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Abstract

The innate immune system is critical in the response to infection by pathogens and it is activated by pattern recognition
receptors (PRRs) binding to pathogen associated molecular patterns (PAMPs). During viral infection, the direct recognition
of the viral nucleic acids, such as the genomes of DNA viruses, is very important for activation of innate immunity. Recently,
DNA-dependent protein kinase (DNA-PK), a heterotrimeric complex consisting of the Ku70/Ku80 heterodimer and the
catalytic subunit DNA-PKcs was identified as a cytoplasmic PRR for DNA that is important for the innate immune response to
intracellular DNA and DNA virus infection. Here we show that vaccinia virus (VACV) has evolved to inhibit this function of
DNA-PK by expression of a highly conserved protein called C16, which was known to contribute to virulence but by an
unknown mechanism. Data presented show that C16 binds directly to the Ku heterodimer and thereby inhibits the innate
immune response to DNA in fibroblasts, characterised by the decreased production of cytokines and chemokines.
Mechanistically, C16 acts by blocking DNA-PK binding to DNA, which correlates with reduced DNA-PK-dependent DNA
sensing. The C-terminal region of C16 is sufficient for binding Ku and this activity is conserved in the variola virus (VARV)
orthologue of C16. In contrast, deletion of 5 amino acids in this domain is enough to knockout this function from the
attenuated vaccine strain modified vaccinia virus Ankara (MVA). In vivo a VACV mutant lacking C16 induced higher levels of
cytokines and chemokines early after infection compared to control viruses, confirming the role of this virulence factor in
attenuating the innate immune response. Overall this study describes the inhibition of DNA-PK-dependent DNA sensing by
a poxvirus protein, adding to the evidence that DNA-PK is a critical component of innate immunity to DNA viruses.
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Introduction

The battle between host and pathogen has driven the evolution

of the immune system and of pathogens. The result of this on-

going fight is the development of sophisticated host detection and

response systems and also of elegant pathogen subversion

mechanisms [1,2]. As part of the innate immune response, pattern

recognition receptors (PRRs) detect an invading pathogen and

induce the production of cytokines and chemokines [3,4]. Not

surprisingly evolution has produced PRRs that bind to conserved,

essential molecules of pathogens (pathogen-associated molecular

patterns, PAMPs), making it hard for the pathogen to escape

detection. For example, lipopolysaccharide (LPS) is an essential

component of the outer membrane of Gram-negative bacteria and

is detected by toll-like receptor (TLR) 4 [5]. Similarly, during virus

infection, intracellular viral nucleic acids are detected by our

innate immune system [4]. Since it is difficult to alter their

genomes to escape detection, viruses have evolved proteins that

counteract host detection mechanisms by binding and inhibiting

signalling molecules [2]. Vaccinia virus (VACV) is a prime

example of this evolutionary strategy because it encodes in its large

double stranded (ds) DNA genome numerous proteins that inhibit

the host innate immune system. It encodes, for example, at least 10

proteins which can block activation of nuclear factor kappa B (NF-

kB), for example proteins N1 [6,7], A46 and A52 [8–10], B14

[11,12], K7 [13], M2 [14], K1 [15], E3 [16], C4 [17], and A49

[18] and others that block activation of interferon regulatory factor

(IRF)-3 such as A46 [10], K7 [13], C6 [19] and N2 [20]. In

addition, protein B13 inhibits caspase 1 thereby blocking

production of IL-1b downstream of AIM2-mediated detection of

foreign DNA [21]. However, although VACV has a dsDNA

genome that stimulates the innate immune system, there have

been no descriptions of VACV proteins capable of directly

inhibiting the detection of its DNA genome by PRRs. One reason

for this is that, until recently, the PRRs that detect intracellular

DNA of pathogens have been poorly understood.

Recently, DNA-dependent protein kinase (DNA-PK) was

identified as a PRR for DNA and DNA viruses and shown to

activate IRF3-dependent innate immunity [22]. DNA-PK is best

known as a large DNA repair complex consisting of Ku70, Ku80

(which together form the Ku heterodimer) and the catalytic

subunit DNA-PKcs. To promote DNA repair, Ku binds to free
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ends of DNA, which induces a conformational change leading to

