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COVID-19 is an acute, complex disorder that was caused by a new b-coronavirus severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Based on current reports, it was
surprising that the characteristics of many patients with COVID-19, who fulfil the Berlin
criteria for acute respiratory distress syndrome (ARDS), are not always like those of patients
with typical ARDS and can change over time. While the mechanisms of COVID-19–related
respiratory dysfunction in COVID-19 have not yet been fully elucidated, pulmonary
microvascular thrombosis is speculated to be involved. Considering that thrombosis is
highly related to other inflammatory lung diseases, immunothrombosis, a two-way process
that links coagulation and inflammation, seems to be involved in the pathophysiology of
COVID-19, including respiratory dysfunction. Thus, the current manuscript will describe the
proinflammatory milieu in COVID-19, summarize current evidence of thrombosis in COVID-
19, and discuss possible interactions between these two.
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INTRODUCTION

The novel coronavirus disease 2019 (COVID-19) pandemic, which first broke out in Wuhan, China,
has now grown into a global pandemic. COVID-19 is an acute, complex disorder that is caused by a
new b-coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (1). Similar to
other human coronaviruses, SARS-CoV-2 mainly affects the respiratory system. While most people
with COVID-19 present with only mild illness (2), approximately 5% to 16% require intensive care
(3–5), among whom 50% to 70% rapidly progress to severe fatal respiratory dysfunction requiring
mechanical ventilation especially acute respiratory distress syndrome (ARDS) (5, 6). Elderly
individuals and persons with comorbidities have higher mortality rates (7). Surprisingly, the
characteristics of many patients with COVID-19, who fulfil the Berlin criteria for ARDS, are not
always like those of patients with typical ARDS and can change over time (8). Of note, COVID-19
patients develop profound hypoxemia early in their disease course, characterized by better
compliance of the respiratory system, a low ventilation-to-perfusion (VA/Q) ratio and low lung
recruitability, which is termed L-type ARDS (9). The initial acute respiratory dysfunction of
COVID-19 dominantly results from pulmonary microvascular thrombosis, which is supported by
pathological reports (10).
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Studies have revealed that COVID-19 often causes episodes of
thrombosis, and the incidence is higher in severe cases (11, 12).
Recently published studies have considered thrombosis an
important factor contributing to COVID-19 pathogenesis,
especially respiratory dysfunction (11, 13). Additionally,
thrombosis appears to be associated with other inflammatory
lung diseases, such as acute respiratory distress syndrome and
influenza-associated pneumonia (14, 15). Interestingly,
inflammation predisposes patients to thrombosis, and
conversely, thrombosis is associated with inflammation, a
process sometimes known as immunothrombosis (16).

In this review, we attempt to describe the proinflammatory
milieu in COVID-19, summarize current evidence of
thrombosis in COVID-19, and identify possible interactions
between inflammation and thrombosis. Given the relative lack
of information in relation to COVID-19 thrombosis, we also
summarize information from other similar RNA viral infections
and inflammatory disorders.
THE PROINFLAMMATORY MILIEU IN
COVID-19

The pathogenesis of COVID-19 is associated with a
hyperinflammatory response (17, 18). The first step in the
pathogenesis of COVID-19 is SARS-CoV-2 entry into target
cells through its S proteins outside the viral lipid layer (19, 20).
After entering host cells, mainly respiratory epithelial cells,
SARS-CoV-2–expressing pathogen-associated molecular
pattern molecules (PAMPs) activate a large number of innate
and adaptive immune cells (21, 22), leading to the production of
inflammatory cytokines and the type I interferons (IFN) IFN-a
and IFN-b, which establish a proinflammatory milieu.

The Cytokine Storm in COVID-19
In 1993, Ferrara (23) first proposed the concept of a
cytokine storm in acute graft-versus-host disease. Since then,
this concept has been further extended to other diseases, such as
rheumatological disease and sepsis. Macrophage activation
syndrome (MAS) refers to the cytokine storm induced by
autoimmune disorders (24). Additionally, the cytokine storm
that occurs after chimeric antigen receptor (CAR) T cell therapy
is called cytokine release syndrome (CRS) (25). Elevated
serum levels of interleukin (IL)-6 IL-7, IL-2, granulocyte
colony-stimulating factor (G-CSF), macrophage inflammatory
protein 1a (MIP1a), and tumor necrosis factor-a (TNF-a) have
been reported in COVID-19 patients (2, 26, 27), which was
widely recognized as cytokine storm.

