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A low cost and open access system 
for rapid synthesis of large volumes 
of gold and silver nanoparticles
Alex Ross1,2, Marcelo Muñoz1, Benjamin H. Rotstein2,3, Erik J. Suuronen1 & 
Emilio I. Alarcon1,2*

Rapid synthesis of nanomaterials in scalable quantities is critical for accelerating the discovery and 
commercial translation of nanoscale-based technologies. The synthesis of metal nanogold and silver in 
volumes larger than 100 mL is not automatized and might require of the use of harsh conditions that 
in most cases is detrimental for the production of nanoparticles with reproducible size distributions. 
In this work, we present the development and optimization of an open-access low-cost NanoParticle 
Flow Synthesis System (NPFloSS) that allows for the rapid preparation of volumes of up to 1 L of gold 
and silver nanoparticle aqueous solutions.

The application of nanoparticles has rapidly emerged in a variety of fields spanning from heavy metal ion 
detection1–3, drug delivery4, nuclear targeting5, biosensing6,7, and microscopy contrast enhancement8 to transfect-
ing agents9. The process of nanoparticle functionalization, or capping, with inorganic10 or biological11 capping 
agents is key in facilitating these applications as it allows for control over properties such as nanoparticle size, 
biomolecular recognition, and can even impart advanced characteristics such as pH-dependent size control12. 
Furthermore, the inclusion of nanoparticles in biomimetic matrices can provide a variety of properties such as 
antimicrobial ability13,14 and electrical conductivity15. However, nanoparticle synthesis has intrinsic batch-to-
batch variability in particle diameter polydispersity and surface composition that contributes to discrepancies 
in nanoparticle performance and activity16. Metal nanoparticle synthesis is normally conducted using chemical 
reduction in batch reactor setups17. The photochemical reduction of metal ions to produce nanoparticles is an 
interesting alternative route for producing nanostructures from metals due to its simplicity and compatibility 
with a wide variety of capping agents. Both gold and silver nanoparticles can be synthesized from the photoiniti-
ated reduction of HAuCl4 via the Norrish Type I cleavage reaction of Irgacure-295918,19 in an aqueous solution20. 
However, scaling up photochemical preparation of nanoparticles remains a challenge, particularly when consid-
ering limited UVA light penetration in large containers.

Flow-based chemistry is becoming increasingly popular due to its advantages over batch chemistry such 
as reduced batch-to-batch variability21. Previous work on flow irradiation suggests that particle size and poly-
dispersity can be adjusted simply by altering the flow rate or irradiance intensity22. However, reactor fouling 
remains a serious problem with flow-based nanoparticle synthesis. A recent approach to preventing fouling can 
be seen in the work of Monbaliu et al23, who used a specific, tightly pH controlled gold citrate formulation to 
allow large scale synthesis in commercial photoreactors. However, this approach is limited by the significant 
cost of a commercial photoreactor and the use of one specific capping agent along with sodium ions which can 
contaminate metal nanoparticles.

Herein, we report a low-cost (~ 200 CAD), open access system called the Nanoparticle Flow Synthesis System 
(NPFloSS) that utilizes LED-UVA light sources to generate a continuous flow of nanoparticles. NPFloSS produces 
batches of both gold and silver nanoparticles within minutes, which is much faster than the normal batch pho-
toreactor. Furthermore, the use of individual LEDs considerably lowers the cost, increases the system lifetime, 
and reduces physical space requirements when compared to commercial photoreactors. A general formulation is 
used that can incorporate any desired capping agents without contaminating metal ions. Furthermore, Tween-20 
surfactant is presented as a novel method for anti-fouling in the context of flow nanoparticle synthesis.
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Results
NPFloSS development.  The NPFloSS consists of three main simple components: (1) a flow line driven by 
a peristaltic pump containing a UV transparent quartz cell (recycled from a decommissioned HPLC), (2) two 
365 nm UVA LEDs, and (3) two heat sinks (Fig. 1). Assembly instructions and additional details are available in 
the tutorial Video S1 and in the ESI. In the NPFloSS, the input tubing leads to a peristaltic pump that flows the 
reactants into a quartz flow cell, which is housed within a 3D printed compact UVA irradiation system contain-
ing two LEDs to provide high intensity irradiation (up to 14 mW/cm2). The LEDs’ temperature is maintained 
using Alpine GT CPU fans. After UVA exposure, the products are generated and flow into the output collector. 
The 3D printed compact UVA irradiation case allows for benchtop setup and reproducibility while removing the 
need for additional components or holders. The system can be continuously run to generate + 100 mL of product 
nanoparticle solution an hour or 1.0 L of product if left overnight.