the recruitment of DNA-PKcs via the C-terminal domain of Ku80

[23–25]. However, in addition to its role in DNA repair, DNA-PK

is a critical component of IRF3-mediated innate immune DNA

sensing in murine embryonic fibroblasts (MEFs) and adult murine

skin fibroblasts. This discovery added to a growing list of putative

DNA sensors which have been identified following initial

descriptions that DNA activates an IRF3-dependent pathway

[26,27] These include DAI [28], AIM2 [29–32], RNA-polymerase

III [33,34], LRRFIP1 [35], DHX9/DHX36 [36], IFI16 [37],

DDX41 [38], MRE11 [39] and cGAS [40]. Furthermore, there is

an additional molecule, barrier to autointegration factor (BAF),

which has not been shown to activate IRF3 or other innate

immune signalling pathways but nonetheless has a critical function

as a cytoplasmic DNA-binding molecule that inhibits poxviral

DNA replication, and this function of BAF is inhibited by the

VACV B1 protein kinase [41]. It is only beginning to become

clear, however, which sensors act in which cell types to detect

which pathogens [42]. It is evident these DNA sensors have

different patterns of cellular expression and have differential

preferences for the type of DNA. For example, AIM2 responds

preferentially to cytoplasmic DNA in macrophages by forming an

inflammasome leading to IL-1b and IL-18 secretion or pyroptotic

cell death. The importance of AIM2 in the response to poxviruses

and cytoplasmic bacteria has been demonstrated by the observa-

tion that mice lacking AIM2 are more susceptible to these

pathogens [43,44]. AIM2 does not, however, stimulate IRF3

activation. RNA-polymerase III binds to, and transcribes, AT-rich

DNA and produces a 59 triphosphate RNA molecule which acts as

a stimulatory ligand for RIG-I [33,34], although which cell types

and pathogens this is most important for have not yet been

identified. LRRFIP1 and IFI16 have little specificity for the type of

DNA detected and have been characterised mostly in macrophage

cell lines [35,37]. Conversely, DHX9/DHX36 and DHX41

function in plasmacytoid dendritic cells (pDCs) and myeloid

dendritic cells respectively, and are stimulated principally by

intracellular DNA bearing CpG motifs or by dsDNA respectively

[36,38]. cGAS was identified following the identification that

cyclic guanosine monophosphate-adenosine monophosphate

(cGAMP) bound to, and activated, the adaptor molecule STING

[45–49]. However, of the DNA sensors that lead to IRF3-

mediated IFN production, only DNA-PK has been shown to

function in vivo. Mice lacking DNA-PK infected with MVA or

herpes simplex virus (HSV) type 1 were deficient in the

upregulation of pro-inflammatory cytokines and chemokines [22].

The interest in VACV derives historically from its use as the

vaccine that eradicated smallpox, caused by the related ortho-

poxvirus, variola virus (VARV) [50]. After eradication was

achieved interest in VACV continued due to its development as

an expression vector [51,52] that has application for development

of new live vaccines [53–55]. More recently, VACV has been

utilised as a tool for studying host-pathogen interactions that has

shed light on immune system functions [56] and how VACV

exploits cell biology for rapid dissemination [57,58]. VACV strain

modified virus Ankara (MVA) is a promising vaccine vector [59]

and is highly attenuated due to extensive passage in chicken

embryo fibroblasts leading to several large genome deletions [60].

These deletions removed several immunomodulatory genes [61],

and smaller lesions in other genes have resulted in loss of protein

function [62].

VACV strain Western Reserve (WR) protein C16 is an

intracellular virulence factor and is conserved among orthopox-

viruses, including VARV and MVA [63]. Mice infected with a

virus lacking C16 (vDC16) had more leukocytes infiltrating

infected tissue, lost less weight and showed fewer signs of disease

compared with both wild-type and revertant viruses. However, the

mechanism of action of the C16 protein was not understood [63].

In this study the mechanism by which VACV protein C16

influences the immune response has been investigated and it is

shown that, by binding to the Ku70/80 complex, C16 blocks

DNA sensing in fibroblasts. The discovery of the interaction

between C16 and Ku led to the decision to investigate the

potential role of DNA-PK in innate immunity, leading to

description of DNA-PK as a PRR for cytoplasmic DNA [22].

The interaction between C16 and Ku is via the C-terminal region

of C16 that interacts directly with Ku70/80 and thereby reduces

its ability to bind to DNA. This C-terminal region is highly

conserved in both the VARV and MVA C16 orthologues;

however, although VARV C16 can interact with Ku70/80, a

small internal deletion in MVA C16 knocks out this binding

activity. In vivo and compared to control viruses, vDC16 caused

greater induction of cytokines in the first 48 h of infection,

consistent with C16 functioning as an inhibitor of the innate

immune response. This study therefore highlights the in vivo

importance of DNA-PK as a DNA sensor and describes how a

DNA virus has evolved to inhibit DNA sensing as a way to subvert

the detection of its genome by the host.

Results

C16 binds the Ku heterodimer
To investigate how C16 modulates the host immune response,

C16 was tandem affinity purification (TAP)-tagged [64], expressed

inducibly in HEK293 TRex cells and the C16 protein complexes

were purified and analysed by SDS-PAGE and mass spectrometry.

C16 was purified using this method in parallel with a control

protein, the intracellular IL-1 receptor antagonist (icIL-1Ra) that

has a similar motif to C16 at the C-terminus [63,65]. C16 co-

purified with two proteins of 70 and 80 kDa that were identified

by liquid chromatography mass spectrometry (LC/MS) as the two

components of the Ku heterodimer, Ku70 and Ku80. These

proteins did not co-purify with icIL-1ra-TAP and no proteins were

Author Summary

To mount an immune response to an invading bacterium
or virus (pathogens), the host must detect foreign
molecules from the pathogen. Pathogens have conserved
features called pathogen associated molecular patterns
(PAMPs) that are distinct from host cells and which are
recognised by the host using specific sensors (called
pattern recognition receptors, PRRs). One example of a
PAMP is DNA in the cytoplasm. Cytoplasmic DNA activates
the innate immune system, but the PRRs responsible
remain incompletely understood. One such PRR, DNA-PK,
was identified recently. Here we demonstrate that vaccinia
virus (VACV), the vaccine used to eradicate smallpox,
encodes a protein called C16 which binds to the DNA-PK
complex and prevents it from sensing foreign DNA and
activating the immune response. A VACV strain lacking
C16 showed reduced virulence and, consistent with this,
the host mounted a stronger innate immune response to
infection. This illustrates the importance of DNA-PK as a
sensor for foreign DNA, and increases understanding of
the interaction between VACV and the host. It also
illustrates how the study of virulence factors of pathogens
can lead to the identification of novel components of the
immune system.

