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Abstract: Extended from superpixel segmentation by adding an additional constraint on temporal
consistency, supervoxel segmentation is to partition video frames into atomic segments. In this
work, we propose a novel scheme for supervoxel segmentation to address the problem of new and
moving objects, where the segmentation is performed on every two consecutive frames and thus
each internal frame has two valid superpixel segmentations. This scheme provides coarse-grained
parallel ability, and subsequent algorithms can validate their result using two segmentations that
will further improve robustness. To implement this scheme, a voxel-related Gaussian mixture model
(GMM) is proposed, in which each supervoxel is assumed to be distributed in a local region and
represented by two Gaussian distributions that share the same color parameters to capture temporal
consistency. Our algorithm has a lower complexity with respect to frame size than the traditional
GMM. According to our experiments, it also outperforms the state-of-the-art in accuracy.

Keywords: superpixel; supervoxel; video segmentation; Gaussian mixture model; expectation–
maximization

1. Introduction

Superpixel segmentation is to partition a still image into atomic segments of similar size and
adhering to object boundaries, namely superpixels [1–4]. In recent decades, superpixel segmentation
has been found to be a very useful preprocessing step in many computer vision tasks (e.g., object
detection [5–7], image segmentation [8–10], visual saliency [11], and noise estimation [12]). This
is mainly because superpixels improve the computational efficiency and robustness of subsequent
applications by reducing the number of inputs and removing a large amount of redundant information.

Because of the effectiveness of superpixel segmentation, the idea of partitioning data points into
homogeneous atomic clusters has been extended into video analysis by adding a constraint on temporal
consistency [13,14]. The new atomic cluster in video is called the supervoxel, as the video analog to the
superpixel in a still image [15]. In addition to the constraints inherited from superpixel segmentation
(i.e., adhering to object boundaries and having similar size), the new temporal constraint—namely
spatiotemporal coherence—requires that a supervoxel belong to the same object over time. Superpixel
and supervoxel are used interchangeably in the following text because a supervoxel in a single frame
is a superpixel. Existing works solve the supervoxel problem by either stacking video frames together
as 3D volumetric data and performing segmentation by treating the time axis as an additional spatial
dimension (e.g., [1,16]), or tracking or propagating the initial superpixel segmentation from the first
frame through inferring temporal correspondence in successive frames (e.g., [17–19]). Methods falling
into the first category cluster video pixels in 3D Euclidean space with color information added to
each point. This strategy may result in supervoxels only preserving temporal consistency in very few
neighboring frames. When more frames are considered, the same object in the video can be easily
separated into different supervoxels, even if the video is completely stacked by the same single still
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image. These kinds of methods seem to be more suitable for real 3D volumetric data (e.g., 3D electron
microscope (EM) images), and not appropriate for video.

More methods explore the second strategy to improve the temporal consistency of supervoxels.
Generally, those methods extract the superpixels of the current frame by using the immutable
segmentation of the previous frames [13,17,20]. For instance, the method using partially absorbing
random walks (PARW) [17] initializes superpixels for the current frame using the seeds of the previous
frame and generates new superpixels based on the current frame and the next frame. Because the
segmentations of the previous frames are immutable, the seeds that were used to initialize superpixels
of the current frame may change to a different object due to occlusions, and thus the temporal
consistency is easily lost (Figure 1a illustrates this problem). As shown in Figure 1a, temporal
superpixels (TSP) [20] is able to detect “dead” and “new” superpixels to deal with object occlusion.
However, their model overacts when dealing with moving objects, as shown in Figure 1b. Moreover,
most of the existing supervoxel algorithms rely on optical flows [18,19,21], which strongly influence
their temporal consistency and execution speed.
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Figure 1. Two toy examples of supervoxel segmentation on (a) video with new object and (b) video
with moving object. The first row are synthetic video frames. The results of two representative
state-of-the-art algorithms—PARW [17] and TSP [20]—are plotted in the second and third rows. Our
results are shown in the last row. Pixels with the same supervoxel label are painted using the same
color, best viewed in color.

Aiming to improve the temporal consistency of supervoxel segmentation when video is with
object occlusion and moving objects, we propose an alternative scheme that takes only two adjacent
frames into account at a time and produces two valid segmentations for each internal frame. Except for
the original colors and spatial locations, our method does not rely on any precomputed information
(e.g. optical flows). This scheme has two major benefits: (a) it provides a coarse-grained parallelism
that every two frames can be segmented in parallel; (b) each internal frame having two segmentations
gives the subsequent applications an opportunity to validate their results. A possible usage of our
supervoxels is depicted in Figure 2, where the propagation of a segmentation is not performed at the
superpixel level but at the object level.

