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Preventing and controlling zoonoses through the design and imple-

mentation of public health policies requires a thorough understanding of

transmission pathways. Modelling jointly the epidemiological data and

genetic information of microbial isolates derived from cases provides a

methodology for tracing back the source of infection. In this paper, the attri-

bution probability for human cases of campylobacteriosis for each source,

conditional on the extent to which each case resides in a rural compared

to urban environment, is estimated. A model that incorporates genetic

data and evolutionary processes is applied alongside a newly developed

genetic-free model. We show that inference from each model is comparable

except for rare microbial genotypes. Further, the effect of ‘rurality’ may be

modelled linearly on the logit scale, with increasing rurality leading to the

increasing likelihood of ruminant-sourced campylobacteriosis.
1. Introduction
Modelling of disease surveillance data to explore patterns of infectious diseases has

had a long history in public health. Infectious diseases can cause high economic

and medical costs due to morbidity and mortality. In recent decades, the annual

number of global deaths caused by infections has levelled off at approximate 15

million and may remain at this level for the next three decades [1,2]. In order for

such an enormous health burden to be reduced, preventing and controlling

infectious diseases becomes extraordinarily important, and our ability to intervene

depends on how much we know about the nature of disease transmission.

For zoonotic diseases, transmission to humans from animal reservoirs may be

complex, involving many sources and exposures linked by different pathways,

via food, water, through environmental contamination or direct contact with ani-

mals. Knowledge of the potential sources and pathways of infection is key to

reducing the burden of disease. For instance, infected wild birds may contami-

nate environmental water and cause disease spread to water users, either

humans or other animals [3]. Tracing the source of infection becomes crucial to

increasing the ability to implement risk management and intervention [4,5].

Modelling zoonoses requires an advanced approach with the focus changed

from just epidemiology to a combination of epidemiology, evolutionary gen-

etics and biology [6]. Some source attribution models have been proposed to

estimate the number of cases attributable to different sources by using epide-

miological information and the association with genotypes found in humans

and sources [7–10]. The genetic information used in such integrated models

is typically derived from molecular genotyping that groups closely related

organisms together [11]. A common method used is multilocus sequence

typing (MLST) [12–14], which uses nucleotide sequences of internal fragments

of a small set of housekeeping genes. Such sequences have sufficient variation
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Table 1. The allelic profiles of a selection of genotypes, composed of seven allele numbers at each of the seven housekeeping genes.

genotype aspA glnA gltA glyA pgm tkt uncA

ST-403 10 27 16 19 10 5 7

ST-474 2 4 1 2 2 1 5

ST-2026 10 1 16 19 10 5 7

ST-2343 2 4 5 2 10 1 5
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to distinguish differing pathogen lineages, while being

relatively stable within lineages. Each unique nucleotide

sequence (allele) at each housekeeping gene (locus) is

assigned a number, and the set of numbers across all loci

(the allelic profile) is then taken as the genotype, which is

assigned a sequence type (ST) number.

For the pathogen Campylobacter which causes campylobac-

teriosis, a worldwide gastrointestinal disease in humans, the

commonly used seven-gene MLST scheme consists of house-

keeping genes aspA (aspartase A), glnA (glutamine

synthetase), gltA (citrate synthase), glyA (serine hydroxy-

methyltransferase), pgm (phosphoglucomutase), tkt
(transketolase) and uncA (ATP synthasea subunit). An illustra-

tive example of MLST data for Campylobacter is presented in

table 1. It shows that the genotypes ST-2026 and ST-474 have

different allelic combinations across all seven loci, while ST-

403 differs from ST-2026 only at glnA, and ST-2343 differs

from ST-474 at gltA and pgm. The different allelic profiles

enable comparison of gene similarities or dissimilarities so

that an association between sources and infected cases can be

made, by comparing the distribution of genotypes from

human cases with those from potential reservoirs.

Human campylobacteriosis is caused mainly by C. jejuni and

C. coli which are the dominant species associated with approxi-

mately 80% and 15% of illnesses respectively [15]. Common

symptoms of infection are diarrhoea, abdominal pain and

fever; however, a severe complication named Guillain–Barré

syndrome may develop, which is a life-threatening disease

that weakens the nervous system and leads to paralysis of the

limbs and respiratory failure [16]. The pathogen can be spread

between animals, or from animals and wild birds to humans.

Transmission routes may be via drinking contaminated water,

eating undercooked animal food products, or handling animal

food products that are already contaminated by faeces.

