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ABSTRACT

Recent efforts to measure epigenetic marks across
a wide variety of different cell types and tissues pro-
vide insights into the cell type-specific regulatory
landscape. We use these data to study whether there
exists a correlate of epigenetic signals in the DNA
sequence of enhancers and explore with computa-
tional methods to what degree such sequence pat-
terns can be used to predict cell type-specific regula-
tory activity. By constructing classifiers that predict
in which tissues enhancers are active, we are able
to identify sequence features that might be recog-
nized by the cell in order to regulate gene expression.
While classification performances vary greatly be-
tween tissues, we show examples where our classi-
fiers correctly predict tissue-specific regulation from
sequence alone. We also show that many of the in-
formative patterns indeed harbor transcription factor
footprints.

INTRODUCTION

Complex multicellular organisms comprise a large number
of different cell types, which all share the same genome.
Nevertheless, cell morphology and function are determined
by the combination of genes that are expressed (1,2). To un-
ravel how cells control gene expression, we must first iden-
tify all regulatory elements of the genome. This is relatively
easy for promoters, because they are located proximal to the
target gene’s transcription start site. Enhancers, which reg-
ulate cell type-specific gene transcription, are located distal
to transcription start sites and therefore much more difficult
to identify. Recent efforts focused on measuring epigenetic
marks across a variety of different cell types and tissues
(3–5). These marks, including histone modifications, DNA
methylation and DNA accessibility, allow one to identify
for each cell type regions of the genome that may act as en-
hancer elements.

However, this information alone can only be regarded as
a first step toward understanding the regulatory program

of a cell. Ultimately, we would like to understand why cer-
tain regions act as enhancer elements in particular cell types
and how they drive gene expression. We believe that this
information must be encoded in the genome in the form
of binding sites for proteins such as transcription or pi-
oneer factors. Hence, it should be possible to use the ge-
nomic DNA sequence not only for identifying enhancer el-
ements but also for predicting the cell types in which the
elements are active. Unfortunately, our knowledge of tran-
scription factors, including their DNA binding preferences
and interactions, remains incomplete. Instead, our goal is to
quantify how much information about the cell type-specific
activity of an enhancer element is actually encoded in the
DNA sequence. For this, we may use enhancers identified
from epigenetic marks and train classifiers that predict for
each element the cell type in which it was found to be active.
The classification performance then allows us to quantify to
what extent there exists a correlate of cell type-specific epi-
genetic marks in the DNA sequence of enhancer elements.

An increasing number of studies focus on the prediction
of regulatory elements from DNA sequence. Especially, the
DNA sequences of promoters have been studied in depth
and several cell type-specific binding patterns have been
identified (6–10). Since regulatory regions can be better tar-
geted by transcription factors when they are not concealed
by nucleosomes (11), other studies focused on the predic-
tion of accessible regions as measured by DNase-seq (12)
or ATAC-seq (13). Within cell types, accessible regions can
be predicted from DNA sequence alone with high accuracy
(14). Especially for ubiquitous regions, which are open in
many or all cell types, the accuracy is very high. An analy-
sis of feature importance revealed motifs of pioneer factors
as well as CpG dinucleotide content (14). Other studies fo-
cused on the genome-wide prediction of active enhancers
from DNA sequence (15,16), which were identified through
either enhancer-specific patterns of histone marks or ChIP-
seq experiments targeting EP300. The overall performance
of such methods is good and comparable to the perfor-
mance of open chromatin predictions. The focus of these
studies, however, lies on the genome-wide prediction of en-
hancer elements (14–17) within a particular cell type. Meth-
ods developed for this task are trained to separate regula-
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tory elements from other genomic sequences and may iden-
tify sequence patterns common to all regulatory elements
or the genomic background.