The traditional Gaussian mixture model (GMM)—a weighted sum of Gaussian functions—has
been widely applied to the problem of classification [22,23]. However, it cannot be directly applied
to supervoxel segmentation because its computational complexity is relatively high and it does not
encode the constraint on segment size. GMM has been explored for superpixel segmentation and
achieved good segmentation accuracy in our previous work [24]; however, temporal consistency was
not considered. In this work, we extend the model of [24] to supervoxel segmentation and propose
a voxel-related GMM to tackle temporal consistency. Inherited from [24], we use constant weights
and subsets of all the Gaussian functions in the sums to ensure that the produced segments have
similar sizes and that the algorithm has linear complexity. In our new model, the size of the subsets is
controllable so that we can tune it to track objects with different moving speed. For instance, a large size
is suitable for videos containing fast-moving objects (see Section 3.4 for more details). Each supervoxel
is composed of two superpixels on two consecutive frames, and each superpixel is represented by a
Gaussian distribution. To ensure temporal consistency, we use the same color parameters (i.e., color
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mean vector and color covariance matrix) for the two distributions of each supervoxel. This is mainly
because the same object in two consecutive frames tends to be similar in color. Experiments conducted
on a well-known dataset show that the proposed algorithm is superior to the state-of-the-art in terms
of accuracy.
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Figure 2. An illustration of a possible usage of the proposed method. The first row is three successive
frames. In the second row, the first two superpixel segmentations are extracted using only the first two
frames. Similarly, the last two superpixel segmentations are extracted using only the last two frames.
In this example, the second frame has two superpixel segmentations. The third row explains a possible
usage in foreground segmentation or object tracking, best viewed in color.

The rest of this paper is organized as follows: some related works are introduced in
Section 2. Section 3 presents our supervoxel method. Experiments are conducted in Section 4. Finally,
we conclude our work in Section 5.

2. Related Works

Using superpixels as basic elements for image analysis and processing was first introduced by
Ren and Malik [25]. After the algorithms proposed in [1,16,26], the following works of extracting
superpixels for video data began to take temporal consistency into account. In this section, we will
review some representative algorithms that are related to supervoxel segmentation.

The hierarchical graph-based method (GBH) [26] constructs a 3D graph using all the video frames
and applies Felzenszwalb and Huttenlocher’s algorithm [27] to iteratively merge voxels using a
hierarchical scheme. Instead of building a regular grid graph base on a 26-neighborhood in 3D spatial
temporal space, the edges between frames are built in such a way that each voxel is connected to
its nine neighbors along the backward flow vector. The flow vectors are also used in the clustering
process. This method uses dense optical flow to ensure temporal consistency. However, errors from
the precomputed flows may shift to the segmentation process. Additionally, GBH cannot generate
supervoxels with similar size, and the number of supervoxels cannot be directly controlled. Since
GBH requires all frames to be loaded into memory (in which case it may fail for a longer video),
Ref. [28] gives an implementation of GBH to make it have a streaming capability by using a Markov
assumption.

Simple linear iterative clustering (SLIC) [1] uses a modified k-means to group pixels based on their
spatial location in a still image. In each iteration of SLIC, the search space of the current superpixel
is limited to a square region whose center is the spatial center of the current superpixel and whose
size is proportional to the desired size of each superpixel. To extend the modified k-means to video
data, voxels in frames are seen as points in 3D Euclidean space, and thus the search space becomes a
cube. Seeds are regularly distributed among the fake 3D volumetric data, and as a result supervoxels
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are temporally consistent only over a short range of frames. In SLIC, small connected regions are
merged into neighboring supervoxels in a 3D 10-neighborhood. However, a moving object captured
in different frames may not be connected in the 10-neighborhood. Therefore, the merging step may
cause a negative effect on the segmentation accuracy. Similar to SLIC, the method besed on graph cuts
(GC) [16] also stacks all frames together as a fake 3D volume. GC extracts supervoxels by partitioning
graphs in an energy minimization framework optimized using graph cuts. However, GC cannot
guarantee temporal consistency for a long range of frames.

Spatiotemporal closure (SC) [18] starts by extracting superpixels in the first frame using the
original method of TurboPixels [3]. The seeds for the superpixel segmentation of the next frame are
projected along the weighted flow vectors from the segmented seeds of the current frame. This method
also relies on precomputed optical flow and is not self-contained. An incorrect flow vector may easily
produce a supervoxel that covers multiple objects. Following works like Ref. [13], PARW [17] use
a similar method to move seeds from the superpixel segmentation of the current frame to the next
adjacent frame. Although TSP [20] does not move seeds with the aid of optical flow, seeds are still
moved from an immutable superpixel segmentation, and the seeds may be further evolved to a new
object. Superpixels Extracted via Energy-Driven Sampling (SEEDS) [29,30] was first designed for
superpixel extraction, and is extended to video data in video SEEDS (vSEEDS)[19]. Instead of moving
superpixel representatives from previous segmentations, vSEEDS propagates the rough block-level
segmentation of each frame into the next frame. However, vSEEDS still shares the same drawback
with the seeds moving methods when dealing with new objects.

Overall, existing supervoxel algorithms generally require motion information to aid the
segmentation. However, this kind of information is not originally equipped with the frames, and needs
to be computed by additional algorithms. The error in motion vectors may result in erroneous results
in supervoxels. Algorithms that evolve previous superpixel segmentation to new frames usually make
the previous segmentation immutable. Because the previous labels may shift to a new object, these
methods often fail to handle new objects or moving objects.