The first step for attribution models that use genetic infor-

mation is building the sampling distribution of genotypes

among each putative source. This may range from using

the proportion of each observed genotype [9] on each

source through to using allelic profile information to derive

mutation and recombination rates within each source, and

migration rates between each source [4]. A key question is

whether more complex genetic models yield superior attribu-

tion results or whether a significantly simpler model may

suffice, but few authors in the literature have addressed this

point. This becomes more important as model complexity

extends to include epidemiological covariates. We are there-

fore motivated to develop a simple model in order to assess

the additional information that the more complex models

provide by using data originating from a study on human

campylobacteriosis conducted in New Zealand [17].

In this study, we develop statistical models for source attri-

bution and demonstrate their use on the campylobacteriosis
study. We compare the performance of the asymmetric

Island model [4], which considers genetic evolution when esti-

mating the genotype sampling distribution on each source, to a

simple model that uses only the prevalence of each type to

derive the sampling distribution. This comparison brings

into sharp focus the contribution of the asymmetric Island

model to the overall analysis, enhancing our understanding

of the operation of these models and facilitating model check-

ing. We then extend both models in a Bayesian context to

incorporate covariates, exploring the effect of human case rur-

ality on attribution results via a linear trend on the logit scale or

with separate categories, and performing model comparison.
2. Material and methods
2.1. MLST data
Our data originate from the campylobacteriosis study and com-

prise microbial genotype information from each observed

human case obtained from analysis of stool samples and also

from a pool of non-human cases corresponding to potential zoo-

notic sources of disease. These samples were obtained at a

surveillance sentinel in the Manawatu region of New Zealand

from March 2005 to December 2014. Further details can be

found in [17]. Briefly, the data contain 1460 isolates taken from

human cases, and 2128 isolates sampled from chicken carcases,

cattle, sheep, environmental water, wild birds and so on, over

the same time period and from the same geographical location.

The non-human samples were categorized into four groups

representing major sources of infection: poultry, ruminants,

water and others (consisting of cats, dogs and various wild

birds). The total number of unique genotypes from all isolates

is 348, with 36% of genotypes found among human cases.

Table 2 lists five common genotypes found in human and

source isolates, the first four of which are frequently observed

in human cases. As found in other studies, ST-45 and ST-474

are detected mainly in poultry, while ST-42 and ST-2026 are

detected mainly in ruminants [6,10,13]. The fifth genotype, ST-

2381 is not found among human cases, appearing only in the

water and other sources, in this case being found in Pukeko

and Takahē birds from the Rallidae family [18,19].

2.2. Location information of human cases
The data also contain location information, in the form of an

ordinal classification of urban and rural areas with seven levels

coded from 2 3 to 3: highly rural/remote area, rural area with

low urban influence, rural area with moderate urban influence,

rural area with high urban influence, independent urban area,

satellite urban area and main urban area. Approximately 8% of

individuals in the Manawatu dataset have no information

about the location, which we assume are missing at random.

Table 3 lists the remainder of typed human cases in each classi-

fication of rurality as well as the population from the 2006 and

2013 Census [20,21]. The case rate per 100 000 population is



Table 2. The frequency of five genotypes found from human and four source isolates.

genotype human poultry ruminants water others

ST-42 59 7 53 10 2

ST-45 149 155 10 21 54

ST-474 247 60 15 5 9

ST-2026 28 0 40 5 2

ST-2381 0 0 0 60 3

Table 3. The number of human cases in each rurality class during 2005 – 2014, and the population size in 2006 and 2013, in the Manawatu region of New
Zealand.

rurality scale description human cases 2006 2013

23 highly rural/remote area 16 1572 1527

22 rural area with low urban influence 103 8382 8316

21 rural area with moderate urban influence 124 10 392 10 734

0 rural area with high urban influence 78 6579 7155

1 independent urban area 240 28 611 28 188

2 satellite urban area 187 19 725 20 526

3 main urban area 596 76 047 78 108
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illustrated in figure 1, where we see the burden of infection in

urban areas drop remarkably from 2008, coinciding with an

intervention in the poultry industry implemented by the New

Zealand Food Safety Authority (NZFSA) in 2007 and 2008. It

shows the intervention improved infection rates in urban areas;

however, it only has a temporary effect in rural areas.
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Figure 1. Case rates per 100 000 population in urban and rural areas of the
Manawatu region of New Zealand from 2005 through 2014. An intervention
in the poultry industry conducted in 2007 and 2008 resulted in a decreasing
incidence of campylobacteriosis in the following years, particularly in urban
areas.
2.3. Genotype models with and without microbial
genetic information