Inhibition of DNA Sensing by Vaccinia Virus
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detected from the non-induced C16 cell line or a cell line

expressing the TAP-tag alone (Figure 1A).

Confirmation of this interaction was carried out in several ways.

Firstly, C16 complexes were affinity purified from the HEK293

cell line and immunoblotted for Ku70 and DNA-PKcs showing

that C16 binds to the Ku complex but not the third DNA-PK

component, DNA-PKcs (Figure 1B). Secondly, immunoprecipita-

tion of endogenous Ku80 from cells infected with VACV WR, or

vDC16 as a control, confirmed that this interaction was observed

during virus infection when both proteins were expressed at

endogenous levels (Figure 1C). Finally, to test whether the binding

of C16 to Ku was direct, recombinant C16 protein was expressed

and purified from E. coli and was then incubated with Strep-tagged

Ku70/Ku80DC that had been purified from insect cells infected

with recombinant baculoviruses. The Strep-tagged Ku70/

Ku80DC complex was then re-purified on a Strep-Tactin matrix

and analysed by SDS-PAGE. This showed that C16 co-purified

with the Ku proteins (Figure 1D) and thereby confirmed that the

interaction between Ku70/80 and C16 was direct. The Ku70/

Ku80DC complex lacks the small C-terminal domain implicated

in binding DNA-PKcs, suggesting that C16 does not bind Ku in

direct competition with the catalytic subunit of DNA-PK.

Collectively, these experiments showed that C16 interacts directly

with the Ku complex, both in cells and in vitro, and can be

observed with endogenous proteins in the context of VACV

infection.

The C-terminal region of C16 mediates the interaction
with Ku70/80

To determine which region of C16 is needed to bind Ku,

FLAG-tagged fragments of C16 (Figure 2A) were expressed in

HEK293T cells and tested for binding to the Ku complex

(Figure 2B). Full-length C16 (amino acid residues 1–331) co-

precipitated with Ku70/80, as did the C16 fragments containing

amino acid residues 97–331 and 157–331. In contrast, the N-

terminal region comprising amino acid residues 1–214, as well as

the C-terminal amino acids 215–331, did not co-precipitate with

Ku. These data show that the C-terminal residues 157–331 of C16

are sufficient for binding Ku (Figure 2B).

Whilst VACV C16 is highly conserved among VACV strains,

there are minor differences in the orthologues of C16 encoded by

VARV and VACV strain MVA. In MVA the C16 orthologue has

Figure 1. C16 interacts with the Ku heterodimer. A) Purification of TAP-tagged C16 by tandem affinity protein purification (TAP). C16-TAP was
purified in parallel with the TAP-tag alone or with icIL-1Ra-TAP followed by resolution with NuPAGE (Invitrogen) and staining with Coomassie brilliant
blue. B) Immunoblotting. Whole cell lysates (WCL) from HEK293Trex cells expressing TAP-tagged C16 or the same cell line not induced to express C16
(-ve) or a cell line expressing the TAP-tag alone (TAG) were analysed by SDS-PAGE and immunoblotting. Lysates from these cells were also affinity
purified (AP) using streptavidin beads and analysed in parallel. Blots were probed with antibodies shown on the right. C) Immunoprecipitation. HeLa
cells were infected with wild-type VACV (WR) or vDC16, or mock infected and whole cell lysates (WCL) were analysed by SDS-PAGE and
immunoblotting. Alternatively, cell extracts were immunoprecipitated with anti-Ku 80 antibody (Ku80) or an isotype control (ISO) 6 h post-infection
and the immunoprecipitates were analysed in parallel. D) C16 interacts with Ku directly. Co-precipitation with recombinant Strep-tagged Ku70/
Ku80DC pulling down recombinant C16. Ku70/Ku80DC was immobilized on Strep-Tactin beads and then incubated with C16 as described in
Methods. The lanes represent beads with C16, Ku or both proteins and are either affinity purified (AP) or samples with 10% of input (In) samples. The
positions of molecular size markers (kDa) are indicated. Each experiment was repeated three times (A–C) and twice (D).
doi:10.1371/journal.ppat.1003649.g001

Inhibition of DNA Sensing by Vaccinia Virus
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an internal deletion of 5 amino acids (residues 277–281) (Figure

S1) but was detected at levels similar to VACV WR C16 during

infection [63]. In comparison, the VARV-GBR46 differs by 6

(1.8%) amino acids spread across the protein. To test if these

changes affect the binding of C16 to the Ku complex, alleles of

MVA and VARV C16 corresponding to VACV WR residues

157–331 were expressed in HEK293T cells and then assessed for

binding to Ku70 (Figure 2C). In this assay, the VARV C16

orthologue interacted with Ku70 but the MVA orthologue showed

severely diminished binding. These data suggest not only that

amino acids 277–281 are important for the interaction between

C16 and Ku, but also that whilst VARV protein C16 targets

Ku70, that ability has been lost in the attenuated MVA strain of

VACV.