Instead, we pursue a different line of research that focuses
on learning tissue or cell type-specific patterns (17,18). Our
learning setup consists of enhancer DNA sequences active
in one or more tissues (positive set) versus enhancer DNA
sequences from all remaining tissues (negative set). We use
the recently developed leapfrog logistic regression (19) on
sequence k-mers that allows to efficiently compute sparse
solutions on very high dimensional data. From the trained
classifiers, we quantify how much cell type-specific regula-
tory information is actually contained in the DNA sequence
of enhancers. Furthermore, the classifiers are easy to in-
terpret and allow to identify DNA subsequences or code
words that may drive cell type-specific gene expression. We
use ATAC-seq data to validate our findings by showing that
many of the informative patterns indeed harbor transcrip-
tion factor footprints (Figure 1).

Identified code words are only meaningful if the training
set is of high quality and reflects our research objectives.
Our interest lies in tissues as opposed to isolated cell lines
that sometimes are derived from immortalized cancer cells.
ENCODE provides comparable epigenetic data across sev-
eral tissues in the mouse embryo. We use ModHMM (20)
for computing genome segmentations based on ATAC-seq,
RNA-seq and ChIP-seq data for multiple histone modifica-
tions. ModHMM computes highly accurate annotations of
active enhancers that are not tainted by promoter elements
or inactive (e.g. primed) enhancers.

MATERIALS AND METHODS

Enhancer identification with ModHMM

ModHMM (20) is a hidden Markov model for comput-
ing genome segmentations similar to ChromHMM (21) and
EpiCSeg (22). We use ModHMM because a reliable dis-
crimination between enhancers and promoters is vital to
this study. A comparison of classification results on promot-
ers can be found in the Supplementary Data. It uses a fixed
number of hidden states and computes segmentations based
on eight features, namely ATAC/DNase-seq and RNA-seq
in addition to histone modifications H3K4me1, H3K4me3,
H3K27ac, H3K27me3 and H3K9me3. Compared to other
genome segmentation methods, ModHMM better discrim-
inates between different types of regulatory elements, such
as active promoters and enhancers, by incorporating prior
knowledge into the model. In a nutshell, there is only one
state associated with active enhancers and the epigenetic
signals known to mark active enhancers are encoded in the
model. In contrast to ChromHMM, ModHMM also mod-
els the spatial distribution of epigenetic marks around regu-
latory elements. Furthermore, it implements a constrained
Markov model that respects the grammar of the genome;
i.e. the active promoters must be flanked by a transcribed
region.

ModHMM version 1.2.3 was used to compute genome
segmentations of eight embryonic mouse tissues with a
bin size of 200 bp. All segmentations are available online
at https://github.com/pbenner/modhmm-segmentations,
from which we obtained the tissue-specific positions of

active enhancers. For each type of regulatory element, the
eight lists of tissue-specific genomic positions were merged
by joining all elements that overlap by at least one bin.
The size of all elements was then set to 1000 bp around
the center and we acquired the DNA sequences of all
regulatory elements from the mm10 assembly.

All differential regulatory elements are available for
download at https://doi.org/10.5281/zenodo.5112066.

Logistic regression classifiers

We use leapfrog regularization (19) for estimating logistic
regression classifiers on k-mers (KLR). The parameters θ ∈
R

m+1 of the classifier are estimated by maximizing the �1-
penalized log-likelihood function

log lλ(θ ) =
n∑

i=1

{yiw1 log σ (xiθ )

+(1 − yi )w0 log (1 − σ (xiθ ))} + λ||θ ||1,
with class weights

w0 = n
2
∑n

i=1(1 − yi )
, w1 = n

2
∑n

i=1 yi
,

on a set of n observations x = {x1, x2, . . . , xn} with labels
yi ∈ {0, 1}. Each xi = (1, xi1, xi2, . . . , xim) is a row vector
of length m + 1, where m is the number of features. In the
above formula, σ denotes the sigmoid function. λ ∈ R≥0 is
a parameter that controls the strength of the penalty. In
practice, it is difficult to select appropriate values for the
penalty λ. A common practice is to simply test a fixed set
of values for λ. We avoid this by using leapfrog regular-
ization (19), which determines λ so that a predefined num-
ber of features q are selected, i.e. ‖θ‖0 = q + 1 for q ≤ m.
Please note that although we wrote ||θ ||1 in the above for-
mula, we actually do not regularize the first component of
θ , i.e. ||θ ||1 = ∑m+1

j=2 |θ j |. To compute maximum likelihood
solutions, we implemented a just-in-time variant (23) of the
SAGA algorithm (24).