The goal of attribution models is to estimate the probability

that the observed human cases arise from each putative

source. Given the genotyping information, we first estimate

the sampling distribution of genotypes for each source and

then estimate the appropriate combinations of those genotype

distributions that most likely give rise to the set of genotypes

observed among human cases. Specifying first the sampling

distribution of genotypes found on sources is fundamental

for the purpose of not only exploring how it affects

the source attribution probability but also investigating

the difference in attribution effect made between different

genetic models.

Suppose we have isolates collected from human and non-

human cases, of which H isolates belong to humans, and the

remaining N isolates are categorized in J groups as the major

sources attributed to the infection. Let I genotypes be the total

number of unique types detected from all isolates and denote

nj as the marginal frequency of types found in source j, wherePJ
j nj ¼ N. Typically, the number of detected types I is smaller

than the sample size of isolates as multiple isolates will be of

the same type.

Each type i, i ¼ 1, . . ., I, may be found in more than one

human case and so we model the likelihood of observing

human cases with genotype STi[h] using a multinomial distri-

bution, in which i[h] is the index of the ST found in human

case h. The likelihood via the law of total probability may be
expressed as

L
�

STi[1], STi[2], . . . , STi[H]

�
¼
YH
h¼1

XJ

j¼1

p
�

STi[h]jsource j
�

p
�

source j
�

,

(2:1)

where p(STi[h]jsource j) is the probability that genotype STi

found in human case h arises from the sampling distribution

of source j, and p(source j ) is the attribution probability that

a random human case is infected from source j. Given

we know p(STi[h]jsource j), estimation of p(source j ) may be

found by optimizing the likelihood (2.1), for example, using a

Metropolis–Hastings algorithm within a Bayesian context, with

suitable priors on p(source j ).
The asymmetric Island model [4] adopted in the source attri-

bution study for human campylobacteriosis [17] uses the allelic

profile information for each genotype in an evolutionary
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model, estimating mutation and recombination probabilities

within, and migration probabilities between, each source

‘island’. It thus estimates p(STi[h]jsource j) indirectly, by first esti-

mating the evolutionary parameters, and then deriving the

sampling distributions. This allows the asymmetric Island

model to estimate the likelihood of observing a genotype on a

source when it has not been previously observed.

To discover the effect of incorporating genetic information at

the allelic profile level as used in the asymmetric Island model, a

simple model is developed for the genotype sampling distri-

bution. With the assumption that the observed distribution of

genotypes is representative of the true distribution, we model

observed genotypes using a multinomial distribution. Let xij

denote the count of genotype STi found in source j with prob-

ability pij, where i ¼ 1, . . ., I and j ¼ 1, . . ., J. To make inference

about pij, the likelihood is of a multinomial form,

L(p j; x j) ¼
nj!QI

i¼1 xij!

YI

i¼1

p
xij

ij ,

where xij can be 0, indicating genotypes are not observed on the

sources; nj ¼
PI

i¼1 xij is the total count of all types found on

source j and pij is subject to
PI

i¼1 pij ¼ 1, and 0 � pij � 1. As

the family of Dirichlet distributions is a conjugate pair for

the multinomial distribution, assume the prior for pj follows a

Dirichlet density with parameters gj,

p(p j)/
YI

i¼1

p
gij�1

ij :

Then the posterior for pj takes the form of a Dirichlet probability

function with parameters (gj þ xj 2 1),

p(p jjx j)/ L(p j; x j)p(p j)

/
YI

i¼1

p
gijþxij�1

ij , gij . 0:

To express the belief that every isolate is equally likely a priori,
the parameter of the Dirichlet prior is assumed as gj ¼ 1. There-

fore, p(STi[h]jsource j) can be obtained by simulating from the

Dirichlet posterior.