CD8+ and CD4+ T cells are the most dominant cells that
participate in the immune responses to SARS-CoV-2 infection
(28). Recently, a clinical experiment suggested that SARS-CoV-
2–specific CD8+ and CD4+ T cells were present in ∼70% and
100% of COVID-19 convalescent patients, respectively (29).
Other immunological cells involved in SARS-CoV-2 infection
include B cells, macrophages, T helper (Th) cells, neutrophils,
and natural killer/cytotoxic T lymphocytes (CTLs) (21, 30–32).
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Excessively secreted cytokines attract neutrophils, monocytes,
and macrophages to the site of the insult, where they not only
clear viral particles but also may cause organ failure (33).
Importantly, these cytokines also activate immune cells, further
increasing the production of cytokines.

While the specific details and mechanisms of the cytokine
storm in COVID-19 remain unclear, researchers suppose that
this cytokine storm is connected with a dysfunctional immune
response to remove the virus (34, 35). The immune response to
SARS-CoV-2 includes two different phases. The first phase is the
incubation phase, in which recruited cells and released cytokines
fight SARS-CoV-2 infection. In most individuals, the immune
response clears SARS-CoV-2, the immune response recedes, and
patients recover. However, when there is a failure to fight SARS-
CoV-2, the immune response enters the second phase.
During this phase, an overactive immune response occurs,
compensating for the target clearance failure, whereby clinical
manifestations of a cytokine storm are present. Additionally,
it is noteworthy that a recent study showed that SARS-CoV-2
coding protein open reading frame 8 (ORF8) activates the IL-17
signaling pathway and promotes the cytokine storm during
COVID-19 (36).

Neutrophil Extracellular Traps in
COVID-19
Neutrophils are the most abundant white blood cell type
circulating in the human bloodstream (37). When a pathogen
enters the body, neutrophils, as the key components of the innate
immune cell population, are recruited to infection or
inflammation sites, where they activate other types of
immune cells and eliminate pathogens (38–40). In 2004,
Brinkmann et al. (41) first observed that, in response to bacterial
endotoxins and inflammatory cytokines or drugs, circulating
neutrophils form web-like structures that are commonly referred
to as neutrophil extracellular traps (NETs). These NETs are
composed of intracellular components released by activated
neutrophils, including neutrophil elastase (NE), myeloperoxidase
(MPO), histones, defensins, calprotectinmatrixmetalloproteinase-
9, and cathepsin G (42). As part of the innate immune system, the
main function of NETs is to trap and possibly even kill
microorganisms. However, a large number of studies have
confirmed that the activities of NETs is a double-edged sword,
because, in addition to their microbicidal activity, NETs have been
implicated in various tissue damage and involved in the
development of sepsis and influenza pneumonia (43, 44).

An autopsy specimen from a patient who has succumbed
to COVID-19 showed neutrophil infiltration in lung tissues
(45). Elevated number of peripheral blood neutrophils
is considered an early indicator of SARS-CoV-2 infection,
associating with severe respiratory dysfunction and
worse clinical outcomes (46, 47). Recent study has demonstrated
that NET markers including cell-free DNA, myeloperoxidase
(MPO)-DNA, and citrullinated histone H3 (Cit-H3) were
significantly increased in serum samples from severe COVID-19
patients (48). Other studies found that increased plasma NETs
are positively correlated with COVID-19 severity (49, 50).
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Importantly, SARS-CoV-2 can directly lead to the formation of
NETs in healthy neutrophils through ACE2–serine protease axis
and PAD-4 signaling (51).
THEHEMOSTATIC ABNORMALITIES AND
PULMONARY MICROVASCULAR
THROMBOSIS IN COVID-19

Ebolavirus, dengue fever, and Lassa virus, similar to SARS-CoV-
2 virus, are enveloped, single-stranded RNA viruses that are
thought to promote thrombosis (52, 53). To date, the human
coronavirus most closely related to SARS-CoV-2 is SARS-CoV-1
(54). SARS-CoV-1 infection has been associated with
hematological abnormalities, including thrombocytosis (49%),
elevated D-dimer (45.0%), thrombocytopenia (55%), and
prolonged activated partial thromboplastin time (aPTT) (63%)
(55, 56). Chong et al. also reported that 20.5% of patients infected
with SARS-CoV-1 had deep vein thrombosis, and 11.4% of these
patients showed clinical evidence of pulmonary embolism (57).
Furthermore, in a SARS-CoV-1–infected patient, edema and
fibrin thrombi were identified in the pulmonary vasculature
(58). Additionally, postmortem examinations from patients
infected with SARS-CoV-1 revealed that thrombi were present
in pulmonary, bronchial, and small lung veins, which implied a
prothrombotic effect in the pulmonary vasculature of SARS-
CoV-1–infected patients (59–61).