C16 disrupts the binding of Ku70/80 to DNA
The consequence of C16 binding to Ku was analysed by testing

the ability of C16 to interrupt the interaction between DNA and

the Ku70/80 heterodimer. Biotinylated DNA was transfected into

cells and DNA:protein complexes were isolated from the

cytoplasm via the biotin tag. In whole cell lysates it was noted

that the level of DNA-PKcs and Ku70 were similar in the presence

or absence of transfected DNA, and whether or not C16 was

expressed (Figure 3A–C). In cells expressing C16, however, the

amounts of both Ku and DNA-PKcs that co-purified with DNA

were reduced substantially compared with cells transfected with

empty vector. This was not due to degradation of DNA-PK

components because measurement of the levels of Ku70 and

DNA-PKcs showed a slight, but statistically insignificant, increase

Figure 2. The C-terminal domain of C16 is sufficient for binding to Ku. A) Schematic of C16 truncations used to map Ku-interacting domain.
Grey bars represent C16 fragments able to bind Ku70 and white bars represent weak or no binding. B) FLAG-tagged full length C16 (1–331); a, or C16
fragments representing amino acid residues 1–214 (b), 97–331 (c), 157–331 (d) or 215–331 (e) were expressed by transfection in HEK293 cells and cell
lysates were analysed by SDS-PAGE and immunoblotting. In parallel, extracts form these cells were affinity purified with Strep Tactin beads and the
affinity purified proteins were immunoblotted with anti-Ku70 or anti-FLAG Abs. C) TAP-tagged C16 from VACV WR (WR C16DN), VACV MVA (MVA
C16DN) and VARV (VARV C16DN) corresponding to amino acid residues 157–331 of VACV WR C16 were expressed by transfection in HEK293 cells and
then affinity purified Strep Tactin beads and then immunoblotted with anti-FLAG or anti-Ku70 Abs. WCL, whole cell lysate; IP, immune precipitated.
The experiments shown in B and C were done 3 times and twice, respectively.
doi:10.1371/journal.ppat.1003649.g002

Inhibition of DNA Sensing by Vaccinia Virus

PLOS Pathogens | www.plospathogens.org 4 October 2013 | Volume 9 | Issue 10 | e1003649



in the expression level of DNA-PK components in the presence of

C16. These observation indicated that C16 inhibits the interaction

of DNA-PK with DNA (Figure 3A). Quantification of this result by

immunoblotting from triplicate experiments confirmed a statisti-

cally significant reduction in DNA-PK components binding to

DNA in the presence of C16 (Figure 3B, C). It was also noted that

C16 did not co-purify with DNA implying that C16 does not bind

to DNA directly.

To investigate if C16 was sufficient to block Ku binding to

DNA, purified Ku70/Ku80 was incubated with DNA in the

Figure 3. C16 affects binding of DNA-PK to DNA. (A) HeLa cells were transfected with 2 mg/ml pcDNA4/TO (EV) or pcDNA4/TO-coC16 (C16) for
24 h followed by 2 mg/ml biotinylated ISD DNA for 1 h. Biotinylated DNA was purified from cytoplasmic cell lysates with streptavidin beads and
associated proteins were resolved by SDS-PAGE and immunoblotted with C16, Ku70 and DNA-PKcs antibodies. Integrated intensity of (B) Ku70 and
(C) DNA-PKcs was calculated using infrared imaging by a Licor Odyssey scanner from three independent experiments. * p,0.05. (D, E).
Electrophoretic mobility shift assay showing that the C-terminal domain of C16 inhibits binding of Ku to DNA. (D) A Cy3-labelled 19-bp duplex
oligonucleotide (10 nM) was incubated with (+) Ku70/Ku80DC (20 nM) or recombinant C16 [aa 157–331] (20 nM). (E) A Cy3-labelled 19-bp duplex
oligonucleotide (10 nM) was incubated with Ku70/Ku80DC (20 nM) in the presence of increasing amounts (20, 40, 80, 120 and 160 nM) of
recombinant C16 [aa 157–331]. Duplicate samples were analysed on a 5% polyacrylamide gel. The positions of free DNA and DNA-Ku complexes are
shown.
doi:10.1371/journal.ppat.1003649.g003

Inhibition of DNA Sensing by Vaccinia Virus
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absence or presence of increasing concentrations of the purified C-

terminal domain of C16 and DNA protein complexes were

analysed by electrophoretic mobility shift assay (EMSA)

(Figure 3D, E). This showed that the C-terminal domain of

C16, inhibited the electrophoretic shift induced by Ku. Further-

more, C16 alone did not induce an electrophoretic shift

(Figure 3D), supporting the observation that C16 does not bind

to biotinylated DNA (Figure 3A). At a high molar C16:Ku ratio of

approximately 6:1, Ku was no longer able to shift DNA. Together,

these data demonstrate that the C16 C-terminal domain is

sufficient for inhibiting the interaction between Ku and DNA.

Overall, these data show that C16 functions to inhibit the

binding of Ku70/80 to DNA, thereby greatly reducing the inter-

action of the DNA-PK complex with foreign DNA in the

cytoplasm. This proposed model is illustrated in Figure S2.