2.4. Model fitting on rurality scale
Previously we described how to estimate the marginal probabil-

ities that a randomly selected human case is due to a given

source. To estimate the attribution probability, 100 posterior

samples of p(STi[h]jsource j) are generated using the asymmetric

Island or Dirichlet models. For each posterior sample, we infer

p(source j ) using the likelihood (2.1). This has the effect of inte-

grating over the uncertainty in p(STi[h]jsource j) when

estimating p(source j ).
To extend this analysis so as to include individual level

covariates, we need to calculate subject-specific attribution (con-

ditional) probabilities, p(source jjcovariates). To that end, let Fjh

denote the attribution probability of source j for the hth human

case, with constraints
PJ

j¼1 F jh ¼ 1 and 0 � Fjh � 1, where h ¼
1, . . ., 1460 and j ¼ 1, . . ., 4. We model the probabilities Fjh using

a linear model on the logit scale, that is,

F jh ¼
exp (f jh)P4
j¼1 exp (f jh)

, (2:2)

where f4h ¼ 0 is treated as the baseline of fjh. Consider the case

where the genotype data for each human case are supplemented

by p additional variables. A general model of fjh with linear

combinations of the variables, c1, . . ., cp, then has the form

f jh ¼ a j þ b j1c1h þ b j2c2h þ � � � þ b jpc ph,
for the hth individual. Note that if there is a single categorical

variable with L levels, then Fjh and fjh will take no more than

L distinct values. In a slight abuse of notation, we will at times

refer to Fjh in which the h index refers to the factor level, rather

than to a particular subject at that level.

To apply the general model of fjh to the campylobacteriosis

data, assume z is the variable ranging from 2 3 to 3 representing

the classified rurality of each human case. Then two ways of

treating the variable z in model fitting are proposed: one is to

treat it as numeric, and the other as categorical. To differentiate

the performance between the two fitted models, we link ‘the

linear model’ and ‘the categorical model’ to the first and the

latter fitted model, respectively. Hence, the linear prediction

function for source j for each human case given the degree of

rurality is a numeric variable and can be written as

f jh ¼ a j þ b jzh, (2:3)

where zh can be any number of the seven scales if case h was from

such a degree of rurality. Conversely, if we treat each of the seven

rurality degrees as an indicator with a superscript number d,

which corresponds with the position of the category ranged

from 2 3 to 3, the model (2.3) can be rewritten as

f jh ¼ b1jz1h þ b2jz2h þ � � � þ bdjzdh þ � � � þ b7jz7h, (2:4)

where

zdh ¼
1 if case h is in the category d;
0 otherwise:

(

As a consequence, the estimated attribution probabilities are

obtained via equation (2.2) after fitting the data to model (2.3)

or to model (2.4).

2.5. Markov chain Monte Carlo algorithm
In the interest of quantifying the uncertainty of the posterior

attribution probability, we perform Bayesian inference for

source attribution probabilities using Markov chain Monte

Carlo (MCMC) methods. Assume the priors on parameters of

interest in model (2.3) and model (2.4) follow a standard

normal distribution. Let u denote the vector of parameters,

with elements ut for t ¼ 1, . . ., T. For example, u in model (2.3)

and model (2.4) can be fa1, a2, a3, b1, b2, b3g and fb11, b12,

. . ., bdj, . . ., b73g, respectively. To update u(t) and hence fjh and

Fjh, we use the Metropolis–Hastings algorithm in a Markov

chain with a length of 11 000 iterations. The first 1000 samples

are removed as the burn-in period (during which time the

chain converges) and the sequence is thinned every 100th

sample to reduce computer storage. Here are the steps in detail:

(0) Sample T random values from N(0, 1) as initial values of the

parameter set u for model (2.3) or model (2.4).

(1) Sample a permutation PT of f1, . . ., Tg.
(2) For each t [ PT:

(a) Propose a candidate u� with u(t) updated by a normal

proposal distribution, Q(u�(t), u(t)) ¼ N(u(t), 1).

(b) Use u� to calculate a new set of f� for source j, j ¼ 1, 2, 3,

via model (2.3) or model (2.4) and find the associated F�

for each case by putting the vector (f�, f4 ¼ 0) in equation

(2.2).

(c) Compute the acceptance probability a ¼minf1, gg, where

g ¼
L
�

F�; ST
�

L
�

F; ST
� Q

�
u(t)ju�(t)

�
Q
�
u�(t)ju(t)

� p
�
u�(t)

�
p
�
u(t)

� ,

in which the likelihood L(F�; ST) is given by equation (2.1).

(d) Accept the proposals f�, F� with probability a.

