Received 20 April 2015
Accepted 18 May 2015

Edited by M. Weil, Vienna University of Technology, Austria

Keywords: crystal structure; hydrous ternary sulfates; hydrothermal synthesis; hydrogen bonding

CCDC reference: 1401662
Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure of $\mathrm{NH}_{4}\left[\mathrm{La}\left(\mathrm{SO}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$

Meriem Benslimane, ${ }^{\text {a* }}$ Yasmine Kheira Redjel, ${ }^{\text {a }}$ Hocine Merazig ${ }^{\text {a }}$ and Jean-Claude Daran ${ }^{\text {b }}$

${ }^{\text {a }}$ Unité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, Faculté des Sciences Exactes, Département de Chimie, Université de Constantine 1, 25000 Constantine, Algeria, and ${ }^{\mathbf{b}}$ Laboratoire de Chimie de Coordination, UPR-CNRS 8241, 05 route de Narbonne, 31077 Toulouse Cedex 4. *Correspondence e-mail: b_meriem80@yahoo.fr

The principal building units in the crystal structure of ammonium aquabis(sulfato)lanthanate(III) are slightly distorted SO_{4} tetrahedra, LaO_{9} polyhedra in the form of distorted tricapped trigonal prisms, and $\mathrm{NH}_{4}{ }^{+}$ions. The La ${ }^{3+}$ cation is coordinated by eight O atoms from six different sulfate tetrahedra, two of which are bidentate coordinating and four monodentate, as well as one O atom from a water molecule; each sulfate anion bridges three La^{3+} cations. These bridging modes result in the formation of a three-dimensional anionic $\left[\mathrm{La}\left(\mathrm{SO}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{-}$framework that is stabilized by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogenbonding interactions. The disordered ammonium cations are situated in the cavities of this framework and are hydrogen-bonded to six surrounding O atoms.

1. Chemical context

Three-dimensional framework materials are characterized by their structural diversity. They are of continuing interest as a result of their technologically important properties and potential applications in catalysis, ion-exchange, adsorption, intercalation, and radioactive waste remediation (Szostak, 1989; Cheetham et al., 1999; Rosi et al., 2003; Ok et al., 2007). Many materials showing such functional features contain structurally versatile cations, in particular heavier metal cations with large coordination spheres. Among many other cations, lanthanide cations have been used widely, since they exhibit high coordination numbers and can show a large topological diversity in the resulting framework structures (Bataille \& Louër, 2002; Wickleder, 2002; Yuan et al., 2005). One of the most promising synthetic methods for the preparation of compounds with framework structures is the hydrothermal (or solvothermal) reaction technique (Feng et al., 1997; Natarajan et al., 2000) in which mineralizers such as acids or bases are introduced to increase the solubility and reactivity of the reagents (Laudise, 1959; Laudise \& Ballman, 1958). Moreover, organic or inorganic templates are used to direct the topologies of the framework structures and the concomitant physical and chemical properties of the products (Szostak, 1989; Breck, 1974; Barrer, 1982). Thus, we have tried to utilize the hydrothermal technique to react a lanthanide cation (La^{3+}) with sulfuric acid in the presence of $\mathrm{NH}_{4} \mathrm{OH}$ and 3-aminobenzoic acid as a template to prepare higher dimensional framework materials. However, in the present case the organic template was not incorporated in the resultant crystal structure of the title compound, $\mathrm{NH}_{4}\left[\mathrm{La}\left(\mathrm{SO}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$, which represents a new hydrate form. Other members in the system $\mathrm{NH}_{4}{ }^{+} / \mathrm{La}^{3+} / \mathrm{SO}_{4}{ }^{2-} /\left(\mathrm{H}_{2} \mathrm{O}\right)$ are two forms of anhydrous $\left(\mathrm{NH}_{4}\right)\left[\mathrm{La}\left(\mathrm{SO}_{4}\right)_{2}\right]$ (Sarukhanyan et al., 1984a; Bénard-

Figure 1
The principal building units, LaO_{9} polyhedra and SO_{4} tetrahedra, in the crystal structure of $\left(\mathrm{NH}_{4}\right)\left[\mathrm{La}\left(\mathrm{SO}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) $1-x,-\frac{1}{2}+y, \frac{1}{2}-z$; (ii) $1-x, \frac{1}{2}+y, \frac{1}{2}-z$; (iii) $1-x$, $2-y,-z$; (iv) $2-x, 2-y, 1-z$; (v) $x, \frac{3}{2}-y, \frac{1}{2}+z$.]