NPFloSS optimization and nanoparticle synthesis.  Initial attempts at synthesis showed that in order 
to produce quality nanoparticles at an acceptable rate, high light intensity was critical. As such, two powerful 
LEDs were installed, and the effect of different light intensities evaluated (see Figure S1). The highest inten-
sity (≈ 14 mW/cm2) resulted in the best outcome for producing nanoparticles with the most intense plasmonic 
absorption at their respective maxima absorption (see Figure S1A). As higher intensity seemed beneficial, the 
LEDs were run at their maximum recommended operating current at 365 nm to produce a light dosage of 37 mJ/
cm2 for gold and 128 mJ/cm2 for silver.

At the optimal light dosage, the LED circuit board was found to stabilize at an operating temperature of 33 °C 
while the irradiated solution inside the quartz cell reached a temperature of 31 °C after 120 s (Figure S2). Note 
that the time the solution is exposed to 31ºC is less than 3s for gold and 10s for silver, which is enough time for 
the metal reductions to take place. Furthermore, maintaining the LED at this temperature allows for extending 
the LED lifespan.

At this stage of the NPFloSS development, nanoparticles could be made but reactor fouling was a major 
issue, which led to increasing the risk for line clogging and system failure (see Figure S3). Attempts to reduce 
fouling were made by modifying several characteristics such as flow rate, pH, temperature, and capping agent. 
Ultimately, the use of 10 mM Tween-20 surfactant added to the flow mixture was found to be effective to prevent 
fouling. Tween-20 is a mild surfactant capping agent24 that can be displaced by other capping agents and shows 

Figure 1.   Design of nanoparticle flow synthesis system. Left: Schematic representation for the Nanoparticle 
Flow Synthesis System (NPFloSS). Right: Actual pictures of the NPFloSS highlighting some key components 
of the design. The NPFloSS is composed of three simple main components: (1) a UV-transparent quartz cell 
with connected by tubing, (2) two 365 nm UVA LEDs as a photon source, and (3) two heat sinks for heat 
management. The part list information and assembly instructions for this system are available at no cost in the 
ESI of the article.
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good compatibility with biomolecules25. Tween-20′s anti-fouling action comes from its dual behaviour as both 
a surfactant and a capping agent that causes forming nanoparticles to better interact with the aqueous environ-
ment and remain in solution instead of building-up on the quartz. The protocol used for preventing fouling is 
shown in Scheme 1 (for further details see ESI).

With the operating conditions optimized (see Scheme 1), the stability of both “uncapped” and citrate capped 
gold nanoparticles was tested. Citrate capped nanoparticles showed better stability over a month than uncapped 
gold nanoparticles (Figure S4). In general, all nanoparticles grew for ~ 24 h after synthesis and those with less 
stable capping agents continued to slowly grow thereafter. This confirms previous reports of nanoparticle growth 
after synthesis26,27. Representative absorption spectra for nanogold and nanosilver colloidal solutions are showed 
in Fig. 2A,B, respectively. Representative absorption spectra for the different nanogold and nanosilver particles 
are included in Figures S5 and S6. The effect of citrate as a capping agent in the case of gold showed a net decrease 
in the hydrodynamic size from ≈ 60 nm for uncapped particles to ≈ 25 nm for the highest concentration (50 eq) of 
citrate (Fig. 2C, p < 0.05 t-test, see Table S3 for stats summary). Zeta potential values remained mostly unchanged, 
while the maximum absorption wavelength in the visible (tau) blue shifted by ≈ 30 nm to shorter wavelengths 