Although we have multiple classes, i.e. tissues, we rely on
simple binary classification and compare classification re-
sults for multiple splits of the data set into positive and neg-
ative classes. Multiclass logistic regression is feasible only if
class probabilities are constrained, i.e. if they are required
to sum up to 1. However, this constraint is not applicable
here since enhancers are often active in multiple tissues.

For the KLR classifier, the set of features consists of all k-
mers of length 4–8 with any number of gaps (denoted by N).
Reverse complements are considered equivalent; i.e. the vec-
tor xi has a single coordinate for both ANNTG and its reverse
complement CANNT, denoted by ANNTG—CANNT. Hence,
each xi is a vector of dimension 156 570 + 1 (m = 156 570).
We consider either code word counts or occurrences (bina-
rized counts). In the case of code word counts, we first nor-
malize the data to unit variance. The data are not centered
at zero to retain the sparse structure.

For the entire study, classifier performance is evaluated
using 10-fold cross-validation. We do not know the optimal
number of features (nonzero coefficients). Therefore, during
each CV iteration, 10% of the training data are reserved as a
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Figure 1. Overview. We use enhancer sequences from multiple tissues and extract k-mer occurrences. Logistic regression classifiers are trained with leapfrog
regularization. From the performance of trained classifiers, we quantify cell type-specific regulatory information within DNA sequences. Furthermore, we
extract cell type-specific patterns and validate them through ATAC-seq footprints.

validation set for selecting the best q. For the KLR classifier,
we tested q = 10, 100, 200, . . . , 900, 1000, 2000, . . . , 6000.

Our software is available at https://github.com/pbenner/
kmerLr.

k-mer SVM

LS-GKM (25) is a support vector machine (SVM) that also
uses gapped k-mer frequencies as features. We mainly use it
to benchmark the performance of the KLR classifier. How-
ever, the decisions that SVMs make are difficult to inter-
pret and extracting important features from it is much more
complicated than for the KLR classifier.

Clustering of tissues

The clustering of tissues is computed from ModHMM seg-
mentations, where only the enhancer state is used. First, a
similarity matrix between the tissues is computed by count-
ing the number of overlapping enhancers between each pair
of tissues. Afterward, this matrix is used to compute a hier-
archical clustering (based on the hclust method in R). The
clustered data collection is computed from this clustering
in the following way. By removing an inner edge from the
hierarchical clustering tree, a bipartition of tissues is gener-
ated. This bipartition corresponds to a single data set of the
collection and is used for labeling the enhancers as positive
or negative. Enhancers that appear in both the positive and
negative sets are removed.

RESULTS

Characteristics of data sets

We obtained data from eight tissues (heart, kidney, liver,
limb, lung, forebrain, midbrain and hindbrain) of embry-

onic mouse at day 15.5 from the ENCODE project (Sup-
plementary Tables S27 and S28). ModHMM (20) was used
to compute genome segmentations for each of the tissues.
The segmentations provide, among others, the genomic co-
ordinates of several types of regulatory elements within
each tissue, such as active promoters and enhancers as well
as primed regions. Across tissues, regulatory elements that
overlap are merged and we record the set of tissues in which
the element was observed. To avoid biases, we set the length
of all regulatory regions to 1000 bp around the center.
Figure 2 shows the tissue specificity of promoters and en-
hancers. Most promoters are active in all eight tissues, which
supports similar findings from RNA-seq studies (26). We
also find that the observed-to-expected CpG ratio (27), re-
ferred to as CpG ratio in the following, grows steadily with
the number of tissues in which promoters are active. On the
other hand, most enhancers are active only in very few tis-
sues and there is almost no enhancer active in all eight tis-
sues. These results suggest that for genes that are active in
multiple tissues there exists a distinct set of enhancers in
each tissue that drives expression. Many enhancers and pro-
moters in forebrain, midbrain and hindbrain are active in
two other tissues (i.e. Figure 2 shows a peak for brain tissues
at three), reflecting the fact that brain tissues are very sim-
ilar and share many regulatory elements. The tissue speci-
ficity of primed enhancers is very similar to active enhancers
(Supplementary Figure S3).