Rocherullé et al., 2001), $\left(\mathrm{NH}_{4}\right)_{5}\left[\mathrm{La}\left(\mathrm{SO}_{4}\right)_{4}\right]$ (Niinisto et al., 1980) and $\left(\mathrm{NH}_{4}\right)\left[\mathrm{La}\left(\mathrm{SO}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]$ (Keppert et al., 1999).

Sulfates with an $A^{+}: \operatorname{Ln}^{3+}\left(A^{+}=\right.$alkaline ions, $\mathrm{Ln}^{3+}=$ lanthanide ions) ratio of $1: 1$ are one of the best investigated groups among hydrous ternary sulfates. They crystallize either as monohydrates (Blackburn \& Gerkin, 1995; Barnes, 1995; Iskhakova et al., 1985a) or tetrahydrates (Eriksson et al., 1974), and in few cases also as dihydrates (Kaučič et al., 1985; Iskhakova \& Trunov, 1985). The tetrahydrates are mainly found for the bigger monovalent ions $\mathrm{Cs}^{+}, \mathrm{NH}_{4}{ }^{+}$, and Rb^{+}. For the smaller A^{+}ions such as Na^{+}, the monohydrate becomes dominant.

2. Structural commentary

The structure of the title compound comprises LaO_{9} polyhedra and SO_{4} tetrahedra as the principal building units (Fig. 1), forming an anionic $\left[\mathrm{La}\left(\mathrm{SO}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{-}$framework by sharing common edges and vertices (Fig. 2). The $\mathrm{NH}_{4}{ }^{+}$ counter-cations are situated in the cavities of this framework.

The La^{3+} cation is coordinated by eight O atoms from six different sulfate tetrahedra. Two tetrahedra are in a bidentate coordination mode and four tetrahedra are in a monodentate mode. The distorted tricapped trigonal-prismatic coordination sphere is completed by one O atom from a water molecule. The La-O bond lengths, ranging from 2.472 (3) to 2.637 (3) \AA with 2.496 (3) \AA to the water molecule, and the

Figure 2
The connection of LaO_{9} polyhedra and SO_{4} tetrahedra in the crystal structure of $\left(\mathrm{NH}_{4}\right)\left[\mathrm{La}\left(\mathrm{SO}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$, viewed along the a axis.
$\mathrm{O}-\mathrm{La}-\mathrm{O}$ angles, ranging from 53.55 (8) to 145.43 (9) ${ }^{\circ}$, are similar to the analogous distances found in $\mathrm{NaLa}\left(\mathrm{SO}_{4}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ (Blackburn \& Gerkin, 1995). The ninefold coordination of La^{3+} in $\mathrm{NH}_{4}\left[\mathrm{La}\left(\mathrm{SO}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ is typical for the majority of monohydrated alkali rare earth sulfate complexes and of rare earth complexes in general. For early members of the rare earth sulfate series, the coordination number of nine is realized, e.g. for $\mathrm{Ce}, \mathrm{Pr}, \mathrm{La}$ and Nd (Blackburn \& Gerkin, 1994, 1995; Iskhakova et al., 1985b, 1988). For later members of the sulfate series, such as Gd (Sarukhanyan et al., 1984b), the coordination number decreases to eight, presumably in association with the lanthanide contraction. There are two sulfur atoms (S1, S2) in the asymmetric unit of the title compound, both with very similar $\mathrm{S}-\mathrm{O}$ bond lengths in the ranges 1.465 (3)-1.488 (3) and 1.468 (3)-1.490 (3) \AA, respectively. The range of $\mathrm{O}-\mathrm{S}-\mathrm{O}$ bond angles, 106.04 (16)110.89 (19) ${ }^{\circ}$ for S1 and 104.70 (16)-111.52 (17) ${ }^{\circ}$ for S2, reflect the distortion of the two sulfate tetrahedra. Each SO_{4} anion bridges three La^{3+} cations (Fig. 2).