Scheme 1.   Optimized schematic representation for operation of the Nanoparticle Flow Synthesis System 
(NPFloSS). For nanogold (top) or nanosilver (bottom).
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Figure 2.   Colloidal properties for nanogold and nanosilver solutions prepared using NPFloSS. NPFloSS allows for rapid nanogold 
and nanosilver synthesis. Absorption spectra for nanogold (A) and nanosilver (B) aqueous colloidal solutions prepared using NPFloSS; 
gold nanoparticles capped with bovine serum albumin and silver nanoparticles capped with CLKRS peptide. The spectra illustrate 
representative examples for the determination of tau, the wavelength of maximal plasmon band absorbance, and full width at half 
maximum (FWHM) of the plasmon band. (C,D) from top to bottom: Hydrodynamic size, zeta potential, Tau, and FWHM values for 
gold (C) and silver (D) nanoparticles prepared in the presence of different protecting agents (see Scheme 1 for synthesis protocol). 
For each different equivalency of protecting agent, three batches were produced and measured in triplicate. Values in plots (C,D) 
are represented as box plots where the box encloses 50% of the data, upper and lower quartile, with the median value of the variable 
displayed as a line inside the box. The bars extending from the top and bottom of each box mark the minimum and maximum values 
within the data set that fall within an acceptable range. Sample size is n = 3 in all cases. See Table S3 for statistical analysis.
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at the highest citrate concentration used. This was also accompanied by a reduction on the spectra broadness 
or full width at half max (Fig. 2C). TEM analysis revealed that nanoparticle sizes ranged from ≈ 60 to ≈ 9 with 
estimated polydispersity (PDI) mostly to be in the monodisperse range < 0.1 as showed in Table S4.

Nanoparticle sizes measured by TEM showed a statistically significant reduction of the nanoparticle sizes 
from 62 to 25 nm (p < 0.05, values were determined by one-way ANOVA using Holm’s multiple comparison, see 
Table S4 for TEM stats summary), at 0 and 50 citrate equivalents (Fig. 3). Figures S7 and S8 contain representa-
tive TEM images for the prepared nanogold and nanosilver particles. Using nanogold particles prepared with 
five equivalents of citrate as a capping agent, we evaluated the batch-to-batch reproducibility for our system, see 
ESI for details. TEM and DLS measurements of the nanoparticles indicate that NPFloSS produces reproducible 
batches, see Tables S6 and S7.

For the case of nanosilver, uncapped synthesis was not possible. Fine tuning of the flow rate for synthesizing 
nanosilver was required (see ESI and Materials and Methods for details). Nanosilver was stable with negative 
zeta potentials when using citrate as a capping agent (Fig. 2B,D), with increasing particle hydrodynamic sizes 
that became considerably polydisperse at 5 and 50 equivalents of citrate (Fig. 2D). TEM experiments showed 
that nanosilver was statistically larger (> 5 nm, determined by one-way ANOVA using Holm’s multiple compari-
son) for the 5 and 50 equivalents of citrate compared to the 0.5 equivalents group (Figure S9, see Table S8 for 
statistical analysis). Nanosilver at 0.5 equivalents of citrate displayed a wide plasmon band that was red shifted 
as equivalents increased from 5 to 50 as would be expected from the increasing particle size.

For Tween-20 capped nanogold there were no significant changes in the hydrodynamic sizes. However, there 
is a light increase in the zeta potential values of about ≈ 5 mV at 1 and 10 equivalents of the surfactant. Particles 
with neutral (− 30 to + 30 mV) zeta potentials are commonly used in biomedical applications28–30. Surfactants 
such as Tween-20, although neutral, provide stability to nanoparticles25.

In contrast, there is a marked blue shift of ≈ 10 nm in tau at larger Tween-20 equivalent numbers (Fig. 2C). 
Full width at half max (FWHM) remained mostly unchanged. TEM measurements of individual nanoparticles 
prepared with 10 or 100 equivalents of Tween-20 showed significantly different values for the mean size (p < 0.05, 
determined by one-way ANOVA using Holm’s multiple comparison, see Table S2. As for nanosilver, Tween-20 
did not change the nanoparticle hydrodynamic sizes. Similar data was observed for zeta potential, maximum 
absorption and FWHM (Fig. 2D). TEM images of the 10 and 100 equivalent Tween-20 capped silver nanopar-
ticles also indicated that size was similar between groups (Figure S9 and Table S6).