Learning setup

As shown in the previous section, most enhancers are active
in only a few tissues, which indicates that enhancers drive
cell type-specific gene expression. A more detailed analysis
on the location of the cell type-specific regulatory code can
be found in Supplementary Section S1.3. Hence, we focus in
the following on the analysis of enhancer DNA sequences.

https://github.com/pbenner/kmerLr
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Figure 2. Tissue specificity of regulatory regions. The figures show the fraction of promoters (A) and enhancers (B) that are active in n ∈ {1, 2, . . . , 8}
tissues, stratified by tissue. For instance, 65% of liver enhancers are active only in liver, but almost no enhancer is active in all eight tissues. In hindbrain,
around 30% of the enhancers are active in two other tissues. Above the figure, the average observed-to-expected CpG ratio is shown.

Table 1. Definition of clustered data collection

Data set Positive Negative

1 Liver Heart, kidney, limb, lung, forebrain, midbrain, hindbrain
2 Kidney, lung Heart, limb, liver, forebrain, midbrain, hindbrain
3 Heart, kidney, lung Limb, liver, forebrain, midbrain, hindbrain
4 Forebrain, midbrain, hindbrain Heart, kidney, limb, liver, lung
5 Midbrain, hindbrain Heart, kidney, limb, liver, lung, forebrain

Enhancer regions were clustered using a hierarchical clustering method. An edge of the resulting tree defines a bipartition of the tissues. Each data set in
this collection corresponds to an inner edge of the tree.

For testing different feature sets, we constructed an un-
balanced data collection using a one-versus-rest strategy.
It consists of eight data sets, each of which defines the en-
hancer elements of a single tissue as positive samples and
the elements of all remaining tissues as negative. We refer
to this collection as the leaves data collection. Furthermore,
we constructed a second data collection where positive and
negative sets consist of several tissues grouped together. The
clustered data collection is defined in Table 1 and visualized
as a tree in Figure 4A. For each data set in this collection,
tissues were either assigned to the positive or negative set,
based on a hierarchical clustering of enhancer regions (see
the ‘Materials and Methods’ section). An enhancer is con-
sidered a positive sample if it is active in any of the positive
and none of the negative tissues. For both the leaves and
clustered data collection, our motivation is to find features
specific to particular tissues. For instance, if we want to find
forebrain-specific sequence patterns in active enhancers, we
construct a classifier that can discriminate between fore-
brain enhancer sequences (positive set) and enhancer se-
quences from all remaining tissues (negative set). Especially,
the choice of the negative set is very important. To justify
why we consider all remaining tissues as negative set, con-
sider the following two cases. First, we only use other brain
tissues as negative set. In this case, any identified pattern
might be specific to forebrain, but we cannot be certain that
it does not occur in other tissues, which is why we must in-
clude other tissues in the negative set. Second, we use other

non-brain regions as negative set, but then we might iden-
tify patterns that are specific to all brain regions instead of
just forebrain. Therefore, it is essential to include as many
tissues in the negative set as possible. In addition, we must
exclude any enhancers that are active in both forebrain and
any tissue in the negative set, because these regions might
be activated by sequence features that we are not interested
in.

In this study, we mainly rely on logistic regression as clas-
sifier that we train with the recently developed leapfrog reg-
ularization (see the ‘Materials and Methods’ section). We
tested motif scores and k-mers as features, but found that k-
mers generally yield better results (see Supplementary Sec-
tion S1.1). For logistic regression with k-mers (KLR), we
consider all k-mers of length 4–8 with any number of gaps
(denoted by N), which we also call gapped k-mers. A k-mer
and its reverse complement are considered equivalent; i.e.
the feature vectors have a single coordinate for both, say,
ANNTG and its reverse complement CANNT. We denote this
pair as ANNTG—CANNT and refer to it as code word. The
KLR classifier uses mainly code word counts as features.
However, for extracting most important code words from
our classifiers, we only use code word occurrences as fea-
tures, i.e. 1 if a code word appears in an enhancer sequence
and 0 otherwise. This simplifies the interpretation of clas-
sifiers without much reducing their performance. To gauge
the performance of the KLR classifier, we use an SVM with
gapped k-mer string kernel (25).
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Classifier choice and comparison

We first tested the performance of the KLR and SVM clas-
sifiers on active enhancers from the clustered collection. We
tested the classifiers on each data set of the collection using
10-fold cross-validation (Supplementary Figure S4). Both
classifiers perform relatively well with a median area under
precision–recall curve (PR-AUC) of 0.71 and 0.67, respec-
tively.