C16 inhibits DNA-PK-mediated DNA sensing
Since C16 interacted with Ku70/80 and inhibited its binding to

DNA, we proposed that VACV C16 had evolved to inhibit Ku-

mediated DNA sensing. C16 was therefore assessed for its ability

to block the production of cytokines by MEFs in response to

cytoplasmic DNA stimulation. Due to the difficulty of expressing

C16 without the transfected DNA plasmid itself stimulating innate

immune signalling, a plasmid expressing C16 was co-transfected

simultaneously with larger molar quantities of linear immuno-

modulatory DNA and the amount of Cxcl10 and Il-6 produced

were measured by ELISA 24 h later. Under the conditions tested,

co-transfection of C16, compared with a control plasmid, reduced

the production of Cxcl10 and Il-6 in response to DNA by

approximately 50 per cent, but not poly I:C (a dsRNA mimic)

(Figure 4A, B). This indicated that C16 inhibited the innate

immune activation of these cells by DNA but not RNA, consistent

with the described function of Ku70/80 in DNA sensing [22].

This inhibition was investigated further by digesting the plasmid

encoding the C16 ORF with the restriction enzymes BspMI, which

disrupted the C16 ORF, or MluI that cut the plasmid without

affecting the C16 ORF. These linearised plasmids were then

transfected into MEFs such that the dsDNA stimulus was also

responsible for expression of the gene of interest, rather like the

situation during DNA virus infection. When the C16 ORF

remained intact (MluI digestion) the level of Cxcl10 induced was

lower than when it was disrupted (BspMI digestion) (Figure 4C),

supporting the hypothesis that C16 inhibits the innate immune

response to DNA by MEFs.

MEFs lacking the Ku heterodimer induce lower levels of

cytokines and chemokines induced upon stimulation with DNA

[22]. However, the abrogation is not complete and there is

residual signalling. This is explained (at least in part) by DNA-

PKcs having DNA-binding capability independent of Ku [66],

and also by the existence of other DNA sensing mechanisms. If

C16 inhibited the production of Cxcl10 and Il-6 via its interaction

with Ku, following DNA stimulation C16 might be expected to not

influence the induction of these molecules in MEFs lacking Ku80,

gene Xrcc5, and therefore lacking the Ku heterodimer [67]. This

was tested and shown to be correct, although the overall level of

cytokine induction was reduced as expected (Figure 4D, E). This

suggests that the inhibition of DNA sensing mediated by C16 was

dependent on its interaction with the Ku heterodimer. Together,

these data suggest that C16 inhibited DNA sensing, but not RNA

sensing, and that this was mediated by its interaction with Ku.

The hypothesis that C16 was disrupting DNA-sensing at the

sensor level was tested further by overexpression of a molecule

downstream in the signalling pathway. It was observed that, whilst

C16 blocked DNA sensing when co-transfected with empty vector,

this inhibition was overcome when TBK-1 was co-transfected with

C16 (Figure 4F). This shows that the inhibitory effect exerted by

C16 is upstream of this component in the DNA-sensing pathway.

The effect on IRF3 translocation was also studied. MEFs were

infected with wild-type virus (vC16) or a C16 deletion virus

(vDC16) and the location of IRF3 was examined by immunoflu-

orescence. This experiment showed that infection of MEFs with

these WR-based viruses did not induce IRF3 translocation (Figure

S3), in contrast to the ability of MVA to activate this innate

immune signalling pathway [22]. This is likely to be explained by a

number of VACV proteins which have evolved to inhibit IRF3-

mediated signalling, independent of C16 [13,19,20].

Viruses lacking C16 induce greater production of
cytokines in vivo

To assess the contribution of C16 to the innate immune

response in vivo, mice were infected intranasally with either a

plaque purified wild type VACV WR , vDC16, or a revertant virus

in which the C16L gene had been re-inserted into its original locus

(Figure 5) [63]. VACV infection induced the production of Cxcl10

and Il-6 into the bronchoalveolar lavage (BAL) fluid, however,

infection with VACV vDC16 lead to an enhanced production of

these cytokines. Consistent with the function of C16 inhibiting the

innate immune response to DNA, this effect was significant in the

first 2 d post infection (p.i.) at 24 and 48 h p.i. for Cxcl10, and at

24 h p.i. for Il-6. C16 is a virulence factor, causing increased

weight loss and reducing the number of leukocytes recruited to the

lungs of mice infected with VACV [63]. Overall, data presented in

this study, demonstrate that DNA-PK-mediated activation of the

innate immune response to VACV is of biological significance in

vivo and that C16 is capable of inhibiting this function.

Discussion

The interactions between virus and host proteins have led to

discoveries about the function of multiple cellular systems,

including the innate immune system. VACV encodes many

inhibitors of both extracellular molecules and intracellular

signalling cascades to help dampen down immune responses.

Examples of extracellular immunomodulators include protein A41

that inhibits binding of chemokines to glycosaminoglycans,

thereby preventing establishment of the concentration gradient

of these molecules [68,69]. Other examples include VACV

proteins B18 and B8 as decoy receptors for type I and type II

IFNs, respectively [70–74]. Examples of intracellular inhibitors of

the innate immune system including the steroid biosynthetic

enzyme 3b-hydroxysteroid dehydrogenase that reduces the

VACV-specific CD8+ T cell response to infection [75,76], B14

that binds to IKKb and thereby inhibits activation of NF-kB [11],

C6 that inhibits activation of IRF3 by interacting with adaptor

proteins involved in the activation of TBK1 [19] and which

suppresses the immune responses to infection [77,78]. Therefore,

VACV is a useful tool for studying the innate immune system both

to study known signalling mechanisms and discover novel

molecules.