When Triton was used as a capping agent, at 10 equivalents there was a decrease in the hydrodynamic sizes 
to values closer to those observed for the 1 equivalent of Triton (Fig. 2C). For tau, the most pronounced change 
was found for Triton, which blue shifted by ≈ 15 nm when increasing the concentration of the surfactant. FWHM 
values narrowed at 10 and 100 equivalents of the surfactant. The changes in the nanogold hydrodynamic sizes 
align well with the TEM findings that showed a size decrease from ≈ 42 to 28 nm at 1 and 10 Triton equivalents 
(see Fig. 3, p < 0.05 Table S4 determined by one-way ANOVA using Holm’s multiple comparison). Further 
increasing Triton concentration beyond 10 equivalents did not have a significant effect on the nanoparticle size.

Using smaller molecules such as HEPES, Lipoic acid, and the CLKRS peptide led to the production of stable 
nanoparticles with hydrodynamic and TEM sizes in the ≈ 10–60 nm range (Figs. 2C, 3). Lipoic acid coated 
nanoparticles showed a broader absorption spectrum, FWHM, with zeta potential values in the order of − 12 mV, 
which is considerably lower than the other thiol containing capping agent (CLKRS) that displayed + 15 mV. This 
aligns well with the reported findings of this short peptide as a superior capping agent for metal nanostructures31. 
Similar trends were observed for nanosilver and CLKRS (Fig. 2D). When using bovine serum albumin (BSA) as 
a capping agent for nanogold, nanoparticles with sizes in the 50 nm range were produced with strong positively 
charged surfaces (Fig. 2C), which resembles findings by our group and others in the production of protein capped 
metal nanostructures13,14,32,33. TEM measurements for the BSA coated nanogold indicated considerably smaller 
nanoparticle diameters of ≈ 30 nm than those measured by dynamic light scattering. These differences might be 
related to the formation of a protein corona around the nanoparticle when in solution, a phenomenon that does 
not exist under the experimental conditions of TEM34. Furthermore, DLS measurements tend to be larger35 due 
to the dynamic nature of nanoparticles in solution and the measurement of hydration sphere diameter36 which 
includes surface capping molecules as opposed to the dense metallic core measured by TEM.

Discussion
Flow systems have recently received a lot of attention and as a result systems ranging from simplified to highly 
automated have been produced to facilitate reagent mixing along with thermal, photochemical, and electro-
chemical stimulus37. The advent of flow photochemical systems has helped solve some of the problems leading 
to the under-utilization of photosynthetic routes such as specific glassware requirements, scalability, safety, and 
technical knowledge38. Thus, to encourage use of promising photosynthetic techniques, their application should 
be made as simple and cost-accessible as possible. Due to their wide variety of uses, there is an increasing demand 
for producing cost-effective methodologies for large scale synthesis of metal nanoparticles. In designing such 
systems, considerations for having reliable methodologies that encompass rapid capping agent replacement and 
batch-to-batch reproducibility are key. Flow reactors, such as NPFloSS, provide a cost-effective solution for use 
in academic or industrial settings.

Reactor fouling is the most common and serious issue when designing flow systems, as the metals tend 
to deposit on surfaces. In NPFloSS, we used low concentrations of Tween-20 that decreases the contact angle 
between quartz and water and thus increases the wettability of quartz while reducing interfacial tension39. Fur-
thermore, Tween-20 acts as a stabilizing nanoparticle capping agent40 while interacting with water through 
its hydrophilic domains, thus increasing nanoparticle-solution interaction. Through these dual functions, 
Tween-20 prevented reactor fouling and allowed the system to operate continuously without line blockage. As 
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Figure 3.   Transmission electron microscopy images for nanogold and nanosilver prepared using NPFloSS. 
Nanogold TEM measurements corroborate DLS measurements with regards to particle size for nanoparticle 
samples made by NPFloSS. The type of nanoparticle, capping agent used, and number of equivalents for the 
capping agent are presented to the left side of each histogram. Each histogram represents 30–100 individually 
measured nanoparticles. Representative TEM images of the nanoparticles are shown to the right of each 
histogram along with a 100 nm scale bar. Values in the figure are represented as box plots where the box 
encloses 50% of the data, upper and lower quartile, with the median value of the variable displayed as a line 
inside the box. The bars extending from the top and bottom of each box mark the minimum and maximum 
values within the data set that fall within an acceptable range. p values are calculated by one-way ANOVA using 
Holm’s multiple comparison analysis. Bars in red indicate no statistically significant differences (see Table S5).
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a biocompatible additive used in food and cosmetics that increases nanoparticle stability in biological media25, 
Tween-20 is a safe addition to biomedical nanoparticle formulations.