The performances of the KLR and SVM classifiers are
similar and both could be used in this study. However, the
KLR classifier is slightly better and much easier to inter-
pret; i.e. the parameters of the KLR classifier can be di-
rectly linked to the importance of individual k-mers. The
interpretation of SVMs, on the other hand, is much harder
since there exists no natural way of extracting the impor-
tance of k-mers (28). In addition, training SVMs is compu-
tationally much more expensive. We therefore focus mainly
on the KLR classifier in the following.

We then tested the KLR classifier on a positive set of ac-
tive enhancers and a negative set of equal size consisting
of random genomic regions in order to evaluate the accu-
racy of genome-wide predictions. The random regions have
the same length as the enhancers, i.e. 1000 bp. We did not
exclude any genomic regions, such as repetitive elements,
for constructing the negative set. In particular, this ensures
that our results are comparable to related studies (14) that
present methods for genome-wide predictions of functional
elements. The performance is overall very good across the
eight different tissues with ROC-AUC values ranging from
0.90 to 0.97 and a median of 0.96 (Figure 3). This result
is consistent with previous studies aiming at recognition of
open chromatin regions (14–17). Our results confirm that
genome-wide predictions of functional elements are rela-
tively easy. Furthermore, we observed that, except for heart,
important code words are highly AT-rich (Supplementary
Tables S2–S9).

To check the performance results, we tested our cross-
validation scheme on a control data set that contains en-
hancers from all tissues both as foreground and as back-
ground. The positive class consists of all enhancers on chro-
mosomes 3, 5, 7, 11, 13, 17 and 19; the enhancers from the
remaining chromosomes form the negative set. As expected,
the classification performance on this data set is very close
to random (Supplementary Figure S5).

Quantification of tissue-specific information

Our main interest is the quantification of tissue-specific in-
formation within enhancers. The construction of data sets is
essential for extracting this information. If, for instance, we
use enhancers active in a particular tissue as positive set and
random genomic regions as negative set (as mentioned ear-
lier), then it suffices that classifiers learn patterns common
to all enhancers or the genomic background, because it is
highly unlikely that the negative set contains enhancers that
are active in other tissues. Most related studies (14–17) use
random genomic regions as negative set. Instead, we train
classifiers on data sets that contain DNA sequences of en-
hancers active in a particular subset of tissues (positive set)
and inactive in all other tissues (negative set). This choice of
the negative set is essential for truly learning tissue-specific

information. Furthermore, we drop all enhancers that are
active in both the positive and negative sets, as those per
se do not contain any information specific to tissues in the
positive or negative set.

The classification performances can be used as a proxy
for the tissue-specific information contained in the DNA
sequences of enhancers. This proxy provides only a lower
bound on the tissue-specific information, as there might ex-
ist classifiers with a higher predictive accuracy. For quanti-
fying this information, we use the KLR classifier, a simple
logistic regression on k-mers, because it performs as well as
SVMs and at the same time is easy to interpret. We consider
two different scenarios: the positive set consists of either
multiple tissues (clustered data collection) or only a single
tissue (leaves data collection).

The classification performance of the KLR classifier on
the clustered data collection of active enhancers is shown
in Figure 4. We use precision–recall curves instead of ROC
curves, because the data sets are unbalanced. In general,
the performances are much lower than those for discrimi-
nating enhancers from random genomic regions. Separating
brain from non-brain enhancers seems to work best. Much
harder is the task of separating hindbrain and midbrain en-
hancers from other tissues, mainly because hindbrain and
midbrain enhancers seem to share many sequence features
with forebrain enhancers. We also tested cross-validation
with test sets sorted by chromosomal position (29) to see
whether there is a possible bias in our analysis and found
only minor deviations in classification performance (Sup-
plementary Figure S6).