Here we define a viral inhibitor of DNA-PK, a protein complex

described recently as a PRR that senses foreign DNA, including

the genomes of DNA viruses [22]. Using an unbiased mass

spectrometry approach, VACV protein C16 is shown to bind to

the Ku70/80 heterodimer, part of the DNA-PK complex. This

direct protein/protein interaction occurs in cells, during ectopic

expression of C16 and during VACV infection, as well as in vitro

using recombinant purified proteins. By binding Ku70/80, C16 is

able to inhibit DNA, but not RNA, sensing in fibroblasts.

Inhibition of DNA Sensing by Vaccinia Virus
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Figure 4. C16 inhibits DNA sensing, but not RNA sensing. (A, B) MEFs were mock transfected (NS), transfected with 200 ng/ml pcDNA4/TO
(EV) or pcDNA4/TO encoding codon optimised C16 (coC16) and 5 mg/ml concatamerised DNA or 2 mg/ml poly (I:C). The presence of Cxcl10 or Il-6 was
measured in the supernatants at 24 h post transfection by ELISA. (C) MEFs were mock transfected (NS), or transfected with 2 mg/ml of purified
pcDNA4/TO-coC16 linearised previously with the indicated restriction endonuclease enzyme. Cxcl10 or Il-6 was measured in the supernatants as in
A,B. (D, E) Trp532/2Xrcc52/2 (Ku80 null) MEFs were transfected with 200 ng/ml pcDNA4/TO (EV) or pcDNA4/TO encoding codon optimised C16 (C16)
and 5 mg/ml concatamerised DNA. The presence of (D) Cxcl10 and (E) Il-6 were measured by ELISA in the supernatant at 24 h post transfection. (F)
MEFs were mock transfected (-ve), transfected with 200 ng/ml pcDNA4/TO or pcDNA4/TO encoding codon optimised C16 (coC16) and 5 mg/ml
concatamerised DNA along with either control vector or vector expressing TBK1. Error bars +/2 SEM (n = 5), ** p,0.01, NS = non-significant. Each
experiment was repeated a minimum of three times.
doi:10.1371/journal.ppat.1003649.g004

Figure 5. C16 affects Cxcl10 and Il-6 production in vivo. (A, B) Groups of five BALB/c mice were infected intranasally with 56104 pfu per
mouse of wild-type (WR), C16 knockout (vDC16) or revertant viruses. Mice were sacrificed at the indicated time points and the amount of (A) Cxcl10
and (B) Il-6 in BAL fluid was measured by ELISA. Error bars +/2 SEM (n = 3). * p,0.05, ** p,0.01.
doi:10.1371/journal.ppat.1003649.g005
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Mechanistically, C16 achieves this inhibition by preventing the

binding of Ku to DNA. This interaction has been localised to the

C-terminal domain of C16, and is also independent of the C-

terminal domain of Ku80. Interestingly, whilst C16 does not bind

DNA-PKcs directly, and does not appear to bind Ku70/80 in

direct competition with DNA-PKcs, it reduces the amount of

DNA-PKcs bound to DNA. These observations are consistent with

previous findings that, although DNA-PKcs can bind DNA

directly, this interaction is greatly enhanced by the presence of

the Ku heterodimer [66,79], and that Ku70/80 is important for

DNA sensing by the DNA-PK complex [22].

C16 was demonstrated to inhibit DNA-mediated activation of

the innate immune system. Under the conditions tested this

resulted in approximately a 50% reduction in the production of

the pro-inflammatory molecules Cxcl10 and Il-6. The remaining

DNA sensing capability is likely explained by both incomplete

penetrance of MEFs with C16-encoding plasmid, the abundance

of the DNA-PK and further Ku-independent DNA sensors, such

as IFI16 and cGAS shown previously to be operational in MEFs

[37,46].

C16 has therefore evolved as a viral countermeasure to the

detection of the VACV genome by the host innate immune

system, and, as such, the loss of C16 contributes to the attenuation

of this virus in vivo. The influence of C16 on virus virulence and the

immune response to VACV infection in murine models has been

described previously [63] and data in the present study add to the

findings of that report. Infection of mice with VACV vDC16

caused enhanced production of the chemokine Cxcl10 and the

cytokine Il-6 in the lungs. Given the chemoattractive properties of

these molecules, this likely explains the increased numbers of

infiltrating leukocytes during infection with vDC16 observed

previously [63].

As with other viruses, the detection of the VACV genome is

important for the host response to infection [22]. The discovery of

a VACV protein that inhibits this process re-enforces this fact and

shows the relevance of DNA-PK in vivo as a sensor of poxvirus

DNA. In addition, the observation that VARV C16 can also bind

to Ku70/80 is a strong indication that the pathogen that caused

smallpox also evolved to inhibit DNA-PK-dependent DNA

sensing. In contrast, the C16 orthologue encoded by VACV

strain MVA has an internal deletion of five amino acids from its

C16 orthologue that results in loss of binding to Ku70. Similarly,

internal deletion of 6 amino acids from MVA protein 183, the

orthologue of VACV WR protein B14, ablated its ability to inhibit

NF-kB activation [62]. The failure of MVA to inhibit detection of

its genome may be partly responsible for strong innate and

adaptive immune response to this virus.