3. The Method

In the proposed method, the supervoxel problem is simplified as supervoxel segmentation on
two adjacent frames (see Figure 2 for an illustration). Each voxel is represented by a five-dimensional
vector, in which the time property is not involved. Inspired by Ref. [13], the time property of
each voxel is modeled in an implicit fashion such that data points are organized in subspaces: one
color subspace and two spatial subspaces (each frame has one spatial subspace). Each supervoxel is
composed of two superpixels, each of which is associated to a Gaussian distribution with unknown
parameters. To estimate the parameters, voxels are assumed to be observed from a mixture of Gaussian
distributions. Based on maximum likelihood estimation, the unknown parameters are estimated using
the expectation–maximization (EM) method. Once the values of the parameters are obtained, each
voxel’s supervoxel label is determined to be the one that has the maximum posterior probability.

3.1. Problem Formulation

For a given sequence of frames, we use zt
i to denote pixel i in frame t, with i ∈ I and t ∈ T, where

I is the pixel index set and T is the frame set. The symbol | · | denotes the number of elements in a
given set; e.g., |I| is the number of pixels in each frame, and |T| is the number of frames. The width
and height of the frames are denoted by W and H, respectively. Hence, we have |I| = W · H.

The desired size of each superpixel in a given frame is specified by vx · vy, where vx and vy are
the number of pixels along width and height, respectively. Usually, the values of vx and vy are given
by users. If we use values with a large difference, the shape of the generated superpixels in each frame
will tend to be a narrow rectangle (see Figure 3). Although people can assign different values to them,
it is encouraged to assign the same value, or at least two different values with a very small difference,
unless the narrow shape is useful for a special purpose.
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Figure 3. Supervoxel segmentation with different values for vx and vy. (a) two successive synthetic
frames with constant colors; (b) supervoxels with vx = vy; (c) supervoxels with vx = 4vy; In both (b)
and (c), voxels with the same color form a supervoxel. Although (b) and (c) use different vx and vy, the
number of the generated supervoxels are the same, but the shapes are very different.

Supervoxel segmentation is to assign each voxel a unique label. Voxels with the same label form
a supervoxel. All the possible supervoxel labels form a supervoxel set K = {0, 1, . . . , K− 1}, where
K = |K| is the number of supervoxels, which is computed in Equation (1):

nx =
W
vx

, ny =
H
vy

, K = nx · ny , (1)

where nx and ny are the desired numbers of superpixels along width and height for a single frame. For
simplicity, we assume W mod vx = 0 and H mod vy = 0.

In this work, the supervoxel segmentation procedure is performed on every two frames. Therefore,
a supervoxel is only valid on two successive frames. For instance, if some voxels in frame t and frame
t + 1 share the same supervoxel label, they are a subset of the same supervoxel. However, if the voxels
are in frame t and frame t + 3, they are not in the same supervoxel. In order to provide cues for some
subsequent applications (e.g., object tracking), frame t—where t 6= 0 and t 6= |T| − 1—will be used
two times. In the first time, the segmentation is performed on frame t− 1 and frame t. In the second
time, the same procedure of segmentation is performed on frames t and t + 1. By doing this, frame
t will have two valid superpixel segmentations. The detected regions in frame t can be propagated
by finding the overlapping superpixels in the second segmentation (see Figure 2 for an illustration).
Because the same methods are used to segment any two frames, the supervoxel problem becomes
finding K supervoxels for frame t and t + 1 such that the generated supervoxels are similar in size,
adhere to object boundaries well, and are temporally consistent. Therefore, only frame t and frame
t + 1 will be considered in Section 3.2.

3.2. The Model

To distinguish variables between two frames, a symbol with a hat at its top indicates that the
symbol is related to frame t + 1. Each voxel in frame t is represented by a five-dimensional vector
including spatial location (xi , yi) and three CIELAB color components—lightness ui and two color
components ai and bi. This can be expressed by

zi = (xi, yi, ui, ai, bi)
T , (2)

in which the superscript T indicates vector transpose. Similarly, voxel i in frame t + 1 is
represented using

ẑi = (x̂i, ŷi, ûi, âi, b̂i)
T . (3)

For two given frames t and t + 1, voxels are assumed to be distributed according to mixtures of
Gaussian distributions in which each Gaussian distribution corresponds to a superpixel. Gaussian
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function g(·; ·) is defined in Equation (4), where the semicolon is used to separate variables
and parameters:

g(z; µ, Σ) =
1

D
√

2π
√

det(Σ)
exp

{
(z− µ)T Σ−1 (z− µ)

}
, (4)

in which z is a D-dimensional column vector, µ and Σ are mean vector and covariance matrix,
respectively.