Even more difficult is the discrimination of active en-
hancers from a single tissue versus all other tissues. Fig-
ure 5 shows the performance of the KLR classifier on the
leaves data collection. The decline in performance might be
caused by the much larger negative sets. Furthermore, the
negative set contains enhancers from tissues that are very
similar to the one of the positive set. The prediction works
best for forebrain and liver. The classifier trained on hind-
brain shows the worst performance. This is surprising, be-
cause forebrain and hindbrain are both brain tissues, yet
the classification performances are quite different. Never-
theless, we show in the following that all classifiers success-
fully identified important sequence patterns. We also tested
the performance of active versus primed enhancers and ob-
served similar prediction accuracies (Supplementary Figure
S10).

Code word counts versus occurrences

The KLR classifier can use as features either code word
counts or occurrences. The former gives the number of times
a code word is observed in the DNA sequence, while the
latter is 1 if the code word is present and 0 if it is not. We
wanted to understand whether there is additional informa-
tion in the code word counts, i.e. whether transcription fac-
tors recognize single binding sites or whether the overall se-
quence affinity (30,31) is of importance. On the leaves data
collection, we found that the KLR classifier did not per-
form significantly worse if we only consider code word oc-
currences instead of counts. We observe an average decline
in performance of about 0.02 across tissues (Supplementary
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Figure 3. KLR classifier performance on active enhancers (EA) versus random regions. ROC curves were computed using 10-fold cross-validation.

A B

Figure 4. KLR classification performance on active enhancers from the clustered data collection. Panel (A) shows a clustering of the eight tissues. Every
edge of the tree bipartitions the data into positive and negative samples. Respective classification performances using 10-fold cross-validation are shown in
panel (B). Edges and corresponding precision–recall curves share the same color. Baseline performances are visualized as circles.

Figure 5. KLR classification performance on active enhancers from the leaves data collection. Ten-fold cross-validation is used to evaluate precision–recall
curves. Baseline performances are visualized as circles. The number of enhancers in the positive and negative (pos./neg.) set is reported in the legend.



NAR Genomics and Bioinformatics, 2021, Vol. 3, No. 4 7

Table 2. Tissue-specific code words

Tissue First code word Second code word

Heart CTTATC—GATAAG (GATA) AGGTCA—TGACCT
Kidney CNNTGACC—GGTCANNG (RXR-�/VDR) ATTAAC—GTTAAT
Limb CTTGGC—GCCAAG (NFATc2) ANTTTCCA—TGGAAANT
Liver CTTATC—GATAAG (GATA) AGATAA—TTATCT
Lung TAAACA—TGTTTA (Fox) GTAAAC—GTTTAC
Forebrain CAGATGG—CCATCTG (NeuroD1) CAATTA—TAATTG
Midbrain TATTCA—TGAATA (SOX) AATAAT—ATTATT
Hindbrain TAATNAA—TTNATTA ATNNATCA—TGATNNAT

Two most important tissue-specific code words in active enhancers extracted from KLR classifiers with 100 nonzero coefficients (q = 100). Corresponding
names of transcription factor matches in the Jaspar database are given in parentheses if a unique assignment was possible.

Figure S13). However, it is possible that the loss of count
information is counteracted by the use of more code words.
Indeed, we observe an increase in the number of features
used by the optimal classifiers for enhancers (Supplemen-
tary Figure S9). For our purposes, using only code word
occurrences is highly desirable, because it simplifies the in-
terpretation of estimated classifiers, as discussed in the fol-
lowing section.

Identification of cell type-specific regulatory code words in
enhancers

To identify code words that might be recognized by tran-
scription factors to drive cell type-specific gene expression,
we use the KLR classifier applied to the leaves data set. The
coefficients of the logistic regression can be understood as
the importance of the corresponding code words. However,
even when data are standardized, the interpretation of co-
efficients is much simpler when only code word occurrences
are used (32). Therefore, we extract features from KLR clas-
sifiers that use only code word occurrences. Binarizing the
data does not seem to lead to a significant drop in perfor-
mance.

