parameters were clustered into high (blue), medium (red) and low (green) response clusters based upon the euclidian distance

between the perturbed and nominal system state (no perturbation).

https://doi.org/10.1371/journal.pone.0187373.g005
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Knock-down analysis in the absence of flow suggested there was no single intervention that

inhibited complement activation in the presence of both initiation pathways (Fig 6). Robust-

ness coefficients quantify the response of a protein to a macroscopic structural or operational

perturbation to a biochemical network. Here, we computed how the C3a and C5a trajectories

responded to a decrease in the initial abundance of C3 and/or C5 with and without lectin initi-

ator. We simulated the addition of different doses of anti-complement inhibitor cocktails by

decreasing the initial concentration of C3, C5 or the combination of C3 and C5 by 50%, 90%

and 99%. This would be conceptually analogous to the administration of a C3 inhibitor e.g.,

Compstatin alone or combination with Eculizumab (Fig 4C). The response of the complement

model to different knock-down magnitudes was non-linear; a 90% knock-down had an order

Fig 6. Robustness analysis of the complement model. Robustness coefficients were calculated for a 50%, 90% and 99% reduction in C3,

C5, or C3 and C5 initial conditions. A: Mean robustness index for C3a and C5a generated in the absence of zymosan. B: Mean robustness

index for C3a and C5a generated in the presence of 1 mg/ml zymosan. The color describes the degree of reduction of C3a or C5a following

the network perturbation. Robustness coefficients were calculated using all parameter sets with Pareto rank less than five (N = 65). Mean

robustness values were reported.

https://doi.org/10.1371/journal.pone.0187373.g006
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of magnitude more impact than a 50% knock-down. As expected, a C5 knockdown had no

effect on C3a formation for either the alternative (Fig 6A) or lectin pathways (Fig 6B). How-

ever, C3a and to a greater extent C5a abundance decreased with decreasing C3 concentration

in the alternative pathway (Fig 6A). This agreed with the sensitivity results; changes in AP

C3-convertase formation affected the downstream dynamics of C5a formation. Thus, if we

only considered the alternative pathway, C3 alone could be a reasonable target, especially

given that C5a formation was surprisingly robust to C5 levels in the alternative pathway. Yet,

when both pathways were activated, C5a levels were robust to the initial C3 concentration

(Fig 6B); even 1% of the nominal C3 was able to generate enough AP/CP C5 convertase to

maintain C5a formation. Thus, the only reliable intervention that consistently reduced both

C3a and C5a formation for all cases was a knockdown of both C3 and C5. For example, a 90%

decrease of both C3 and C5 reduced the formation of C5a by an order of magnitude, while

C3a was reduced to a lesser extent (Fig 6B). Taken together, these results suggested that both

C3 and C5 inhibitors must be administered in the presence of both initiation pathways.

Discussion

In this study, we estimated an ensemble of experimentally validated reduced order comple-

ment models using multiobjective optimization. The modeling approach combined ordinary

differential equations with logical rules to produce a complement model with a limited num-

ber of equations and parameters. The reduced order model, which described the lectin and

alternative pathways, consisted of 18 differential equations with 28 parameters. Thus, the

model was an order of magnitude smaller than comparable mathematical models in the litera-

ture. We estimated an ensemble of model parameters from in vitro time series measurements

of the C3a and C5a complement proteins. Subsequently, we validated the model on unseen

C3a and C5a measurements that were not used for model training. Despite its small size, the

model was surprisingly predictive. After validation, we performed global sensitivity and

robustness analysis to estimate which parameters and species controlled model performance.

These analyses suggested complement was robust to any single therapeutic intervention. The

only intervention that consistently reduced C3a and C5a formation for all cases was a knock-

down of both C3 and C5. Taken together, we developed a reduced order complement model

that was computationally inexpensive, and could easily be incorporated into pre-existing or

new pharmacokinetic models of immune system function. The model described experimental

data, and predicted the need for multiple points of intervention to disrupt complement

activation.

There has been a paucity of validated mathematical models of complement pathway activa-

tion. To our knowledge, this study is one of the first complement models that combined multi-

ple initiation pathways with experimental validation of important complement products like

C5a. However, there have been several theoretical models of components of the cascade in the

literature. Liu and co-workers modeled the formation of C3a through the classical pathway

using 45 non-linear ODEs [20]. In contrast, in this study we modeled lectin mediated C3a for-

mation using only five ODEs. Though we did not model all the initiation interactions in detail,

especially the cross-talk between the lectin and classical pathways, we successfully captured

C3a dynamics with respect to different concentrations of lectin initiators. The model also cap-

tured the dynamics of C3a and C5a formed from the alternative pathway using only seven

ODEs. The reduced order model predictions of C5a were qualitatively similar to the theoretical

complement model of Zewde et al., which involved over 100 ODEs [17]. However, we found

that the C3a produced in the alternative pathway was nearly three orders of magnitude greater

than the C5a generated. While this was in agreement with the experimental data [35], it
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differed from the theoretical predictions made by Zewde et al., who showed C3a was eight

orders of magnitude greater than the C5a concentration [17]. In our model, the time profile of

both C3a and C5a generated changed with respect to the quantity of zymosan (the lectin path-

way initiator). In particular, the C3a peak time was directly proportional to initiator, while the

lag phase for generation was inversely proportional to the initiator concentration. Korotaevs-

kiy et al. showed a similar trend using a theoretical model of complement, albeit for much

shorter time scales [19]. Thus, the reduced order complement model performed at least as well

as existing larger mechanistic models, despite being significantly smaller.