Generally, if voxels in different frames have similar colors and have small spatial distances,
they generally belong to the same object. This is particularly true in the videos with moving objects.
To incorporate this notion into our model, we use different parameters for spatial information but
the same parameters for color information for the same supervoxel in the definition of voxel density
functions d(·) and d̂(·), as shown in Equation (5). This is the key point to ensure temporal consistency:

d(zi) = ∑
k∈Ki

Pi
k · g(zi; µk, Σk) , d̂(ẑi) = ∑

k∈Ki

Pi
k · g(ẑi; µ̂k, Σ̂k) , (5)

in which

µk = (µs
k, µc

k)
T , µ̂k = (µ̂s

k, µc
k)

T , Σk =

[
Σs

k 0
0 Σc

k

]
, Σ̂k =

[
Σ̂s

k 0
0 Σc

k

]
, (6)

where µs
k and Σs

k are spatial mean vectors and spatial covariance matrices for frame t with k ∈ K.
Their parallel notations µ̂s

k and Σ̂s
k are for frame t + 1. The color mean vectors µc

k and color covariance
matrices Σc

k are for both frame t and frame t + 1. Supervoxel k can be characterized by the parameters
µs

k, µ̂s
k, Σs

k, Σ̂s
k, µc

k, and Σc
k, and thus each supervoxel corresponds to two Gaussian distributions.

Accounting for the locality of supervoxels, Ki in Equation (5) is a subset of K, and its elements are
related to the spatial location of voxel i. The definition of Ki will be discussed later. Instead of defining
Pi

k as a variable just like existing Gaussian mixture models, Pi
k is defined as a constant 1/|Ki| here to

make the generated supervoxels similar in size.
Once two successive frames t and t + 1 are given, parameters in the Gaussian densities can be

inferred and the label of each voxel, li for frame t and l̂i for frame t + 1, will be determined by the
following equations:

li = argk∈Ki
max Pr(k | zi) , l̂i = argk∈Ki

max Pr(k | ẑi) , (7)

in which Pr(k | zi) is the probability of assigning voxel i in frame t to supervoxel k given the observation
zi. Pr(k | ẑi) has a similar meaning. By applying Bayes rule, the posterior probabilities in Equation (7)
can be expressed by

Pr(k | zi) =
g(zi; µk, Σk) Pi

k
p(zi)

, Pr(k | ẑi) =
g(ẑi; µ̂k, Σ̂k) Pi

k
p(ẑi)

. (8)

Based on Equations (7) and (8), li and l̂i can be computed by the equivalent equations, as shown below:

li = argk∈Ki
max g(zi; µk, Σk) , l̂i = argk∈Ki

max g(ẑi; µ̂k, Σ̂k) . (9)

3.3. Estimating Parameters of Gaussian Distributions

Given two frames t and t+ 1, we use the method of maximum likelihood to estimate the unknown
parameters in the Gaussian distributions. Since the proposed density functions for voxels may be not
identical because the elements in Ki may be different for different i ∈ I (see Section 3.4 for details),
updating formulas for traditional GMM cannot be simply copied to our new model. Therefore, we
will derive the updating formulas for the proposed model in this section by applying the classical
expectation–maximization (EM) method to iteratively improve the log-likelihood.
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As the voxels in frames t and t + 1 are assumed to be distributed independently, the log-likelihood
L̃(θ) for the two frames can be written out as follows:

L̃(θ) = ∑
i∈I

{
log
(
d(zi)

)
+ log

(
d̂(ẑi)

)}
(10)

= ∑
i∈I

{
log
(

1
|Ki|2

)
+ log

(
∑

k∈Ki

g(zi; θk)

)
+ log

(
∑

k∈Ki

g(ẑi; θ̂k)

)}
, (11)

where θ is a vector of all the unknown parameters composed of µs
k, µ̂s

k, Σs
k, Σ̂s

k, µc
k, and Σc

k with k ∈ K.
For each supervoxel k, θk = (µk, Σk) and θ̂k = (µ̂k, Σ̂k). Because the number of elements in supervoxel
set Ki is constant (see Section 3.4), the value of the parameter θ that maximizes L̃(θ) is equal to the
value that maximizes the following function L(θ):

L(θ) = ∑
i∈I

{
log
(

∑
k∈Ki

g(zi; θk)

)
+ log

(
∑

k∈Ki

g(ẑi; θ̂k)

)}
. (12)

It is difficult to find the optimal value for θ by maximizing L(θ) directly. We insert new variables
Ri

k and R̂i
k into Equation (12) such that

∑
k∈Ki

Ri
k = 1 , Ri

k ≥ 0 , ∑
k∈Ki

R̂i
k = 1 , R̂i

k ≥ 0 , i ∈ I , k ∈ Ki . (13)

Then, Equation (12) will become Equation (14). By applying Jensen’s inequality, the EM method is
to alternatively find R = {Ri

k, R̂i
k|i ∈ I , k ∈ Ki} satisfying the equality of the inequality in Equation (15)

with parameters in θ being known (expectation step or E-step), and find parameters in θ that maximize
Q(R, θ), which is defined in Equation (15) using the obtained R (maximization step or M-step):

L(θ) = ∑
i∈I

{
log
(

∑
k∈Ki

Ri
k

g(zi; θk)

Ri
k

)
+ log

(
∑

k∈Ki

R̂i
k

g(ẑi; θ̂k)

R̂i
k

)}
(14)