The role of DNA sensing in disease is an emerging field and its

relevance to pathological processes beyond viral infection is

beginning to be explored. Conditions such as Aicardi-Goutières

syndrome [80] and systemic lupus erythematosus [29,81,82] have

shown association with DNA sensing mechanisms, such as AIM2,

and it is possible that DNA-PK, or other DNA sensors, contributes

to the disease process. In the future it may be possible to exploit

the interaction between C16 and Ku70/80 as a model for the

development of small-molecule inhibitors to alleviate pathological

processes caused by the accumulation of intracellular DNA.

In summary, this paper demonstrates an interaction between a

known viral virulence factor and the Ku complex. This discovery

led to the decision to investigate the potential role of DNA-PK in

innate immunity, and consequently to the demonstration that it

was a cytoplasmic DNA sensor that activates IRF3-dependent

innate immunity [22]. To our knowledge the inhibition of DNA

sensing by C16 represents the first viral interference with a dsDNA

sensor shown to have an in vivo effect and adds weight to the

hypothesis that DNA-PK is an important component of innate

immunity. This work also strengthens the case for investigating the

roles of microbial virulence factors due to the potential to discover

novel features of the immune system.

Materials & Methods

Ethics statement
This work was carried out in accordance with regulations of

The Animals (Scientific Procedures) Act (United Kingdom) 1986.

All procedures were approved by the UK Home Office and

carried out under the Home Office project licence PPL 70/7116.

Mice
Groups of five female BALB/c mice between six and eight

weeks old were anaesthetised and inoculate intranasally with

56104 plaque-forming units (PFU) of VACV strain WR intracel-

lular mature virus (IMV) that had been purified by sucrose density

gradient centrifugation and was diluted in 20 ml PBS. Mice were

sacrificed at the specified time points under terminal anaesthesia

with isofluorane and were exsanguinated from the subclavian

artery. Bronchoalveolar lavage (BAL) fluid was harvested using

five 200 ml lavages of lungs via the trachea and centrifuged to

remove cellular debris.

Plasmids
The C16 ORF was cloned into the pcDNA4 T/O expression

plasmid using BamH1 and Not1 sites. The TAP-tag sequence

comprised one STREP (WSHPQFEK) and two FLAG

(DYKDDDDK) sequences at the C terminus of the protein. C16

was codon optimised for expression in mammalian cells by

GenScript (New Jersey, USA).

Cell culture and transfection
HEK 293T and 293TRex (Life Technologies) cells were

maintained in DMEM containing 10% FBS 100 U/ml penicillin

and 100 mg/ml streptomycin. The 293Trex cell lines inducibly

expressing C16, icIL-1ra and the TAP-tag alone were clonally

selected using 5 mg/ml blasticidin and 100 mg/ml zeocin. MEFs

were maintained in DMEM containing 15% FBS. HeLa cells were

maintained in RPMI containing 10% FBS and 2 mM L-

glutamine. Transfections were carried out with Lipofectamine

2000 (Life Technologies).

Tandem affinity protein purification and mass
spectrometry

Tandem affinity protein purification (TAP) was performed using

Strep-Tactin superflow beads (IBA) and FLAG M2 agarose beads

(Sigma-Aldrich) as described elsewhere [64]. Coomassie stained

bands from tandem affinity purification procedures were excised

using a sterile scalpel and placed in 100 ml H2O (Sigma-Aldrich).

Samples were analysed by liquid chromatography mass spectrom-

etry (LCMS/MS) at the Centre for Systems Biology at Imperial

College London.

Immunoblotting
Cell lysates were separated by electrophoresis and transferred

onto Immobilon P membranes (GE Heathcare). These mem-

branes were blocked in 5% nonfat milk in TBS containing 0.1%

Tween 20 for 1 h at room temperature. Membranes were probed

with Abs against Ku70 (AbCam), Ku80 (Santa Cruz), DNA-PKcs

(Upstate) or C16 (Generated by Harlan Sera-Lab). Ku80, or
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control Abs were used for immunoprecipitation from HeLa cell

lysates. Chemiluminescence imaging was used to develop immu-

noblots and quantification was performed using a Licor Odyssey

scanner and band intensity was analysed using Odyssey software

(Licor Biotechnology).

Immunofluorescence
Cells were seeded onto 15-mm glass coverslips, and

subsequently infected with VACV WR at 5 pfu/cell for 3 or

6 h as indicated. Samples were fixed with 4% paraformalde-

hyde and permeabilised with PBS containing 0.2% Triton X-

100 and blocked with 5% non-fat milk in PBS with 0.1%

Tween for 1 h at 20uC. Incubation with anti-murine IRF3 (Life

Technologies, Grand Island, NY) diluted in PBS with 1% non-

fat milk for 1 h was followed by detection with alexa-fluor-

conjugated secondary antibody (Life Technologies, Grand

Island, NY). Cells were counterstained with DAPI and

mounted with Mowiol. Images were obtained using a Zeiss

Pascal 510 microscope and processed with Zeiss LSM software

(Zeiss, Oberkochen, Germany)

Enzyme-linked immunosorbent assay (ELISA)
Levels of Cxcl10 and Il-6 in cell supernatants or BAL fluid were

measured using ELISA kits (R&D systems) according to the

manufacturer’s instructions.