(3) Repeat from step 1 for the given number of iterations.
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Figure 2. Posterior mean attribution (F) of human cases with 80% credible intervals for source: poultry, ruminants, water and others over the rurality scales from
highly rural areas to main urban areas (table 3). The attribution is generated from both the linear and the categorical models, given the sampling distribution of
genotypes with evolutionary information (the asymmetric Island model) or without any genetic information (the Dirichlet model). (Online version in colour.)

Table 4. DIC values for the linear model and for the categorical model
applied to the data from 2005 to 2014 given the sampling distribution of
genotypes derived from the asymmetric Island model or Dirichlet model.

fitted models

genotype models

Dirichlet Island

linear 10 968.3 12 276.4

categorical 10 976.4 12 287.2
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3. Results
3.1. Posterior attribution probability
Posterior attribution of human cases of campylobacteriosis

(F) with 80% credible intervals for each source is illustrated

for each rurality grade in figure 2. The graphs are categorized

by the types of model (asymmetric Island or Dirichlet) and the

manner in which the rurality variable is modelled (categorical

or linear on the logit scale).

Overall, the attribution results are relatively stable irre-

spective of the types of model or how rurality is represented

in the attribution model. The majority of human cases are

attributed to ruminants and poultry, with more cases attribu-

ted to ruminants in rural areas and more cases attributed to

poultry in urban areas. For the Dirichlet and asymmetric

Island models, the linear and categorical models of rurality

show broadly the same trend, suggesting that the additional

flexibility given by the categorical model is not required and

that the shift in attribution as rurality changes is adequately

modelled by a linear trend on the logit scale. The linear

model has the advantage of tighter credible intervals as it

can share data across the seven levels of rurality, resulting in

a clearer separation of ruminant and poultry attribution, par-

ticularly in highly rural areas where the data are sparse.

There are some small differences between the genotype

models, with the Dirichlet model showing a greater attribution

to poultry (ranging from 40% in highly rural areas to 75% in

main urban centres) than the asymmetric Island model

(ranging from 30% in rural areas to 65% in urban centres).

This also occurs similarly in the categorical model.

Interestingly, the asymmetric Island model attributes

approximately 7% of human cases across all rurality levels
to sources other than poultry, ruminants and water and

gives a small attribution to water in highly rural areas,

while the Dirichlet model indicates that both these sources

are unimportant.

3.2. Model selection
We use deviance information criterion (DIC) for model

comparison. DIC values obtained from our MCMC runs

are displayed in table 4. Overall, there is a clear signal

that a linear representation of rurality (on the logit scale)

is adequate due to relatively small values compared to

the categorical model. Note that the asymmetric Island

and Dirichlet models are not directly comparable by DIC

as the likelihoods are on different scales: the Dirichlet

model assumes all potential sequence types have been

observed so that
P

j p(pj) ¼ 1, whereas the asymmetric

Island model allows for unobserved sequence types so

that
P

j p(pj) , 1.
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3.3. Investigation between genotype models
The small differences in attribution observed between the

asymmetric Island and Dirichlet models may be due to the

additional genetic information available to the first model.

To illustrate this, figure 3 shows the probability of source

given a selection of four genotypes, assuming a priori that

each source was equally likely. Genotypes ST-403 and ST-

2343 are observed primarily in humans (six cases each),

with ST-403 not being observed among the sources, and

ST-2343 being observed once in poultry so that the Dirichlet

model has little information available to distinguish between

sources. The asymmetric Island model, however, can exploit

the genetic relationship between genotypes. ST-403 differs at

just one locus from ST-2026, a type observed frequently in

human cases and ruminant isolates, while ST-2343 differs at

two loci from common genotype ST-474, observed frequently

in human cases and poultry isolates (tables 1 and 2). Thus,

the asymmetric Island model can clearly assign ST-403 to

ruminants and ST-2343 to poultry, while the Dirichlet

model cannot distinguish between sources. By contrast,

both models provide similar probabilities for ST-2026 and

ST-474 which are both observed frequently.
3.4. Robustness analysis
As noted previously, a major public health initiative in 2007

led to a significant reduction in the number of cases of cam-

pylobacteriosis in New Zealand. In order to examine the

effects of this change on attribution probabilities, we repeated

the analysis by including an interaction, with time period

2005–2007 and 2008–2014. Figure 4 shows that the general

trend in attribution by rurality for each of the time periods

using a linear trend on the logit scale to incorporate rurality.