Features are extracted from classifiers trained on the
leaves data collection, because those contain informa-
tion about single tissues. We generally use 10-fold cross-
validation to evaluate predictive performances. Features are
extracted by first merging the 10 classifiers estimated dur-
ing cross-validation. For each feature, we take the coeffi-
cient with the minimum absolute value across all classi-
fiers, which has the effect that only those features remain
that have a nonzero coefficient across all training sets. Code
words with high absolute coefficients are typically stable
across all cross-validation iterations (Supplementary Figure
S12). We report only code words with positive coefficients,
because those correspond to k-mers relevant to a single tis-
sue, i.e. the positive set. The results must be interpreted with
caution, because single code words do not determine cell
type-specific activity. We only observe that weighted sets of
code words are predictive of tissue-specific enhancer activ-
ity with varying levels of accuracy.

Table 2 shows the first two most important code words; a
complete list is provided in Supplementary Tables S10–S17.
We used Tomtom (33) to search for matching motifs in the
Jaspar database (34). For kidney, we identified a code word
that may belong to PPAR-� , ER1 or the RXR-�/VDR het-
erodimer; the latter has known functions in kidney (35). The
limb classifier identified a code word that probably belongs
to NFI-C binding sites, which is highly expressed in skeletal

muscle cells (36). For heart and liver, the most important
code words seem to belong to the GATA family of tran-
scription factors, while for lung we identified a code word
that is most likely recognized by members of the Fox fam-
ily. The top forebrain code word is a known binding site for
NeuroD1, a neurogenic differentiation factor (37). We also
identified code words that are not associated with any tran-
scription factor. Some contain two or more gaps (e.g. TAAT-
NAA—TTNATTA or ATNNATCA—TGATNNAT), which might
reflect co-binding sites of transcription factors. A compre-
hensive list of code word matches with transcription factor
motifs is given in Supplementary Table S26.

As a further control, we looked at ATAC-seq footprints
(38) around code word occurrences in active enhancers. We
first computed the ATAC-seq coverages by treating paired-
end reads as single end and reducing read lengths to 2 bp.
Forward strand reads were shifted by 4 bp and reverse
strand reads by −5 bp. For each tissue, we scanned all ac-
tive enhancer sequences for occurrences of the most impor-
tant code word. Enhancers that do not contain the most
important code word were omitted. We then aligned the
ATAC-seq signal around the code word positions. When an
enhancer contained the code word more than once, the po-
sition of the first occurrence was used. Except for forebrain,
we observe clear ATAC-seq footprints at the centers (Figure
6), which suggests that the identified code words are indeed
recognized by transcription factors. Most of the top-scoring
code words show similar footprints (Supplementary Figures
S14–S21). Some footprints show a single valley, while others
show a peak at the center, which is surrounded by two val-
leys. The latter signal might stem from cooperative binding
of transcription factors. In addition, Figure 6 shows control
footprints from code word occurrences in the mitochondrial
genome (Supplementary Section S1.5). For the most im-
portant code word in hindbrain, we observe a similar foot-
print in the mitochondrial genome. This result suggests that
the observed footprint might not be caused by transcription
factor binding. Furthermore, we used the same aligned se-
quences to compute logos of code word neighborhoods and
observe almost no signal outside the code words (Supple-
mentary Figure S11). This result suggests that a clustering
of code words might not be possible.

Sliding window predictions at selected loci

So far, we have extensively quantified the predictive accu-
racy of our classifiers. In a nutshell, genome-wide predic-
tions of active enhancers are relatively easy (i.e. active en-
hancers versus random genomic regions). More difficult is
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Figure 6. ATAC-seq footprints around most important code words of active enhancers (black lines with confidence interval of two standard deviations
as shaded area). Regions are aligned around the center of code word occurrences and the footprint is computed as the average over all n active enhancers
in the given tissue. The distance in bp from the center is shown on the x-axis. Red shaded areas show the positions of the code words. The control (orange
lines) shows the average ATAC-seq signal of the same regions, but aligned at the center of the enhancer elements. ATAC-seq footprints around code word
occurrences in the mitochondrial DNA are shown as a second control (green line with confidence interval of two standard deviations as shaded area). This
control is not shown if the mitochondrial DNA does not harbor the corresponding code word.