DNA pull down assay
Double stranded oligonucleotide DNA (sense sequence, TA-

CAGATCTACTAGTGATCTATGACTGATCTGTACATGA-

TCTACA) was biotinylated at its 39 end and transfected into

HEK293T cells using PEI (Sigma). After 30 min, cells were lysed

with a buffer containing 100 mM Tris-Cl, pH 8, 0.2% Triton X-

100, 2 mM MgCl2, 1 mM EDTA, and centrifuged at 600 g in a

microcentrifuge and the pellet was discarded. Crude cytoplasmic

extracts were obtained by a further centrifugation at 20,000 g.

Biotinylated DNA was then purified from the supernatant using

Streptavidin beads.

Expression of purification of C16 from E. coli
BL21(DE3)-R3-pRARE2 cells expressing C-terminal His-

tagged C16 (C16-His) from pET28a (Novagen) were lysed in lysis

buffer (50 mM HEPES pH 7.4, 500 mM NaCl, 5% glycerol,

30 mM imidazole pH 7.5, 0.5 mM TCEP, 1 tablet of complete

protease inhibitor (Roche), 0.1% Triton X-100) and cell debris was

removed by centrifugation. His-C16 was affinity purified through

a 1 ml His-TRAP column (GE Healthcare) using a step-wise

gradient of imidazole as indicated. The eluted fractions were

concentrated using a 10-kDa cut-off concentrator filter (Amicon)

and further purified by size exclusion chromatography (Superdex

200 16/60, GE Healthcare).

Expression and purification of Ku70 and Ku80 from
baculovirus-infected insect cells

To generate pFBDM-Strep-Ku70/Ku80DC for insect cell

expression of Ku heterodimer containing a C-terminally truncated

Ku80DC (lacking residues 591–732), human cDNA sequence

encoding Ku801–590 was cloned into the XhoI and NheI sites of

pFBDM, downstream of the p10 promoter. cDNA sequence

encoding full length human Ku70 was sub-cloned into the

BamHI/NotI sites of the same plasmid, downstream of the

polyhedron promoter and in frame with an N-terminal Strep tag

II. Ku70/Ku80DC was expressed and purified as described [83],

changing the first affinity step to Strep-Tactin resin (Qiagen).

Electrophoretic mobility shift assays (EMSA)
A 59 Cy3-labelled oligonucleotide (59 GAAAGCTATGGG-

CGCGGTT 39) was annealed to its complementary oligonucle-

otide to generate a 19-bp blunt-ended duplex substrate.

Recombinant Ku70/Ku80DC and/or C16 (aa157–331) were

incubated at the concentrations indicated in 10 ml binding buffer

(20 mM Tris–HCl pH 7.5, 50 mM NaCl, 0.5% glycerol,

0.1 mg/ml BSA) containing 10 nM Cy3-labelled DNA substrate

for 15 min at room temperature. After adding glycerol to 5%

total volume, the protein:dsDNA mixtures were fractionated on a

5% native PAGE gel (37:1 acrylamide:bis-acrylamide) run in

0.46 TBE at room temperature and 10 mA. The gel was

subsequently scanned on a Fujifilm FLA-500 instrument using a

532-nm laser and Cy3 filter.

Analysis of Ku complex – C16 mixtures
For the coprecipitation experiments, 300 ml of 26 mM purified

Strep-tagged Ku70/Ku80DC protein was added to 200 ml Strep-

Tactin Superflow Plus Beads (Qiagen) pre-equilibrated in PBS and

was incubated on a roller for 1 h at 4uC. Beads were washed four

times with buffer A (PBS supplemented with 0.2% BSA, 5 mM

DTT, and 0.1% NP-40). Purified C16 in PBS was added (250 ml

of 12 mM) and incubated with the beads for 7 h at 4uC on a roller.

Beads were then washed four times with buffer A and resuspended

in 46SDS loading buffer (Invitrogen). As a control, purified C16

was also incubated with Strep-Tactin Superflow Plus Beads that

had not been incubated previously with Strep-tagged Ku70/

Ku80DC. The control sample was treated as described before. All

samples were analysed by SDS-PAGE using 4%–12% NuPAGE

Bis-Tris gels (Invitrogen) run in 16MES buffer (Invitrogen).

Statistical analysis
Statistical analysis was carried out using student’s t-test with

Welch’s correction where necessary.

Supporting Information

Figure S1 Alignment of C16 from VACV WR, VACV
MVA and VARV. Primary amino acid sequences from VACV

WR C16 (W) protein and its orthologues in VACV MVA (M) and

VARV GBR46 (V) were aligned using ClustalW software. The

underscored region (amino acids 157–331) represents the C-

terminal portion used in Figure 2C.

(TIF)

Figure S2 Proposed model of C16 action. C16 inhibits the

binding of Ku to DNA thereby preventing the assembly of DNA-

PK on VACV DNA and subsequent signal transduction via IRF3.

(TIF)

Figure S3 WR infection does not lead to IRF-3 activa-
tion. MEFs were infected with either wild-type WR VACV

(vC16) or a recombinant virus lacking C16 (vDC16) for 3 or

6 hours as indicated and stained for IRF-3. Scale bar; 10 mm.

(TIF)
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