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Temperature fluctuations in a warmer environment: impacts on 
microbial plankton
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Abstract

Warming can cause changes in the structure and functioning of microbial food webs. Experimental studies quantifying such 
impacts on microbial plankton have tended to consider constant temperature conditions. However, Jensen’s inequality (or the 
fallacy of the average) recognizes that organism performance under constant conditions is seldom equal to the mean performance 
under variable conditions, highlighting the need to consider in situ fluctuations over a range of time scales. Here we review 
some of the available evidence on how warming effects on the abundance, diversity, and metabolism of microbial plankton are 
altered when temperature fluctuations are considered. We found that fluctuating temperatures may accentuate warming-mediated 
reductions in phytoplankton evenness and gross photosynthesis while synergistically increasing phytoplankton growth. Also, 
fluctuating temperatures have been shown to reduce the positive warming effect on cyanobacterial biomass production and 
recruitment and to reverse a warming effect on cellular nutrient quotas. Other reports have shown that fluctuations in temperature 
did not alter plankton responses to constant warming. These investigations have mostly focused on a few phytoplankton species 
(i.e. diatoms and haptophytes) in temperate and marine ecosystems and considered short-term and transient responses. It remains 
unknown whether the same responses apply to other species and ecosystems and if evolutionary change in thermally varying 
environments could alter the magnitude and direction of the responses to warming observed over short-term scales. Thus, future 
research efforts should address the role of fluctuations in environmental drivers. We stress the need to study responses over 
different biological organization and trophic levels, nutritional modes, temporal scales, and ecosystem types.
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Introduction and context
Microbial plankton constitute the basis of the food web in most 
aquatic ecosystems and play a major role in element cycling, 
productivity, and the regulation of atmospheric CO

2
 levels1.  

Research efforts developed over the last few decades to under-
stand how microbial plankton respond to warming have focused  
on large-scale averages across time2. However, environmental 
heterogeneity should be included as a target driver in biological  
manipulation experiments to obtain more realistic predictions of 
global warming impacts3,4.

Effects of constant warming on aquatic ecosystems 
and organisms
Temperature governs all biochemical reactions5. Through its 
effect on metabolic rates, temperature has multiple repercussions 
on different biological organization levels, from populations to 
ecosystems6. For instance, warming stimulates preferentially  
heterotrophic versus autotrophic growth because of their 
higher thermal dependence7, and herbivorous protists’ growth  
compared with that of phototrophs8. It also promotes changes 
toward small-size protist communities when nutrients are  
limiting9 and can lead to losses of species richness and  
evenness in temperate phytoplankton communities10. Studies 

with experimental microbial food webs have shown that  
warming increases heterotrophic bacteria standing stocks and  
accelerates viral dynamics11, anticipates spring phytoplankton 
bloom timing, extending its duration12, and increases primary 
productivity13 but reduces their carbon sink capacity14. Finally,  
warming can alter the trophic interactions, including those of 
producer–consumer15,16 and host–parasite17, and reduce the  
efficiency of energy transfer to higher trophic levels18. Although 
most investigations have considered the effects of constant  
in situ or increased temperatures only (Figure 1A), already 
more than a century ago, Jensen19 stated through his famous  
inequality, also termed the fallacy of the average20, that the  
response of a system to constant average conditions is different 
from its mean response to variable conditions. Environmental  
variability can affect the response of communities and  
ecosystems to global warming through thermal fluctuations 
above and below mean temperatures, in which variance remains 
constant (Figure 1B) or is irregular (Figure 1C), and through 
amplified thermal fluctuations in which the variance increases 
over time (Figure 1D) or is higher in future respect to present  
conditions (Figure 1E), thus exposing organisms to more  
extreme conditions. Because of underlying non-linear relation-
ships, thermal variability can improve or reduce performance  

Figure 1. The classical and current view to evaluate the effects of global warming through experimental approaches.



Faculty Reviews 2021 10:(9)Faculty Opinions

compared to that predicted by thermal response curves built 
under constant conditions20,21. This prediction is supported by the  
observation that rate measurements at constant temperatures 
may overestimate or underestimate those rates occurring in  
naturally fluctuating environments22,23.