3. Supramolecular features

The bridging modes of the O atoms result in the formation of a three-dimensional anionic framework, stabilized by $\mathrm{O}-$ $\mathrm{H} \cdots \mathrm{O}$ hydrogen-bonding interactions between the aqua ligand and the two SO_{4} tetrahedra (Table 1) whereby each sulfate tetrahedron establishes one hydrogen bond with the water molecule via the oxygen atom (O 6 and O 3) corresponding to the longest $\mathrm{S}-\mathrm{O}$ bonds. The N atoms are situated in the cavities of this framework. Although the H atoms of the

Table 1
Hydrogen-bond geometry ($\AA,^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1 W-\mathrm{H} 11 \cdots \mathrm{O} 3^{\mathrm{i}}$	0.84 (5)	1.94 (5)	2.717 (5)	153 (5)
$\mathrm{O} 1 W-\mathrm{H} 21 \cdots \mathrm{O}^{\text {ii }}$	0.85 (3)	1.95 (3)	2.778 (4)	168 (5)
$\mathrm{N} 1 \cdots \mathrm{O} 1^{\text {iii }}$			2.942 (5)	
$\mathrm{N} 1 \cdots \mathrm{O}^{\text {ii }}$			3.036 (5)	
$\mathrm{N} 1 \cdots \mathrm{O} 3^{\text {iv }}$			2.914 (5)	
$\mathrm{N} 1 \cdots \mathrm{O} 8^{\text {v }}$			2.943 (5)	
$\mathrm{N} 1 \cdots \mathrm{O} 5^{\text {vi }}$			2.865 (5)	
N1...O4			2.866 (5)	

ammonium cation could not be located, the $\mathrm{N} \cdots \mathrm{O}$ distances between 2.865 (5) and 3.036 (5) Å strongly suggest $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds of medium strength (Table 1). It appears most likely that the number of O atoms (six) in the vicinity of the N atom is the reason for the disorder of the ammonium cation.

4. Synthesis and crystallization

The title compound was obtained during the attempted preparation of a complex resulting from the hydrothermal reaction of $\mathrm{La}_{2} \mathrm{O}_{3}(0.1 \mathrm{~g}, 1 \mathrm{mmol})$ with $37 \% \mathrm{wt}$ sulfuric acid and 3 -aminobenzoic acid $(0.048 \mathrm{~g}, 1 \mathrm{mmol})$ in the presence of $\mathrm{NH}_{4} \mathrm{OH}$ in 10 ml water. The mixture was kept in a 23 ml Teflon-lined steel autoclave at 433 K for 3 d . After this treatment, the autoclave was cooled slowly to room temperature. Slow evaporation of the solvent at room temperature led to the formation of prismatic colourless crystals of the title compound.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The oxygen-bound hydrogen atoms were located in a difference Fourier map and were refined with restraints of the $\mathrm{O}-\mathrm{H}$ bond length $[0.85(1) \AA$] and $\mathrm{H} \cdots \mathrm{H}$ distances $(1.39 \AA)$ and with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{O})$. The ammonium hydrogen atoms could not be located reliably by difference Fourier methods. Several disorder models considering the hydrogen-bonding environment (see Table 1) failed, eventually leading to the exclusion of the ammonium hydrogen atoms from the refinement. The maximum and minimum peaks in the final difference Fourier map are 0.93 and $0.72 \AA$, respectively, from atom La1.

Diffraction data were collected some time ago, and merged in the corresponding crystal class. Unfortunately, the original measurement data got lost; experiments to repeat the crystal growth were unsuccessful. Therefore the crystal structure was finally solved and refined with the merged data set.

Acknowledgements

Technical support (X-ray measurements) from Université Henri Poincaré, Nancy 1, is gratefully acknowledged.

Table 2
Experimental details.
Crystal data
Chemical formula
M_{r}
Crystal system, space group
Temperature (K)
$a, b, c(\AA)$
$\beta\left({ }^{\circ}\right)$
$V\left(\AA^{3}\right)$
Z
Radiation type
$\mu\left(\mathrm{mm}^{-1}\right)$
Crystal size (mm)
Data collection
Diffractometer
Absorption correction
$T_{\text {min }}, T_{\text {max }}$
No. of measured, independent and
observed $\left[I_{\circ}>2 \sigma(I)\right]$ reflections $(\sin \theta / \lambda)_{\max }\left(\AA^{-1}\right)$