≥ ∑
i∈I

{
∑

k∈Ki

Ri
k log

(
g(zi; θk)

Ri
k

)
+ ∑

k∈Ki

R̂i
k log

(
g(ẑi; θ̂k)

R̂i
k

)}
.
= Q(R, θ) . (15)

E-step: According to the theory of Jensen’s inequality, equality holds if and only if

g(zi; θk)

Ri
k

.
= αi , and

g(ẑi; θ̂k)

R̂i
k

.
= α̂i (16)

are constant. With the constraints in Equation (13), formulas to update R can be derived by eliminating
the temporal variables αi and α̂i in Equation (16), as shown below:

Ri
k =

g(zi; θk)

∑k∈Ki
g(zi; θk)

, R̂i
k =

g(ẑi; θ̂k)

∑k∈Ki
g(ẑi; θ̂k)

, (17)

where Ki is defined in Section 3.4.
M-step: To find the parameters θ that maximize Q(R, θ), we first get the partial derivatives of

Q(R, θ) with respect to different components of θ, as shown in Equations (18)–(22), and then set them
to zero to get the optimal θ, which is shown in Equations (24)–(27):

∂Q(R, θ)

∂µs
k

= ∑
i∈Ik

{
Ri

k(Σ
s
k)
−1(zs

i − µs
k)

}
,

∂Q(R, θ)

∂µ̂s
k

= ∑
i∈Ik

{
R̂i

k(Σ̂
s
k)
−1(ẑs

i − µ̂s
k)

}
, (18)
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∂Q(R, θ)

∂Σs
k

= ∑
i∈Ik

Ri
k

2

{
(Σs

k)
−1(zs

i − µs
k)(z

s
i − µs

k)
T(Σs

k)
−1 − (Σs

k)
−1
}

, (19)

∂Q(R, θ)

∂Σ̂s
k

= ∑
i∈Ik

R̂i
k

2

{
(Σ̂s

k)
−1(ẑs

i − µ̂s
k)(ẑ

s
i − µ̂s

k)
T(Σ̂s

k)
−1 − (Σ̂s

k)
−1
}

, (20)

∂Q(R, θ)

∂µc
k

= ∑
i∈Ik

{
Ri

k(Σ
c
k)
−1(zc

i − µc
k) + R̂i

k(Σ
c
k)
−1(ẑc

i − µc
k)

}
, (21)

∂Q(R, θ)

∂Σc
k

= ∑
i∈Ik

{
Ri

k
2

{
(Σc

k)
−1(zc

i − µc
k)(z

c
i − µc

k)
T(Σc

k)
−1 − (Σc

k)
−1
}
+

R̂i
k

2

{
(Σc

k)
−1(ẑc

i − µc
k)(ẑ

c
i − µc

k)
T(Σc

k)
−1 − (Σc

k)
−1
}}

, (22)

where zs
i = (xi, yi)

T and ẑs
i = (x̂i, ŷi)

T are spatial vectors of voxel i in frame t and t + 1, respectively.
Similarly, zc

i = (ui, ai, bi)
T and ẑc

i = (ûi, âi, b̂i)
T are color vectors. For each supervoxel k, Ik is a voxel

set that supervoxel k may cover, and is deduced from Ki as shown in Equation (23):

Ik = {i | i ∈ I , k ∈ Ki} , (23)

µs
k =

∑i∈Ik
Ri

kzs
i

∑i∈Ik
Ri

k
, Σs

k =
∑i∈Ik

Ri
k(z

s
i − µs

k)(z
s
i − µs

k)
T

∑i∈Ik
Ri

k
, (24)

µ̂s
k =

∑i∈Ik
R̂i

k ẑs
i

∑i∈Ik
R̂i

k
, Σ̂s

k =
∑i∈Ik

R̂i
k(ẑ

s
i − µ̂s

k)(ẑ
s
i − µ̂s

k)
T

∑i∈Ik
R̂i

k
, (25)

µc
k =

(
Ri

kzc
i + R̂i

k ẑc
i
)

∑i∈Ik

(
Ri

k + R̂i
k
) , (26)

Σc
k =

Ri
k(z

c
i − µc

k)(z
c
i − µc

k)
T + R̂i

k(ẑ
c
i − µc

k)(ẑ
c
i − µc

k)
T

∑i∈Ik

(
Ri

k + R̂i
k
) . (27)

Usually, the EM method starts by feeding it with a guess of the parameters in θ. Then, R and θ

will be alternatively updated using the formulas mentioned in E-step and M-step. However, there
is a risk that the covariance matrices may become singular and we may fail to obtain their inverse
matrices. For example, when the voxels in Ik have the same constant color, during the iteration of
EM Σc

k will become zero matrix, which is obviously singular. To avoid this trouble, one can perturb
each zc

i and each ẑc
i with a small random vector before the EM iterations. This trick may succeed in

most cases, but it may fail when an object in a frame is very narrow (e.g., a straight line), in which case
certain covariance matrices Σs

k or Σ̂s
k may become singular. In order to prevent the covariance matrices

from being singular, we first obtain their eigenvalues and impose a lower bound to the eigenvalues
to reproduce the covariance matrices. When an eigenvalue is less than the specified lower bound,
we assign the eigenvalue to that lower bound. We use λs and λc to denote the lower bound of spatial
eigenvalues and color eigenvalues, respectively. Experimentally, we have found that λs = 2 and
λc = 8 is appropriate to outperform the state-of-the-art algorithms. We will use this setting for the
remaining text.