NPFloSS’ photochemical reduction methodology may be extended to allow for flow synthesis of other nano-
particle types. Further improvements of NPFloSS could include operation inside a glovebox for synthesis of 
oxygen sensitive nanoparticles like copper41 or its use as an in line system for dual photochemical synthesis of 
nanoparticles and photocatalysis. Also, the use of a bidirectional inlet system for in situ mixing in the “reaction 
cell” could be used for the preparation of core–shell nanoparticles.

Conclusions
We developed, optimized, and validated a low-cost and open access flow reactor for rapid synthesis of gold and 
silver nanoparticles: the NPFloSS. The practicality of this device allows for rapid synthesis of stable nanoparti-
cles whose surfaces can be readily protected with capping agent molecules such as citrate, Triton X-100, Tween, 
HEPES, lipoic acid, peptides such as CLKRS, and bovine serum albumin. The open access and low-cost features 
of NPFloSS make this instrument attractive for use by anyone to expand its nanoparticle synthesis potential to 
other metals and capping agents.

Methods
CAD modeling and 3D printing.  All 3D printed components were designed using CAD software (Fusion 
360, Autodesk Inc) and printed using an Ultimaker S5 with ABS filament. The instructions and tutorial video for 
assembling the system are made available in the ESI of this article.

Other components.  2.0 mm Teflon tubing was used to connect all components. A Manostat cassette pump 
was used to generate flow at a rate of 0.5–1.8 mL/min. Arctic Alpine 64 GT CPU fans were used as a heat sink 
for two 365 nm LEDs (LZ4-V4UV0R, Mouser) running at 2.8A 4.0 V powered by two adjustable power sources 
(Yihua PSN-305D). A quartz cell was used as the irradiation chamber.

Light irradiance calculations.  Radiance was directly measured at the flow cell’s position using a Luzchem 
L-0487 power meter. The obtained reading in lux was converted to W/m2 power for 365 nm light using the con-
version factor 0.0027. The total light dosage was obtained by multiplying the power by residence time.

Temperature measurement.  A thermal probe was placed in contact with the LED starboard and the 
temperature was continuously measured until thermal equilibria had been reached and for 10 min thereafter. 
Solution temperature was measured by flowing water into the quartz cell, turning on the LEDs, and then quickly 
extruding the water onto a thermal probe after a given time.

Chemicals.  Milli-Q water was freshly prepared using a Barnstead NANOpure II water filtration system. 
for z. All nanoparticle reactions were performed in an aqueous environment. Irgacure-2959 ([2-Hydroxy-4′-
(2-hydroxyethoxy)-2-methylpropiophenone], 98%, Sigma-Aldrich) stock was prepared at a concentration of 
10  mM and used as a photoinitiated reducing electron source. HAuCl4 ⋅ xH2O (chloroauric acid, 50% basis, 
Sigma-Aldrich) was used as an aqueous gold source and AgNO3 (silver nitrate, 99%, Sigma-Aldrich) as a silver 
source.

Tween-20 (polyethylene glycol sorbitan monolaurate, ~ 20n, Sigma-Aldrich), sodium citrate dihydrate (99.9%, 
Fisher), Triton-X 100 (~ 10n, VWR)), HEPES (N-[2-Hydroxyethyl] piperazine-N’-[2-ethanesulfonic acid], 99.5%, 
Sigma), lipoic acid (98%, Sigma), CLKRS peptide (95%), and bovine serum albumin (98%, Sigma) were used 
as stabilizing nanoparticle capping agents. Gold nanoparticles were synthesized at a concentration 1 mM and 
then diluted with solution containing capping agent to 0.66 mM while silver nanoparticles were synthesized at 
0.66 mM. After mixing the base reagents (water, I-2959, Tween-20, HAuCl4) pH was ~ 5 and after the reaction 
pH decreased to ~ 2 as measured by pH test strips (Sigma-Aldrich).