Global analysis of the complement model suggested potentially important therapeutic tar-

gets. Complement malfunctions are implicated in a spectrum of diseases, however the develop-

ment of complement specific therapeutics has been challenging [3, 39]. Previously, we have

shown that mathematical modeling and analysis can be useful tools to estimate therapeutically

important mechanisms [40–43]. In this study, we analyzed a validated ensemble of reduced

order complement models to better understand the strengths and weaknesses of the cascade.

In the presence of an initiator, C3a and C5a formation was sensitive to CP C3/C5 convertase

assembly and activity, and to a lesser extent lectin initiation parameters. Formation of the CP

convertases can be inhibited by targeting upstream protease complexes like MASP-1,2 from

the lectin pathway (or C1r, C1s from classical pathway). For example, Omeros, a protease

inhibitor that targets the MASP-2 complex, has been shown to inhibit the formation of down-

stream convertases [44]. Lampalizumab and Bikaciomab, which target factor B and factor

D respectively, or naturally occurring proteins such as cobra venom factor (CVF), an analogue

of C3b, could also attenuate AP convertase formation [45–47]. Removing supporting mole-

cules could also destabilize the convertases. Novelmed Therapeutics developed the antibody,

NM9401 against propedin, a small protein that stabilizes alternative C3 convertase [48]. Lastly,

convertase catalytic activity could be attenuated using small molecule protease inhibitors. All

of these approaches are consistent with the results of the sensitivity analysis. On the other

hand, robustness analysis suggested C3a and C5a generation could only be significantly atten-

uated by modulating the free levels of C3 and C5. The most commonly used anti-complement

drug Eculizumab, targets the C5 protein [39]. Several other antibodies targeting C5 are also

being developed; for example, LFG316 targets C5 in age-related macular degeneration [49],

while Mubodina is used to treat atypical hemolytic-uremic syndrome (aHUS) [50]. Other

agents such as Coversin [51] or the aptamer Zimura [52] could also be used to knockdown C5.

The peptide inhibitor Compstatin and its derivatives are promising approaches for the inhibi-

tion of C3 [53]. However, while the knockdown of C3 and C5 affect C3a and C5a levels down-

stream, the abundance, turnover rate and population variation of these proteins make them

difficult targets [54, 55]. For example, the Eculizumab dosage must be significantly adjusted

during the course of treatment for aHUS [56]. This suggests that therapeutic targets estimated

using whole-body models which incorporate pharmacokinetic factors in combination with

biochemistry may give higher fidelity predictions of patient response to therapeutic interven-

tion than static biochemical network models.

Despite its importance, there have been few approved complement specific therapeutics

because of safety and pharmacokinetic constraints [7]. A validated complement model, in

combination with personalized pharmacokinetic models of immune system function, could be

an important development for the field. The integration of effective models of complement

and other important cascades in the blood, for example the coagulation cascade, with physio-

logically based pharmacokinetic models is an exciting opportunity. Physiologically based phar-

macokinetic models (PBPK), composed of a collection of organ models (of variable

complexity) interconnected by a circulatory system, describe the physical disposition of blood

constituents within the body [57]. PBPK models, originally developed to predict the tissue
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distribution of therapeutic agents or toxins [58], have become an accepted pharmacokinetic

tool [59, 60]. PBPK models readily integrate potentially important clinical information such as

the demographic and physical characteristics of patients, dissolved oxygen levels, blood flow

rates to well- and poorly-perfused organs, pulmonary function and pharmacokinetic factors

etc, with blood biochemistry. Thus, PBPK models are ideal candidates to simulate clinically

important physical characteristics of patients, while simultaneously simulating biochemical

and disease mechanisms on a systems level [61]. We (and many others in the systems pharma-

cology community) feel this is a critical unmet need, and an opportunity to connect basic sci-

ence with clinical practice [62].

The performance of the effective complement model was impressive given its limited size.

However, there are several questions that should be explored further. A logical progression for

this work would be to expand the network to include the classical pathway and the formation

of the membrane attack complex (MAC). However, time course measurements of MAC abun-

dance (and MAC formation dynamics) are scarce, making the inclusion of MAC challenging.

On the other hand, inclusion of classical pathway activation is straightforward. Liu et al., have

shown cross-talk between the activation of the classical and lectin pathways through C reactive

proteins (CRP) and L-ficolin (LF) under inflammation conditions [20]. Thus, inclusion of

these species, in addition to a lumped activation term for the classical pathway should allow us

to capture classical activation. Next, we should address the C3a time scale issue. We believe the

C3a time scale was related to our choice of training data, how we modeled the tickover mecha-

nism, and factor B and D limitation. Tickover was modeled as a first-order generation pro-

cesses where C3wBb formation and activity was lumped into the AP C3 convertase. Thus, we

skipped an important step which could strongly influence AP C3 convertase formation by

slowing down the rate C3 cleavage into C3a and C3b. The model should be expanded to

include the C3wBb intermediate, where C3wBb catalyzes C3 cleavage at a slow rate compared

to normal AP or C4bC2as. We also assumed both factor B and factor D were not limiting,

thereby artificially accelerating the rate of AP C3 convertase formation. This shortcoming

could be addressed by including balances around factor B and D, and including these species

in the appropriate kinetic rates. The C5a predictions also had an accelerated time scale. How-

ever, because the C5a time scale depended strongly upon C3 convertase formation, we can

likely correct the C5 issues by fixing the rate of C3 cleavage. We should also consider including

the C2-bypass pathway, which was not included in the model. The C2-bypass mediates lectin

pathway activation, without the involvement of MASP-1/2; this pathway could be important

for understanding the role of MASP-1/2 inhibitors on complement activation. Lastly, we have

assumed that zymosan A differentially actives the lectin pathway, however, this may not be

true. We should further explore the potential cross activation of all three branches by zymosan

to determine the sensitivity of the model predictions to the assumption of differential

activation.
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