There is a clear difference, with a significantly lower attribu-

tion to poultry (and correspondingly higher attribution to

ruminants) in all but the most rural of areas, being strongest

in highly urban areas. Thus, although the intervention did

not eliminate infection arising from poultry [22], the
reduction highlights the significant improvement in contri-

bution of poultry to disease, particularly in urban areas

where most cases occurred.

3.5. Sensitivity analysis
As with any Bayesian analysis, it is of interest to examine the

sensitivity of the results to the choice of prior distributions.

We originally used standard normal priors for regression

coefficients on the logit scale. We also considered priors

with s2 ¼ 4, and while this meant that f tended to drift

further from 0, the resulting attribution probabilities F did

not change, largely as the attribution is dominated by poultry

and ruminant sources, with the water source in particular

being close to zero. Thus, fpoultry and fruminants are positive,

while fwater is negative and the magnitude of these can

increase without making a significant difference to their

corresponding F’s. The prior on f thus tends to restrict this

ill-behaviour rather than acting as a strong constraint on

attribution probabilities. The prior gj in the Dirichlet model

also makes little difference if kept small, as it most strongly

effects genotypes that are rare, which do not contribute

significantly to the overall attribution. The prior can be

thought of as data augmentation such that gj ¼ 1 is equi-

valent to adding a single observation of each genotype to

source j. Thus, large values of gj will cause the genotype

distributions across sources to look more similar, and hence

result in equal attribution to each source.
4. Discussion
Models that determine the source of human infection, par-

ticularly for zoonotic pathogens that originate in animal

populations, are of considerable value to public health policy-

makers. However, such models may be complex, particularly

when using evolutionary models. An outstanding question is

whether such complexity is required, or whether a simpler

model may work as effectively. Here we developed a
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relatively simple model to estimate the attribution probability

for each source of Campylobacter infection. This model differs

from the asymmetric Island model, in that it does not model

pathogenic evolution, opting instead to infer the sampling

distribution of genotypes directly from the observed count

data.

Our results show that the Dirichlet and the asymmetric

Island models give largely similar final attribution probabil-

ities, with both models demonstrating a clear effect of

rurality on attribution: cases in rural areas are more likely

to have originated from ruminants, while those in main

urban centres are more likely to be of poultry origin. As

most people in the Manawatu region live in urban centres,

this highlights the importance of poultry as a reservoir for

campylobacteriosis, which is well established in the literature

[10,17,23,24].

When we ran models allowing attribution probabilities to

differ before and after the intervention in the poultry industry

in 2007, we saw a clear difference, with much lower poultry

(and higher ruminant) attribution, particularly in main

urban centres during 2008–2014. Considering that most

people in the Manawatu region live in urban areas, and

that case rates in urban areas decreased from 2008 onwards,

it is clear that this intervention coincided with a dramatic

reduction in poultry attributed illness as reported elsewhere

[25]. Given that campylobacteriosis cases in rural areas are

mostly attributed to ruminant sources, and that case rates

in these areas have been higher than those in urban centres

since 2008, there is a clear need for public health interventions

to focus on this area.

While the overall attribution was consistent between the

Dirichlet and asymmetric Island models, it would be
expected that the conditional probabilities for a given geno-

type might differ markedly. For those genotypes observed

infrequently (or not at all) among the sources, the Dirichlet

model has little information while the asymmetric Island

model can exploit information from cases with similar (but

not identical) genetic profiles. In the case of MLST data

with just seven loci, the majority of human cases and

source isolates come from a relatively small number of

sequence types which are observed often. Thus, the Dirichlet

model performs well, as it has sufficient observations to esti-

mate the genotype distribution well where the bulk of the

data lie. It is only those genotypes that are rarely observed

where it performs poorly, but as they are rarely observed,

they do not contribute significantly to the overall attribution.

In other circumstances, such as where we have many more

than seven loci, we would expect to have many more rare

genotypes, so that the Dirichlet model might provide little

useful information. At the extreme example of whole

genome MLST (wgMLST) where each isolate would typically

be unique, it would provide essentially no information at all.

In such circumstances, however, the asymmetric Island

model would be expected to still perform well, assuming

that information could still be transferred between similar

genotypes.

The Dirichlet model is less complex than the asymmetric

Island model that uses the prevalence of genotypes in sources

to derive the sampling distribution of genotypes. It is similar

to a recently published model, sourceR [8], that jointly models

the source and human cases, accounting for uncertainty

in the sampling process. However, sourceR is an extension

of the Hald [9] and modified Hald [26] models which

model human cases using a Poisson distribution rather than



royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

16:20180534

8
a multinomial, and instead of estimating the proportion of

cases attributed to each source directly, model source effects

as well as genotype effects [8,27].