Refinement
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$
No. of reflections 2414
No. of parameters
No. of restraints
H -atom treatment
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$
$0.027,0.081,1.26$
$\mathrm{NH}_{4}\left[\mathrm{La}\left(\mathrm{SO}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$
367.07
Monoclinic, $P 2_{1} / c$
100
$8.4919(16), 9.978(2), 11.9268(19)$
$128.511(10)$
$790.7(3)$
4
$\mathrm{Mo} \mathrm{K} \alpha$
5.96
$0.30 \times 0.20 \times 0.10$

Nonius KappaCCD
For a sphere (Dwiggins, 1975)
$0.419,0.431$
2414, 2414, 2362
0.715

124
3
H atoms treated by a mixture of independent and constrained refinement
$1.81,-1.48$

Computer programs: COLLECT (Nonius, 1998), DENZO and SCALEPACK (Otwinowski \& Minor, 1997), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows and WinGX (Farrugia, 2012) and DIAMOND (Brandenburg \& Berndt, 1999).

References

Altomare, A., Cascarano, G., Giacovazzo, C. \& Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.

Barnes, J. C. (1995). Acta Cryst. C51, 2466-2469.
Barrer, R. M. (1982). In Hydrothermal Chemistry of Zeolites. London: Academic Press.
Bataille, T. \& Louër, D. (2002). J. Mater. Chem. 12, 3487-3493.
Bénard-Rocherullé, P., Tronel, H. \& Louër, D. (2001). Mater. Sci. Forum, 378-381, 476-481.
Blackburn, A. C. \& Gerkin, R. E. (1994). Acta Cryst. C50, 835-838.
Blackburn, A. C. \& Gerkin, R. E. (1995). Acta Cryst. C51, 22152218.

Brandenburg, K. \& Berndt, M. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Breck, D. W. (1974). In Zeolite Molecule Sieves: Structure, Chemistry and Use. London: Wiley and Sons.
Cheetham, A. K., Férey, G. \& Loiseau, T. (1999). Angew. Chem. Int. Ed. 38, 3268-3292.
Dwiggins, C. W. (1975). Acta Cryst. A31, 146-148.
Eriksson, B., Larsson, L. O., Niinisto, L. \& Skoglund, U. (1974). Inorg. Chem. 13, 290-295.
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
Feng, P., Bu, X. \& Stucky, G. D. (1997). Nature, 388, 735-741.
Iskhakova, L. D., Gasanov, Y. \& Trunov, V. K. (1988). Zh. Strukt. Khim. 29, 95-99.
Iskhakova, L. D., Sarukhanyan, N. L. \& Shchegoleva, T. M. (1985a). Kristallographiya, 30, 474-479.
Iskhakova, L. D., Sarukhanyan, N. L. \& Trunov, V. K. (1985b). Zh. Neorg. Khim. 30, 978-981.
Iskhakova, L. D. \& Trunov, V. K. (1985). Kristallographiya, 30, 279283.

Kaučič, V., Bukovec, N. \& Golič, Lj. (1985). Acta Cryst. C41, 636-638.
Kepert, C. J., Junk, P. C., Skelton, B. W. \& White, A. H. (1999). Aust. J. Chem. 52, 601-615.
Laudise, R. A. (1959). J. Am. Chem. Soc. 81, 562-566.
Laudise, R. A. \& Ballman, A. A. (1958). J. Am. Chem. Soc. 80, 26552657.

Natarajan, S., Neeraj, S., Choudhury, A. \& Rao, C. N. R. (2000). Inorg. Chem. 39, 1426-1433.
Niinisto, L., Toivonen, J. \& Valkonen, J. (1980). Finn. Chem. Lett. 3, 87-92.
Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
Ok, K. M., Doran, M. B. \& O'Hare, D. (2007). Dalton Trans. pp. 3325-3329.

Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Rosi, N. L., Eckert, J., Eddaoudi, M., Vodak, D. T., Kim, J., O’Keeffe, M. \& Yaghi, O. M. (2003). Science, 300, 1127-1129.