the prediction of tissues in which an enhancer is active.
Here, we demonstrate our findings on a single loci, where
we compute sliding window predictions of active enhancers.
More specifically, a sliding window of 2 kb is used to com-
pute predictions of brain and liver enhancers along the
genome. We first use a classifier that discriminates between
enhancer elements and random genomic regions and com-
bine this with a second classifier that separates brain from
liver enhancers. Figure 7 shows a region between Cdh9 and
Cdh10, which in humans is known to harbor several en-
hancer elements and where genetic variants are associated

with autism spectrum disorders (39,40). We excluded this
locus from the training sets of the classifiers. The genome
segmentation identified two enhancers that are active only
in forebrain.

The sliding window prediction of brain enhancers shows
a peak at only one of the active enhancers, but also very
few false positives within this locus. This observation is in
line with our previous results. We showed that random ge-
nomic regions can be easily distinguished from enhancers,
but differentiating between active enhancers in particular
cell types is hard. However, the sliding window predictions
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Figure 7. Sliding window predictions of active enhancers from DNA sequence. ModHMM-predicted active promoters (PA) and enhancers (EA) in fore-
brain are marked by small bars in blue and green, respectively. Predictions of active brain enhancers from DNA sequence are shown in green, and predictions
of liver enhancers in red. The blue tracks below show ATAC-seq, histone marks and RNA-seq coverages in forebrain.

also detect the active promoter of Cdh10, possibly because
we did not train the classifier to discriminate between pro-
moters and enhancers. Nevertheless, the precision of predic-
tions is very promising and rarely reported in the literature.
By inverting the predictions of the second classifier (prob-
ability of complement), we obtain enhancer predictions for
liver. The prediction of liver enhancers shows no peaks at
the brain enhancers or the Cdh10 promoter. Throughout
this locus, the probability of liver enhancers is very low.

DISCUSSION

In this study, we constructed classifiers that predict tissue-
specific enhancer activity from DNA sequence. This has
been done by several other studies (14–17), which focus on
the genome-wide prediction of enhancers. We show that this
task is relatively easy, because such classifiers mainly learn
to discriminate between enhancer elements and other ge-
nomic regions. Instead, we focus on predicting cell type-
specific activity of enhancer elements, which we achieve by
training classifiers that discriminate between enhancers ac-
tive in selected tissues. We use the classification performance

as a proxy to measure how much information about cell
type-specific activity is contained in the DNA sequence of
enhancers. By using classifiers that are easy to interpret,
we were able to extract important regulatory code words
that might be recognized by transcription factors for driving
cell type-specific gene expression. The ATAC-seq signature
around identified code words shows a clear pattern, which
indicates that we indeed identified functional binding sites.
Furthermore, the accuracy of our sliding window predic-
tions is very promising and rarely reported in the literature.

The classification performance of active enhancers
strongly depends on the tissues we want to discriminate. Our
classifier performs well when discriminating between highly
dissimilar tissues, such as brain and non-brain tissues. How-
ever, especially when the positive class consists of enhancers
from a single tissue, the performance drops in many cases.
One possible reason is that the tissues we are dealing with
contain too many different cell types or the data are simply
too noisy. Another explanation is that we still have only a
poor understanding of the cell type-specific regulatory code
and the features required for predicting the activity of en-
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hancer elements. It could be that not all the required infor-
mation is contained in the DNA sequence of isolated en-
hancers and we are still missing a piece of the puzzle.

There are many possible future research directions. For
instance, single-cell ATAC-seq data could help to distin-
guish between cell types within a tissue and thereby help
to train better classifiers. Furthermore, we know that tran-
scription factors and other proteins bound to enhancers and
promoters interact in order to initiate transcription. It is
possible that the regulatory code is distributed among en-
hancers and promoters and that both must be considered
jointly when training classifiers.

SUPPLEMENTARY DATA

Supplementary Data are available at NARGAB Online.
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