In addition to systemic hyperinflammation, SARS-CoV-2
infection is associated with coagulation abnormalities, which
cause hypoxemic respiratory failure. COVID-19 patients appear
to be more susceptible to thrombotic complications. This blood
coagulation seems to be not only faster, but also more severe
than that observed in life-threatening influenza or sepsis.
Purple rashes, swollen legs, and clogged catheters are common
clinicalmanifestations ofCOVID-19 (62, 63).A study fromWuhan
China of critical COVID-19 pneumonia documented acro-
ischemia including dry gangrene finger/toe cyanosis, and skin
bulla, which accounted for 21% of critically ill patients
hospitalized at the same time (62, 64). Recently, Helms and
colleagues reported that more pulmonary embolisms were
diagnosed in COVID-19 ARDS patients than in patients with
non-COVID-19 ARDS (65). Despite widespread use of
thromboprophylaxis, incidences of pulmonary embolism have
still been reported to be as high as 21% in COVID-19 (66), which
was two-fold higher than that in critically ill influenza patients.
Importantly, pathological examinations revealed marked lung
microvascular congestion in patients who died in early stages of
COVID-19 (67).

According to different reports (12, 68, 69), the most common
hematological disorder in COVID-19 patients is consistently
represented by elevations in D-dimer and prothrombin time,
and a relatively modest decrease in platelet count. Of particular
note, increased D-dimer concentration was associated with a
higher COVID-19 mortality rate. Additionally, the laboratory
parameters in COVID-19 patients are distinct from those in
patients with sepsis-induced coagulopathy and disseminated
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intravascular coagulation (DIC), who present with more
serious thrombocytopenia and slight D-dimer abnormalities
than COVID-19 patients (70). Likewise, COVID-19 patients
are predominated by hypercoagulable state, with only 2% to
3% of patients presenting with serious bleeding (65). Collectively,
this available evidence implies that hemostatic abnormalities and
pulmonary intravascular coagulopathy occur in patients with
COVID-19, even in the early course of the disease.
LINKS BETWEEN INFLAMMATION AND
THROMBOSIS IN COVID-19

It has been shown that the immune response actively
participates in the formation of thrombi within blood vessels,
particularly in microvessels (71–73). The process, defined as
immunothrombosis, accurately describes the intricate network
between the coagulation system and the innate immune system
(74). Immunothrombosis can locally confine an infection by
facilitating the recognition, containment, and destruction of
pathogens. Considering that the similar mechanisms exist in
COVID-19 and bacterial sepsis, immunothrombosis has been
reconsidered in SARS-CoV-2 infection. There are complex
interactions between inflammation and thrombosis, involving
endothelial cells (ECs), coagulation (activated TF, platelets, and
neutrophils), anticoagulation (impaired AT, APC and TFPI
systems), and decreased fibrinolysis (Figure 1).

Endotheliitis and Endothelial Dysfunction
Endothelial cells (ECs) maintain the balance between the
coagulation and anticoagulation systems of blood by
expressing several mediators that prevent platelet activation
and suppress coagulation and thrombus formation (75). Under
normal conditions, ECs provide an environment with a slight
tendency to promote anticoagulation in blood vessels (76).
Therefore, dysfunctional ECs may contribute to the
pathogenesis of thrombosis by altering the expression of pro-
and antithrombotic factors.

Both autopsy findings and clinical observations have
described the coexistence of vascular damage and thrombotic
complications in a wide range of organs (77, 78), which
provides indirect evidence to support that endotheliitis has an
important role in immunothrombosis processes. In addition,
COVID-19 patients have a higher circulating endothelial cell
(CEC) count, suggesting pronounced endothelial injury in
COVID-19 (79) . A single-center study found that
endotheliopathy might be an important factor in the
pathophysiology of COVID-19–associated coagulopathy (80).