In theory, the iteration of the EM method will not stop until the parameters in θ converge.
However, EM needs hundreds of iterations to reach the condition of convergence, resulting in a low
computational efficiency. In practice, aiming to reduce run-time, we use a fixed number of iterations
M = 20, which is sufficient in practice for generating supervoxels with state-of-the-art accuracy.
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3.4. Defining Ki and Initializing θ

The definition of supervoxel subsets Ki of K will be discussed in this section using mainly the
notations mentioned in Section 3.1. After the value of vx and vy are assigned, we define nx · ny rectangle
regions called anchor regions, with each anchor region corresponding to a supervoxel. As illustrated in
Figure 4, for each frame, an anchor region contains vx · vy voxels and all the anchor regions are regularly
placed on every frame. For a given supervoxel k, all voxels in its anchor region are assigned an anchor
label hi = k. Then, Ki is defined using the anchor label of voxel i using the following equations:

hx
i

.
= hi mod nx , hy

i
.
= bhi/nxc , (28)

Ki
.
=

{
ky + kx · nx

∣∣∣∣∣ kx ∈ {hx
i − ηx, . . . , hx

i + ηx}, 0 ≤ kx ≤ nx − 1
ky ∈ {hy

i − ηy, . . . , hy
i + ηy}, 0 ≤ ky ≤ ny − 1

}
, (29)

where ηx and ηy are parameters used to control the number of supervoxels from which each voxel i
may be generated. Clearly, at least one of the two parameters must be greater than or equal to 1.

Recall the definition of Ik in Equation (23) of Section 3.3. Elements of Ik are in turn determined
by Ki. The voxel set Ik is called the k-th supervoxel’s overlap region, into which voxels in supervoxel k
may spread. With the help of Figure 4, it is easy to conclude that an overlap region Ik of a supervoxel
k is the region whose center is the anchor region of the supervoxel k and whose width and height can
be divided evenly by vx and vy respectively, and can be expressed by ηx and ηy using (2ηx + 1)vx and
(2ηy + 1)vy. There are some exceptions, however. When an anchor region k is at the boundary of a
frame, the size of Ik may be less than (2ηx + 1)vx · (2ηy + 1)vy, but is at least (ηx + 1)vx · (ηy + 1)vy,
which is the case in which the anchor region is at one of the four corners of the frame. This conclusion
can be used to deduce the computational complexity of our algorithm. As discussed in Section 3.5,
the computational complexity can be affected by ηx and ηy. A large value for ηx · ηy will increase the
run-time of the algorithm. Meanwhile, a large value for ηx · ηy indicates that a supervoxel has a large
overlap region, which may result in a better performance in temporal consistency. By default, we use
ηx = ηy = 2 for our experiments.

vx

(2ηx + 1)vx

v
y

(2
η
y
+

1
)v

y

(a)

vx

(2ηx + 1)vx

v
y

(2
η
y
+

1
)v

y

(b)

Figure 4. Illustration of anchor region and overlap region with two different settings for ηx and ηy:
(a) ηx = ηy = 1, (b) ηx = 1, ηy = 2. In this example of both (a) and (b), nx = ny = 5 and the 25 anchor
regions are marked with black rectangles. The region within the blue rectangle is the overlap region Ik
of supervoxel k = 13 whose anchor region is highlighted by a red rectangle.

In our model, a Gaussian distribution represents a superpixel in a single frame, and two Gaussian
distributions with the same color parameters (color mean vector and color covariance matrix) but with
different spatial parameters represent a single supervoxel. As we expect that the generated superpixels
are regularly distributed on each frame, it is straightforward to initialize µs

k and µ̂s
k using the center of

the k-th anchor region. Since a color mean vector µc
k varies according to the color information of two



Sensors 2018, 18, 128 10 of 17

frames (see Equation (26)) during the EM iterations, the µc
k is initialized by the mean color of the two

voxels at the center of the k-th anchor region of each frame.
For each supervoxel k, the corresponding covariance matrices serve as normalizers for the squares

of the Euclidean distances (refer to Equations (4) and (9)). To initialize each of the covariance matrices,
the idea is to assign their diagonals with the same value, which can be interpreted as a distance within
which two voxels tend to be in the same supervoxel. We have found that it is sufficient to initialize
color covariance matrices with a color distance σc = 10 (see Equation (30)) and a small perturbation
for σc affects the result less. As we hope each superpixel for a single frame will have the same size
vx · vy, the spatial covariance matrices can be initialized using Equation (30):

Σc
k =

(σc)2 0 0
0 (σc)2 0
0 0 (σc)2

 , Σs
k = Σ̂s

k =

[
(vx)2 0

0 (vy)2

]
. (30)

3.5. Computational Complexity

With the discussion above, for any two successive frames, the proposed algorithm can be
summarized in Algorithm 1. The proposed algorithm is composed of three major procedures,
initializing θ (line 1 to line 3), updating R (line 5 to line 9), and updating θ (line 10 to line 13).
It is obvious that the initialization of θ needs a computational cost of O(|K|) = O(K), where K is the
number of desired supervoxels in two frames and is originally defined in Equation (1).