Future research might focus on possible extensions to

these models. One direction is to adapt the models with

additional covariates, which might include age, occupation

and other risk factors such as contact with animals. For

example, there is evidence that children in rural areas are at

higher risk of campylobacteriosis through contact with farm

animals [23,28]. Another direction is in expanding the role

of water. In these models, we have assumed that water is a

source of human campylobacteriosis infection, but water dif-

fers from the other food and environmental sources in that it

is not an amplifying reservoir for Campylobacter [3]. By con-

trast, genotypes found in water might be expected to

originate in the other sources present here, particularly rumi-

nants and wild birds, but also potentially from humans as

well via discharge of unprocessed human waste. Hence,

water acts as a transmission pathway from sources to

humans, being both an endpoint (reduced water quality

from faecal contamination) and a source (human consump-

tion of water, either recreationally or through untreated

water supplies). While there is presently little evidence that

water is an important source for human campylobacteriosis

from the current models, the models are fitted using sporadic

cases of campylobacteriosis. However, water is known as a

key source of outbreaks of campylobacteriosis, such as the

large outbreak in Havelock North, New Zealand in 2016
where an estimated 5500 out of 14 000 residents became ill

[29]. Thus, characterizing the source of Campylobacter found

in water has important implications for both water quality

and public health.
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pp. 221 – 240. Norfolk, UK: Caister Academic Press.

mailto:humanethics@massey.ac.nz
mailto:humanethics@massey.ac.nz
http://dx.doi.org/10.1098/rstb.2013.0426
http://dx.doi.org/10.1093/cid/cit555
http://dx.doi.org/10.1093/cid/cit555
http://dx.doi.org/10.1371/journal.pgen.1000203
http://dx.doi.org/10.1371/journal.pcbi.1002768
http://dx.doi.org/10.2807/ese.18.03.20365-en
http://dx.doi.org/10.1371/journal.pcbi.1005564
http://dx.doi.org/10.1111/j.0272-4332.2004.00427.x
http://dx.doi.org/10.1111/j.0272-4332.2004.00427.x
http://dx.doi.org/10.1016/j.meegid.2009.09.003
http://dx.doi.org/10.1016/j.meegid.2009.09.003
http://dx.doi.org/10.1098/rspb.2007.1442
http://dx.doi.org/10.1128/JCM.39.1.14-23.2001
http://dx.doi.org/10.1128/JCM.39.1.14-23.2001
http://dx.doi.org/10.1128/AEM.69.12.7409-7413.2003
http://dx.doi.org/10.1128/AEM.69.12.7409-7413.2003
http://dx.doi.org/10.1016/j.tim.2003.08.006
http://dx.doi.org/10.1016/j.tim.2003.08.006
http://dx.doi.org/10.1017/S0950268805004164
http://dx.doi.org/10.1017/S0950268805004164
http://dx.doi.org/10.1016/S0140-6736(97)12308-X
http://dx.doi.org/10.1016/S0140-6736(97)12308-X
https://www.mpi.govt.nz/dmsdocument/15385/loggedIn
https://www.mpi.govt.nz/dmsdocument/15385/loggedIn
https://www.mpi.govt.nz/dmsdocument/15385/loggedIn
http://dx.doi.org/10.1128/AEM.01039-09
http://dx.doi.org/10.1128/AEM.01039-09


royalsocietypublishing.org/journal/rsif
J.R.Soc.Int

9
20. Data from: 2006 Census Data Meshblock Dataset.
See http://archive.stats.govt.nz/Census/2006-census/
meshblock-dataset.aspx (15 March 2018).

21. Data from: 2013 Census Data Meshblock Dataset. See
http://archive.stats.govt.nz/Census/2013-census/data-
tables/meshblock-dataset.aspx (15 March 2018).

22. Muellner P et al. 2011 Utilizing a combination of
molecular and spatial tools to assess the effect of a
public health intervention. Prev. Vet. Med. 102,
242 – 253. (doi:10.1016/j.prevetmed.2011.07.011)

23. Mullner P et al. 2010 Molecular and spatial epidemiology
of human campylobacteriosis: source association and
genotype-related risk factors. Epidemiol. Infect. 138,
1372 – 1383. (doi:10.1017/S0950268809991579)
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