Peptide synthesis.  CLKRS peptides were synthesized using the Liberty Blue (CEM) automated microwave 
peptide synthesizer using N,N-dimethylformamide (DMF, VWR, 99.9%) . Fluorenylmethoxycarbonyl (fmoc) 
protected L-amino acids (99%) were purchased from CEM. To serine-preloaded Wang resin (CEM, 100–200 
mesh, 0.3 mmol/g loading), Fmoc deprotection was carried out with 20% piperidine (Sigma, 99%) at 90 °C for 
60 s while standard coupling cycles using N,N′-diisopropylcarbodiimide (DIC, Sigma-Aldrich, 99%) activator 
and Oxyma Pure (CEM, 99.5%) activator base were run at 90 °C for 120 s. Peptides were removed from the resin 
and deprotected with 92.5/2.5/2.5/2.5% v/v trifluoroacetic acid (TFA, Caledon, reagent grade)/triisopropylsi-
lane (TIS, Sigma-Aldrich, 98%)/2,2′-(ethylenedioxy) diethanethiol (EDT, Sigma-Aldrich, 95%)/H2O at 37  °C 
for 40 min and then precipitated in -20 °C diethyl ether (Sigma-Aldrich, 98%). Peptides were then dried under 
gentle N2 and purified through reversed phased high-performance liquid chromatography (RP-HLPC). Peptide 
purity and identity was confirmed via UV/MS. A purity of 95% was determined through UV peak analysis. Mass 
spectrometry results gave the most abundant peaks of 202.9 [M + 3H +] and 303.8 [M + 2H +] for an experimen-
tal mass of 605.6 Da compared with a calculated mass of 605.8 Da (see Figure S10).

Absorption spectra.  To characterize the nanoparticles, a UV absorbance spectrum from 350 to 750 nm 
was taken using a SpectraMax M2e with 2 nm steps. Three independent samples were prepared for each type of 
nanoparticle/capping agent. The plotted data in this article corresponds to the mean of those measurements. All 
samples were measured at a concentration of 0.66 mM.
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Dynamic light scattering and zeta potential measurements.  Hydrodynamic sizes and zeta poten-
tial measurements were carried out in a Malvern Zetasizer Nano ZS at 20 °C in 1.0 cm pathlength disposable 
plastic cuvettes. Reported values correspond to the average of three independent batches, each measured in 
triplicate. All samples had a concentration of 0.66 mM HAuCl4 or AgNO3 and equivalents of capping to agent to 
that concentration as reported (i.e. 10 equivalents give a concentration of 6.6 mM capping agent).

Replicability DLS experiments were carried out in a Wyatt Technologies DynaPro PlateReader-II at 25 oC 
in 96 well plates. 10 acquisitions were made for each of 3 batches both 1 day and 7 days after synthesis and are 
reported as mean ± standard deviation (see S9). All samples had a concentration of 0.66 mM HAuCl4 and 5 
equivalents (3.3 mM) of citrate capping agent.

Nanoparticle stability assays.  Stability tests for nanogold particles was carried out by measuring the 
absorbance spectra from 350 to 750 nm in a SpectraMax M2e with 2 nm steps immediately after synthesis (day 
0), a day after synthesis (day 1), 7 days after synthesis (day 7), and 28 days after synthesis (day 28).

Transmission electron microscopy.  Samples for electron microscopy were prepared by delivering ~ 10 
μL of solution to carbon-coated copper grids (400 mesh) and dried in a vacuum system for three days. Electron 
microscopy images were taken in a FEI Tecnai F20 G2 FE-TEM, operating in the transmission mode (TEM) 
at 200 kV. Nanoparticle mean size was calculated from TEM imaging by using ImageJ software42 to manually 
measure 100 individual particles from different areas in the grid. Nanoparticle polydispersity were estimated 
using PDI = (SD/mean)2.

Statistical analysis.  Unless otherwise indicated, p values were calculated using t-test or one-way ANOVA 
in KaleidaGraph 4.5 software. For t-test a p < 0.05 was considered as statistically significant. For the one-way 
ANOVA, a Holm’s multiple comparison analysis was performed.

Data availability
All data generated or analyzed in this study are included in the manuscript and the Supplementary materials. The 
experimental data that support the findings of this study can be found at no cost 10.6084/m9.figshare.13822775.
v1 additional information is available from the authors.
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