Algorithm 1 The proposed supervoxel algorithm.

Input: vx and vy, two successive frames.
Output: li and l̂i, i ∈ I .

1: for all k ∈ K do

2: Initialize µs
k, µ̂s

k, Σs
k, Σ̂s

k, µc
k, Σc

k (refer to Section 3.4).
3: end for
4: for m = 1 to M do {refer to Section 3.3 for the value of M}

5: for all i ∈ I do

6: for all k ∈ Ki do {refer to Section 3.4 for Ki}

7: Update Ri
k and R̂i

k using Equation (17).
8: end for
9: end for

10: for all k ∈ K do

11: Update µs
k, µ̂s

k, and µc
k using Equations (24)–(26).

12: Update Σs
k, Σ̂s

k and Σc
k using Equations (24)–(27).

13: end for
14: end for
15: for all i ∈ I do

16: li and l̂i are determined by Equation (9).
17: end for

According to Equations (28) and (29), the number of elements in Ki satisfies the following
inequality:

(ηx + 1) · (ηy + 1) ≤ |Ki| ≤ (2ηx + 1) · (2ηy + 1) . (31)

For each voxel i, updating Ri
k or R̂i

k, k ∈ Ki needs time O(|Ki|). For all the elements in R, we therefore
have a computational complexity O(ηx · ηy · |I|). Based on Equations (24)–(27), for a given supervoxel
k, updating the parameters in θk or θ̂k needs a time of O(|Ik|). By the conclusions about the size of Ik
in Section 3.4, we know that

(ηx + 1)(ηy + 1)vxvy ≤ |Ik| ≤ (2ηx + 1)(2ηy + 1)vxvy. (32)
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Therefore, the computational complexity for updating θ is

O(ηxηyvxvy|K|) = O(ηxηyvxvynxny) = O(ηxηy|I|). (33)

Because |K| � |I| and we use constant values for ηx and ηy, the computational complexity of our
algorithm is O(|I|).

When the input video has more than two frames, every internal frame will have two segmentation
results: one generated with its previous frame and another generated with its next frame (refer to
Figure 2 for a visual illustration). For the entire video sequence, the complexity is O((|T| − 1) ·
|I|) = O(|T| · |I|), where |T| is the number of frames in the input video and has been mentioned in
Section 3.1.

4. Experiments

Our method has been designed to produce supervoxels of similar size. To evaluate the
performance of our algorithm, it is reasonable to compare the proposed method with algorithms
that are also designed to generate supervoxels of similar size. We compared our method with four of
these kinds of algorithms, including video SLIC [1] (vSLIC), PARW [17], vSEEDS [19], and TSP [20],
whose source codes are publicly available at their respective research websites. We used the default
parameters provided by their authors for all the compared methods. Comparisons of some early
methods that oversegment video data without considering the property of similar size can be found in
the work of [15].

4.1. Quantitative Comparisons

We conducted experiments on the Chen dataset [31] and adopted five metrics to evaluate the
quality of the supervoxels generated by different algorithms. This dataset contains eight video
sequences, and every frame has a ground truth label. Each metric is compared as a function of the
average number of superpixels per frame.

Three of the five metrics are borrowed from still image segmentation, and they are 2D boundary
recall (2D BR), 2D under-segmentation error (2D UE), and 2D achievable segmentation accuracy
(2D ASA). For a single frame with ground truth labels, 2D BR measures the proportion of ground
truth boundaries that fall within two pixels of the superpixel boundaries [3]. As shown in Figure 5a,
our method and vSEEDS [19] worked equally well in terms of boundary recall when a relatively large
number of superpixels are generated. However, the superiority of our method becomes obvious with
the decrease of the number of superpixels.

2D UE, shown in Figure 5b, is another important measure of boundary adherence. For a single
frame, given a region gj from the ground truth segmentation and the set of superpixels required to
cover it, {sk|sk ∩ gj 6= φ}, where φ denotes an empty set, 2D UE measures how many pixels from sk are
not in the region gj. Given that | · | is the number of elements in a given set, G is the set of ground truth
segments, and M is the minimum number of pixels in sk overlapping gj, 2D UE can be expressed as

2D UE =
1
|I|

{
∑

gj∈G

(
∑{

k
∣∣ |sk∩gj |>M

} |sk|
)
− |I|

}
. (34)

It is generally accepted to set M to five percent of |sk| to account for ambiguities in the ground
truth segmentations. Superpixels that do not tightly adhere to the ground truth indicate high 2D UE.
Clearly, our method had the minimum under-segmentation error, as shown in Figure 5b.
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If we assign every superpixel with the label of a ground truth segment that covers the greatest
number of pixels of the corresponding superpixel, 2D ASA measures how much segmentation accuracy
we can achieve or how many pixels are correctly segmented, as shown in Equation (35):

2D ASA =
1
|I|∑sk

max
{
|sk ∩ gj|

∣∣∣ gj ∈ G
}

. (35)

Superpixels with high segmentation accuracy will result in a high value of 2D ASA. As shown in
Figure 5c, our method achieved the best 2D ASA.
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Figure 5. Results of 2D metrics. (a) 2D BR; (b) 2D UE; (c) 2D ASA.