Sarukhanyan, N. L., Iskhakova, L. D. \& Trunov, V. K. (1984a). Kristallografiya, 29, 435-439
Sarukhanyan, N. L., Iskhakova, L. D., Trunov, V. K. \& Ilyukhin, V. V. (1984b). Koord. Khim. 10, 981-987.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Szostak, R. (1989). In Molecular Sieves: Principles of Synthesis and Identification. New York: Reinhold.
Wickleder, M. S. (2002). Chem. Rev. 102, 2011-2088.

supporting information

Crystal structure of $\mathrm{NH}_{4}\left[\mathrm{La}\left(\mathrm{SO}_{4}\right)_{\mathbf{2}}\left(\mathrm{H}_{2} \mathrm{O}\right)\right.$]

Meriem Benslimane, Yasmine Kheira Redjel, Hocine Merazig and Jean-Claude Daran

Computing details

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski \& Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski \& Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg \& Berndt, 1999); software used to prepare material for publication:
WinGX (Farrugia, 2012).

Ammonium aquabis(sulfato)lanthanate(III)

Crystal data

$\mathrm{NH}_{4}\left[\mathrm{La}\left(\mathrm{SO}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$
$M_{r}=367.07$
Monoclinic, $P 2_{1} / c$
Hall symbol: -P 2ybc
$a=8.4919$ (16) \AA
$b=9.978(2) \AA$
$c=11.9268(19) \AA$
$\beta=128.511(10)^{\circ}$
$V=790.7(3) \AA^{3}$
$Z=4$

Data collection

Nonius KappaCCD
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
Detector resolution: 9 pixels mm^{-1}
CCD scans
Absorption correction: for a sphere
(Dwiggins, 1975)
$T_{\text {min }}=0.419, T_{\text {max }}=0.431$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.027$
$w R\left(F^{2}\right)=0.081$
$S=1.26$
2414 reflections
124 parameters
3 restraints

$$
F(000)=680
$$

$D_{\mathrm{x}}=3.083 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 2542 reflections
$\theta=3-30.5^{\circ}$
$\mu=5.96 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
Prism, colourless
$0.30 \times 0.20 \times 0.10 \times 0.10$ (radius) mm

2414 measured reflections
2414 independent reflections
2362 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.000$
$\theta_{\text {max }}=30.5^{\circ}, \theta_{\text {min }}=3.0^{\circ}$
$h=-12 \rightarrow 0$
$k=-14 \rightarrow 0$
$l=-12 \rightarrow 17$

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement

```
\(w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0427 P)^{2}+2.7376 P\right]\)
    where \(P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3\)
\((\Delta / \sigma)_{\max }=0.001\)
```