Transmission electron microscopy of the endothelium in
COVID-19 showed ultrastructural damage, as well as the
presence of intracellular and extracellular SARS-CoV-2 (81,
82). Perivascular inflammatory cell infiltration was observed in
COVID-19 patients (82, 83). Thus, endotheliitis occurs in several
organs, especially in the lung, as a consequence of direct SARS-
CoV-2 infection and an overactive host immune response.
Among the various inflammatory cytokines, IL-6 is one of the
June 2021 | Volume 12 | Article 651545
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most major cytokines involved in cytokine storms in COVID-19
patients. L-6 has been confirmed to activate ECs, thus resulting
in endothelial dysfunction, further activation of the coagulation
cascades (84). Further larger studies are required to provide more
direct evidence for the link between cytokine storm and
thrombus formation in COVID-19.

Tissue Factor
As the key element in the initiation of the extrinsic pathway of the
blood coagulation cascade, tissue factor (TF) is constitutively
expressed in perivascular cells, including adventitial fibroblasts,
pericytes, and epithelial cells of the lung, brain, skin andkidney (85–
87). Interestingly, vascular cells in contact with the blood, such as
smooth muscle cells (SMCs), endothelial cells (ECs), alveolar
epithelial cells, macrophages and neutrophils, do not express
considerable amounts of TF in a quiescent state but can be
transiently induced to do so under inflammatory conditions
(88, 89). TF is encrypted under normal physiological conditions
(90). In response to injury and inflammation, TF in
vascular endothelial cells is released into the bloodstream and
becomes exposed to circulating FVII/FVIIa. After the binding and
activation of FVII, the TF-activated VII (FVIIa) complex
consequently activates FX to FXa, which then interacts with its
cofactor, factor FVa, phospholipids, and calcium to constitute a
prothrombinase complex (91, 92). The prothrombinase complex
subsequently converts prothrombin into proteolytically active
thrombin, leading to fibrin deposition and microthrombi
formation. Although microthrombi act as a barrier against the
invasion of pathogens in the initial defense procedure, they recruit
and activate innate immune cells that generate the inflammatory
response and further enhance TF expression (93). Xue et al. (94)
reported that the increased plasma levels of TF are associated with
the outcome in sepsis-induced ARDS. Additionally, blocking TF
activity dramatically reduces physiological and histological lung
injury and improves survival (95).

Three recent reviews speculate that TF may be involved in
COVID-19–related thrombosis (96–98). Furthermore, Hotz and
colleagues found increased expression of TF in monocytes in
critically ill COVID-19 patients (99). Higher levels of TF+

platelets , TF+ granulocytes , and TF+ procoagulant
microvesicles (MVs) are reported in COVID-19 patients (100).
The active form of TF can disseminate around the body through
the extracellular vesicles (EVs), which participate in sepsis-
induced coagulopathy and thrombus formation (101, 102).
Recent study has shown that EV-TF activity increased in
COVID-19 patients, associating with elevated thrombotic risk
(103). However, another study found that TF levels were not
increased in BALF from COVID-19 patients (104). This
contradictory result may be due to differences in sample and
detection methods. These studies indicate that TF appears to be a
critical determinant of the inflammatory thrombosis process in
COVID-19. However, direct evidence that the proinflammatory
milieu of COVID-19 induces TF overexpression is still lacking.

Neutrophils and NETs
Neutrophils contribute to immunothrombosis depending on the
formation of NETs. NETs were originally observed in patients’
Frontiers in Immunology | www.frontiersin.org 4
thrombi (105). Researchers have gradually realized that NETs
provide a scaffold to recruit red blood cells, platelets, and white
blood cells and to bind plasma proteins (106). Ischemic stroke
thrombi were found to be positive for DNA, MPO, and
citrullinated histone H4 upon triple containment, and NETs
were abundant in different types of stroke thrombi (107).
Perhaps NETs facilitate the development of venous thrombosis
because NETs can directly result in fiber remodeling. Moreover,
intravascular thrombosis induced by NETs led to extensive
microvascular obliteration and multiple organ failure in
sepsis (108).