The other two metrics—namely 3D UE and 3D ASA—were used to evaluate temporal consistency
by performing the formulas of 2D UE and 2D ASA on every two consecutive frames. Similarly, low 3D
UE and high 3D ASA indicate better performance. As shown in Figure 6, our method presented the
best temporal consistency.

To compare computational efficiency, we test the selected algorithms on a 4-core Intel CPU at
3.3 GHz. As shown in Figure 7, although our algorithm did not show the best performance in terms of
run-time, it is still worth noting that we achieved better results than PARW and TSP and had extremely
similar performance to vSEEDS. vSLIC presented the best run-time. However, vSLIC is not a real
supervoxel algorithm because it treats video as a fake 3D volume and temporal consistency is not
real considered in vSLIC. In addition, Figure 7 experimentally confirms that our method is of linear
complexity with respect to frame size.
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Figure 6. Results of 3D metrics. (a) 3D UE; (b) 3D ASA.
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Figure 7. Comparison of run-time.

4.2. Qualitative Comparisons

As displayed in Figure 8, we selected four frames from the Chen dataset to compare the
segmentation results of four algorithms. Note that vSLIC is not included because it does not consider
temporal consistency for real and cannot segment videos with very few frames [1] (e.g., two frames).
Our algorithm correctly assigned a new label for the new appearing object, as shown in the fourth row
of Figure 8d. Although TSP also correctly detected the new object, this algorithm is easy to overact
(certain moving objects are assigned with new labels in Figure 8b). If an object has similar colors
in two different frames, our method is able to track it. For instance, most of the supervoxels of our
method preserved temporal consistency, as shown in the third last row of Figure 8d, in which the
three people and the soccer ball of moving in different directions are similar in color between the two
frames. vSEEDS succeeded in segmenting the moving soccer ball, as shown in Figure 8c. However,
supervoxels of vSEEDS tend to be considerably dissimilar in size.

Although supervoxel algorithms are not real visual tracking algorithms, supervoxels may be
useful in visual tracking. For example, instead of tracking a rectangle window, a tracking algorithm can
track the superpixels to either save computing time or improve robustness. In this case, the temporal
consistency that supervoxel algorithms attempt to capture becomes an important property that can
boost the performance of such tracking algorithms. To compare the performance in terms of temporal
consistency when many frames are involved, we manually select some superpixels that cover the same
region in one frame and track them using temporal consistency. As shown in Figures 9–11, our method
presented the best results in tracking the three different kinds of objects.
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(a) (b) (c) (d)

Figure 8. Examples of supervoxel segmentation. (a) PARW [17]; (b) TSP [20]; (c) vSEEDS [19]; (d) ours.
The algorithms extract approximately the same number of supervoxels. Superpixel boundaries are
plotted in the first, third, fifth, and seventh rows. In the remaining rows, we paint voxels of the same
supervoxel using the same color. Disappearing and appearing superpixels are painted using black in
the first frames and white in the second frames, respectively. The third, fourth, seventh, and eighth
rows zoom in on regions of the first, second, fifth, and sixth rows, respectively.
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Figure 9. Segmentation results of a moving target that becomes two separated parts during the moving.
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Figure 10. Segmentation results of a moving target that is partially covered by another object during
the moving.
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Figure 11. Segmentation results of a moving target of varying size. Only the regions of interest defined
by red rectangles in the first row are plotted in the last three rows. This sequence is from [32,33].

5. Conclusions

A temporal superpixel algorithm was developed based on our novel voxel-related Gaussian
mixture model (GMM). Instead of producing immutable superpixels for each frame, we proposed a
new scheme for supervoxel segmentation. In this scheme, every two adjacent frames are independently
segmented into superpixels and so that every internal frame has two valid superpixel segmentations,
which provides our algorithm with a coarse-grained parallel ability and allows subsequent applications
to adjust their results on each internal frame to further improve robustness.

In the voxel-related GMM, a supervoxel is represented by two Gaussian distributions, each
of which models a superpixel in one frame. To guarantee temporal consistency, the two Gaussian
distributions of a supervoxel share the same color parameters. Every superpixel is assumed to be
distributed in a local region, resulting in an algorithm with lower complexity than the traditional GMM.
According to our experiments, the proposed method outperforms the state-of-the-art algorithms in
terms of segmentation accuracy while possessing a competitive computing performance.

As a contribution to open source society, our test code will be publicly available at https://github.
com/ahban.

https://github.com/ahban
https://github.com/ahban
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