$$
\begin{aligned}
& \Delta \rho_{\max }=1.81 \mathrm{e}^{-3} \AA^{-3} \\
& \Delta \rho_{\min }=-1.48 \mathrm{e}^{-3}
\end{aligned}
$$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\mathrm{eq}}$
La1	$0.71683(3)$	$0.839390(18)$	$0.248314(19)$	$0.01052(8)$
S1	$0.74128(12)$	$1.09162(8)$	$0.42791(8)$	$0.01163(15)$
S2	$0.70608(12)$	$0.91270(8)$	$-0.02026(8)$	$0.01129(15)$
O1	$0.6085(4)$	$1.0290(3)$	$-0.1156(3)$	$0.0179(5)$
O2	$0.8105(5)$	$0.8337(3)$	$-0.0602(3)$	$0.0189(5)$
O3	$0.8535(4)$	$0.9585(3)$	$0.1310(3)$	$0.0156(5)$
O8	$0.9057(4)$	$1.1402(3)$	$0.5727(3)$	$0.0182(5)$
O4	$0.5597(4)$	$0.8301(3)$	$-0.0221(3)$	$0.0188(5)$
O7	$0.5667(4)$	$1.1797(3)$	$0.3641(3)$	$0.0229(6)$
O6	$0.6873(4)$	$0.9516(3)$	$0.4347(3)$	$0.0185(5)$
O5	$0.8062(4)$	$1.0870(3)$	$0.3387(3)$	$0.0192(5)$
O1W	$0.8711(5)$	$0.6537(3)$	$0.2059(3)$	$0.0241(6)$
H11	$0.982(5)$	$0.615(6)$	$0.266(4)$	0.036^{*}
H21	$0.820(8)$	$0.632(6)$	$0.121(2)$	0.036^{*}
N1	$0.2567(6)$	$0.6458(4)$	$-0.2302(4)$	$0.0244(7)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	$U^{\beta 3}$	U^{12}	U^{13}	U^{23}
La1	$0.01098(11)$	$0.00981(11)$	$0.01113(11)$	$-0.00037(5)$	$0.00706(9)$	$-0.00028(5)$
S1	$0.0106(3)$	$0.0110(3)$	$0.0114(3)$	$0.0009(3)$	$0.0059(3)$	$-0.0005(3)$
S2	$0.0118(3)$	$0.0111(3)$	$0.0101(3)$	$0.0008(3)$	$0.0064(3)$	$0.0000(2)$
O1	$0.0212(12)$	$0.0144(11)$	$0.0173(11)$	$0.0055(10)$	$0.0116(10)$	$0.0056(9)$
O2	$0.0214(13)$	$0.0207(14)$	$0.0180(13)$	$0.0035(10)$	$0.0140(12)$	$-0.0013(9)$
O3	$0.0158(11)$	$0.0162(11)$	$0.0111(10)$	$-0.0037(9)$	$0.0066(9)$	$-0.0028(9)$
O8	$0.0141(12)$	$0.0206(12)$	$0.0141(12)$	$-0.0009(10)$	$0.0059(10)$	$-0.0041(10)$
O4	$0.0181(13)$	$0.0212(13)$	$0.0174(12)$	$-0.0061(9)$	$0.0111(11)$	$-0.0018(9)$
O7	$0.0139(12)$	$0.0207(13)$	$0.0217(13)$	$0.0068(10)$	$0.0049(11)$	$-0.0025(10)$
O6	$0.0240(13)$	$0.0145(11)$	$0.0174(12)$	$-0.0029(10)$	$0.0130(11)$	$-0.0002(9)$
O5	$0.0246(13)$	$0.0181(12)$	$0.0211(12)$	$-0.0020(10)$	$0.0174(11)$	$-0.0016(10)$
O1W	$0.0289(16)$	$0.0220(14)$	$0.0177(13)$	$0.0126(11)$	$0.0127(12)$	$0.0010(10)$
N1	$0.0248(16)$	$0.0252(18)$	$0.0296(18)$	$-0.0037(13)$	$0.0201(15)$	$-0.0006(13)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