NETs have been shown to colocalize with thrombi in
COVID-19 (49). In addition, a recent study demonstrated a
strong correlation between markedly elevated NETs and D-
dimer levels, a degradation product of fibrin (109).
Interestingly, serum samples from patients with progressive/
severe COVID-19 cause abundant formation of NETs in
healthy donors, which suggests that patients with COVID-19
have circulating factors that induce NETs (110). Dismantling or
inhibiting NETs in COVID-19 could ameliorate thrombotic
tissue damage associated with ARDS and higher mortality rates
(45). These data suggest a clinical link between NET formation
and immunothrombosis, which may thereby contribute to the
COVID-19 prothrombotic state.

Platelets
The adhesion and activation of platelets are essential events of
pathological thrombosis and inflammation during ARDS
pathogenesis, as they participate in not only hemostasis but
also the infectious response. During endothelial damage,
platelets adhere and aggregate to the site of vascular injury via
subendothelial collagen and vonWillebrand factor (VWF) bound
to glycoprotein receptors (GPs), such as GPVI, GPIa/IIa, and
GPIb/IX/V, on the platelet surface (111). This initial platelet
adhesion to the subendothelial matrix at the site of vascular injury
promotes a series of downstream signaling responses, which
switch platelets from an inactivated to an activated state. The
change in platelet shape and platelet dense granule secretion is
a characteristic feature of the activated state of platelets (112,
113). Equally notable is that dense granules are composed
of multiple cytokines and other bioactive molecules, which are
critical mediators in the complex microenvironment of blood
coagulation but also take part in the inflammatory reaction
process (114). In addition, platelets and their released
products facilitate neutrophil aggregation and activation in
damaged endothelial cells (115–117)

In patients with severe COVID-19, the activation of platelets
during SARS-CoV-2 infection has been observed (99, 100, 118).
A temporal trend of dropping platelet counts in COVID-19
patients could suggest a worsening thrombotic state, while an
increase in platelet count was associated with improved survival
and reduced thrombotic risk in COVID-19 (119). Furthermore,
plasma VWF protein levels are consistently elevated in patients
with severe COVID-19 and correlate with adverse outcomes,
suggesting enhanced adhesive interactions between circulating
platelets and the damaged vessel wall (120). Interestingly,
platelets incubated in plasma from COVID-19 induced platelet
June 2021 | Volume 12 | Article 651545

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Fang et al. Immunothrombosis in COVID-19
activation. These data indicate that the inflammatory milieu is at
least in part accountable for increased platelet activation in
severe COVID-19.

Antithrombin
Antithrombin (AT) is a plasma glycoprotein produced mainly by
the liver, and AT has anticoagulant characteristics. The
anticoagulant effect of AT is achieved through the inhibition of
thrombin, plasmin, FIXa, Xa, XIa, and XII (121). Free plasma AT
neutralizes coagulation enzymes in a slow, progressive manner
since binding is very slow. When AT bind to heparin sulfate
molecules on the vascular endothelial surface, a conformational
change occurs to results in a ≥1,000-fold enhancement of AT
activity. This suggests that heparin may be ineffective in patients
with low AT levels. It has already been shown that AT induces
endothelial cell release of prostacyclin, a molecule that prohibits
platelet aggregation and activation and neutrephil infiltration
(122). Furthermore, AT can interact directly with leukocytes and
lymphocytes, inhibiting their interaction with endothelial cells
and alleviating the severity of capillary leakage and subsequent
organ damage (123).

Hyperinflammation can markedly decrease AT levels and
glycosaminoglycan synthesis, which is associated with
coagulation (124). Additionally, several recent studies have
shown that plasma antithrombin values are significantly
Frontiers in Immunology | www.frontiersin.org 5
decreased in COVID-19, which is strongly associated with
mortality in COVID-19 (125–127). At supplementation, using
fresh frozen plasma (FFP) in COVID-19 patients may improve
thrombosis prophylaxis and thus have an impact on their
survival (126). Together, the results of these studies imply that
AT may be the link between inflammation and thrombosis in
COVID-19. However, further studies are needed to
clarify the anti-inflammatory properties of AT in COVID-19.

Activated Protein C
Protein C is a plasma serine protease zymogen with 419
amino acids. Upon thrombin is bound to thrombomodulin on
the vascular endothelial surface, protein C is converted to
activated protein C (APC), which exerts potent anticoagulant
activity through its irreversible proteolytic inactivation of
activated FV and neutralizes PAI-1 (128). The cleavage of
activated FVIII is also strengthened by APC (129). Changes in
levels of APC or protein C (PC) are associated with modifications
in the risk of thrombosis. In addition to its anticoagulant activity,
APC reduces the inflammatory response, inhibits apoptosis and
protects the endothelial cell barrier. APC not only suppresses
proinflammatory and proapoptotic signals but also enhances
anti-inflammatory and antiapoptotic pathways (130, 131).

Since APC plays an essential role in coagulation and the
immune response, it is possible that APC is involved in
FIGURE 1 | Schematic diagram of immunothrombosis in COVID-19. SARS-CoV-2 infection typically begins in epithelial cells of the respiratory tract, which can
further promote the cytokine storm and infiltration of neutrophil. The cytokine storm can result in endothelial dysfunction, tissue factor (TF) overexpression, and the
platelets activation, which initiates the TF-dependent coagulation process. The release of NETs promotes platelet–neutrophil aggregation and neutrophil activation in
the bloodstream. Furthermore, the cytokine storm also suppresses antithrombin, APC and PAI-1, which impair anticoagulation and decrease fibrinolysis. In addition,
SARS-CoV-2 can also directly impair ECs. The above factors collectively facilitate the generation of thrombus in COVID-19.
June 2021 | Volume 12 | Article 651545
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immunothrombosis in COVID-19 (132, 133). This concept is
further supported by a trial study to derive and validate a
predictive score for disease worsening in patients with COVID-
19 (134). COVID-19 patients admitted to the intensive care unit
(ICU) had lower levels of antithrombin activity and protein C
activity as well as higher D-dimer and fibrinogen levels than
COVID-19 patients admitted to a conventional ward. It is
noteworthy that multivariate analysis identified decreased
activity of protein C as significant predictors of worsening disease.

Decreased Fibrinolysis
The fibrinolytic system, controlled by coagulation itself, removes
fibrin from the vascular system, preventing increased amounts of
clots in the microcirculation. Plasminogen is converted to
plasmin by the action of urokinase (u-PA) and tissue
plasminogen activator (t-PA), which is the central link in the
fibrinolytic system. Therefore, PAI-1, a rapidly acting inhibitor
of t-PA and u-PA is the main inhibitor of fibrinolysis (135).

When the level ofPAI-1 in the circulation is elevated,fibrinolysis
is impeded by inhibitory function of t-PA and u-PA, leading to
failed removal of thrombi from the vascular wall. Binding PAI-1 to
t-PAor u-PA forms an inactive complex, thus negativelymediating
fibrinolysis in the vascularwall. It has been shown thatfibrinolysis is
impaired in sepsis, primarily due to an exaggerated release of PAI-1
as a result of endothelial dysfunction, given the coexistence of an
inflammatory response and endothelial dysfunction (136). In
addition, increased activated platelets may also release large
amounts of PAI-1, as platelets are the major circulating pool of
PAI-1 that can contribute to a high local concentration of PAI-1 at
the site of a growing fibrin clot (137).

Impaired fibrinolysis has been suggested in COVID-19
patients, which could further heighten their thrombotic risk.
This has been evidenced by markedly reduced clot lysis at 30 min
via thromboelastography (TEG) in COVID-19 patients (138).
Elevated levels of t-PA and PAI-1 were observed in patients
during COVID-19, further suggesting impaired fibrinolytic
ability (139, 140). IL-6 is the most clinically suitable biomarker
Frontiers in Immunology | www.frontiersin.org 6
for COVID-19. The latest research (141) found that the blockade
of IL-6 signaling using tocilizumab treatment significantly
decreases serum PAI-1 levels in patients with severe COVID-19.
SUMMARY AND CONCLUSIONS

Emerging evidence has suggested that COVID-19 patients suffer
from pulmonary microvascular thrombosis, which may explain
the rapid deterioration and pulmonary collapse that is observed
in patients who suddenly progress to ARDS. Immunothrombosis
may be a key link between COVID-19 and thrombosis. The
process involves a highly coordinated and mutual regulating
process of joint participation of multiple factors, such as
inflammatory cells, TF, endothelial dysfunction, and platelets.
However, the pathophysiology of COVID-19 and thrombotic
complications is complex, and the roles of many of the important
factors, such as tissue factor pathway inhibitor and protease-
activated receptors, are not fully understood. Accordingly, much
attention should be directed to a deeper understanding of the
pathogenesis of COVID-19.
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