$\mathrm{La} 1-\mathrm{O}^{\text {i }}$	2.472 (3)	S1-O8	1.471 (3)
La1-O1W	2.496 (3)	S1-05	1.472 (3)
$\mathrm{La} 1-\mathrm{O} 8^{\text {ii }}$	2.521 (3)	S1-06	1.488 (3)
La1-O1iii	2.533 (3)	S2-O1	1.468 (3)
$\mathrm{La} 1-\mathrm{O} 2{ }^{\text {iv }}$	2.563 (3)	S2-O2	1.470 (3)
La1-O3	2.596 (3)	S2-O4	1.480 (3)
La1-O5	2.612 (3)	S2-O3	1.490 (3)
La1-O4	2.614 (3)	O1W-H11	0.845 (10)
La1-O6	2.637 (3)	O1W-H21	0.844 (10)
S1-O7	1.465 (3)		
O7-LLal-O1W	82.44 (12)	O7--La1-O6	99.16 (10)
O7- ${ }^{\text {i }}$ La1-O8 ${ }^{\text {ii }}$	143.78 (10)	O1W-La1-O6	145.43 (9)
O1W-Lal-O8 ${ }^{\text {ii }}$	71.36 (10)	O8ii-La1-O6	89.43 (9)
$\mathrm{O} 7^{\text {i }}-\mathrm{La} 1-\mathrm{Ol}^{\text {iii }}$	71.36 (10)	O1iii-La1-O6	70.57 (9)
O1W-Lal-O1 ${ }^{\text {iii }}$	139.83 (10)	$\mathrm{O} 2^{\text {iv }}$-La1-O6	71.00 (9)
O8 ${ }^{\text {iii }} \mathrm{La} 1-\mathrm{O} 1^{\text {iii }}$	143.55 (9)	O3-La1-O6	124.69 (8)
$\mathrm{O} 7^{\mathrm{i}}-\mathrm{La} 1-\mathrm{O} 2^{\text {iv }}$	72.90 (10)	O5-Lal-O6	53.55 (8)
$\mathrm{O} 1 \mathrm{~W}-\mathrm{La} 1-\mathrm{O} 2^{\mathrm{iv}}$	76.67 (10)	O4-Lal-O6	144.28 (9)
$\mathrm{O} 8^{\text {ii- }} \mathrm{La} 1-\mathrm{O} 2{ }^{\text {iv }}$	76.96 (10)	O7-S1-08	109.04 (17)
$\mathrm{O} 1^{\text {iii- }} \mathrm{La} 1-\mathrm{O} 2{ }^{\text {iv }}$	121.24 (9)	O7-S1-05	110.89 (19)
O7-Lal-O3	127.89 (10)	O8-S1-05	110.49 (17)
O1W-Lal-O3	76.32 (10)	O7-S1-06	110.19 (18)
O8ii-La1-O3	70.11 (9)	$\mathrm{O} 8-\mathrm{S} 1-\mathrm{O} 6$	110.17 (16)
$\mathrm{O} 1^{\text {iii- }} \mathrm{La} 1-\mathrm{O} 3$	96.07 (9)	O5-S1-O6	106.04 (16)
$\mathrm{O} 2{ }^{\text {iv }}$-La1-O3	142.55 (9)	O7-S1-La1	119.80 (13)
O7-La1-O5	140.16 (10)	O8-S1-La1	131.15 (12)
O1W-La1-O5	137.02 (11)	O5-S1-La1	52.71 (11)
O8ii-La1-O5	71.62 (9)	O6-S1-La1	53.78 (11)
O1iii-La1-O5	72.00 (9)	O1-S2-O2	109.67 (16)
$\mathrm{O} 2{ }^{\text {iv }}$-Lal-O5	114.84 (9)	O1-S2-O4	111.40 (17)
O3-La1-O5	71.17 (8)	$\mathrm{O} 2-\mathrm{S} 2-\mathrm{O} 4$	111.52 (17)
O7-LLa1-O4	74.43 (10)	$\mathrm{O} 1-\mathrm{S} 2-\mathrm{O} 3$	109.85 (16)
O1W-La1-O4	69.69 (10)	$\mathrm{O} 2-\mathrm{S} 2-\mathrm{O} 3$	109.59 (17)
O8ii-Lal-O4	116.81 (9)	$\mathrm{O} 4-\mathrm{S} 2-\mathrm{O} 3$	104.70 (16)
O1iii-La1-O4	74.17 (9)	La1-O1W-H11	128 (4)
$\mathrm{O} 2{ }^{\text {iv }}-\mathrm{La} 1-\mathrm{O} 4$	135.44 (9)	Lal-O1W-H21	119 (4)
O3-La1-O4	53.65 (8)	H11-O1W-H21	112 (3)
O5-La1-O4	109.69 (9)		

Symmetry codes: (i) $-x+1, y-1 / 2,-z+1 / 2$; (ii) $-x+2,-y+2,-z+1$; (iii) $-x+1,-y+2,-z$; (iv) $x,-y+3 / 2, z+1 / 2$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1 W-\mathrm{H} 11 \cdots \mathrm{O}^{v}$	$0.84(5)$	$1.94(5)$	$2.717(5)$	$153(5)$
$\mathrm{O}_{\mathrm{v}} W-\mathrm{H} 21 \cdots \mathrm{O}^{\text {vi }}$	$0.85(3)$	$1.95(3)$	$2.778(4)$	$168(5)$

supporting information

$\mathrm{N} 1 \cdots \mathrm{O}^{\text {vii }}$	$2.942(5)$
$\mathrm{N} 1 \cdots \mathrm{O}^{\text {vi }}$	$3.036(5)$
$\mathrm{N} 1 \cdots \mathrm{O}^{\text {viii }}$	$2.914(5)$
$\mathrm{N} 1 \cdots 8^{\mathrm{i}}$	$2.943(5)$
$\mathrm{N} 1 \cdots \mathrm{O}^{\mathrm{iii}}$	$2.865(5)$
$\mathrm{N} 1 \cdots \mathrm{O} 4$	$2.866(5)$

Symmetry codes: (i) $-x+1, y-1 / 2,-z+1 / 2$; (iii) $-x+1,-y+2,-z$; (v) $-x+2, y-1 / 2,-z+1 / 2$; (vi) $x,-y+3 / 2, z-1 / 2$; (vii) $-x+1, y-1 / 2,-z-1 / 2$; (viii) $x-1$, $-y+3 / 2, z-1 / 2$.