Effects of fluctuating temperatures on aquatic 
ecosystems and organisms
Advances in remote sensing technologies and measurements 
from instruments anchored to floats, ocean gliders, and ships  
provide increasing evidence that surface ocean waters are a  
dynamic thermal environment, with temperatures fluctuating 
over varying time scales from changing weather, diel cycles, 
and ocean–atmosphere oscillations24. Moreover, these natural  
fluctuation patterns are being altered by climate change. For 
example, interannual variance has risen by more than 25% 
since 1980 in some areas (e.g. Europe)25, mainly due to an  
increasing occurrence of regional heatwaves since 195026. 
Under this scenario, organisms are already experiencing abrupt 
shifts in their local temperature environment over short-term 
(from hours to weeks) and mid-term (seasons) scales rather 
than changes in climate per se, although long-term changes  
ultimately drive shorter ones4. Doblin and van Sebile27  
demonstrated that this temperature variability can be up 
to 10°C greater than seasonal fluctuations estimated in a  
constant environment and that this variability depends strongly 
on location. Organisms naturally experiencing variations in 
temperature will tend to be generalists (i.e. highly plastic), 
having broad thermal breadths, whereas those from “stable”  
environments will likely be thermal specialists and will be  
restricted to specific regions/areas28. In addition, differences in 
generation times in populations can promote different adaptive  
dynamics to highly variable environments. This directional  
selection seems to be more effective for faster-growing than 
slower-growing populations because faster-growing microbes  
experience the “selective” environment for a larger number of 
generations29. These contrasting strategies may allow organisms  
adapted to fluctuating environments to grow faster, attain  
higher yield, or use resources more efficiently30,31. By contrast, 
it has also been proposed that increased temperature variation  
may pose a greater risk to species than the impacts derived 
from climate warming itself32,33. Bernhardt et al.34 found that  
fluctuating temperatures may reduce phytoplankton maxi-
mum growth rates by ~20%, their optimal temperature by ~3°C, 
and the maximum mean temperatures for positive growth by 
2°C. Qu et al.35 reported reductions in specific nitrogen and  
carbon fixation rates in the nitrogen fixer Trichodesmium when 
compared to constant temperature conditions.

Zhang et al.36 have shown that increases in thermal variability 
have anticipated the cyanobacterial bloom initiation by ~80 days  
over the last three decades in Lake Taihu. Additionally, 
these authors have reported that cyanobacterial growth36 and  
photochemical performance37 are less sensitive to fluctuating  
temperatures than those of green algae and diatoms. Fluctuat-
ing temperatures can also promote both predator collapse38 and  
species competitive success, potentially facilitating biological 
invasions39, particularly when native species are not adapted 

to the fluctuating environment considered40. The underlying  
mechanism underpinning such observations is that directional 
selection on plasticity can also be weak, non-significant, or  
absent41, likely because production and maintenance costs can 
become too high to cover the increasingly wide environmen-
tal gradient that an organism experiences21. Therefore, ignoring 
the effects of environmental variability may limit our ability to  
predict how organisms are responding to ongoing warming, in  
particular those living at the edge of their thermal ranges.

Interactions between warming and fluctuating 
temperature
Most laboratory investigations evaluating how fluctuating  
temperatures and warming interact have so far concentrated 
on a few well-studied species such as the coccolithophore  
Emiliania huxleyi42 and the diatom Thalassiosira pseudonana43. 
A deeper understanding about how populations respond to  
these drivers would entail knowing whether such responses  
can be extrapolated to other phytoplankton groups (e.g.  
cyanobacteria and dinoflagellates) and to other trophic levels 
(i.e. decomposers and grazers), even to similar species 
but with contrasting nutrition modes (i.e. mixotrophs versus 
strict phototrophs or heterotrophs). At the community level, 
most of the available evidence has focused on phytoplankton,  
while more comprehensive investigations at the ecosystem level  
(e.g. carbon sink capacity) are lacking.

The studies performed have considered either short-term  
scales (i.e. days), which represent acute/stress responses to  
the environmental drivers assayed42,44, or mid-term scales, that 
is, those that allow organisms’ acclimation43,45,46 (Table 1).  
Evolutionary responses over longer time scales to the inter-
acting effect of warming and fluctuating temperature are still 
underrepresented47; however, it is known that thermal adapta-
tion mediated by trait selection during evolutionary change  
can reverse short- and mid-term effects of constant warming on  
metabolic rates48.

There seems to be an imbalance between the amount of work  
conducted in different biomes, with marine ecosystems  
receiving more attention than freshwater environments. Although 
the ocean biome covers >75% of the Earth’s surface and its  
role in biogeochemical cycling is dominant, freshwater eco-
systems, such as lakes and shallow ponds, have characteristics 
that also make them significant for global budgets. For example, 
these ecosystems exchange carbon at areal rates that are orders 
of magnitude greater than virtually any other global ecosystem  
(i.e. little things mean a lot)49.

Results available from experimental studies have been mostly 
performed in temperate areas (or species)42,44,45,50, whereas studies 
addressing the role of temperature fluctuations on microbial  
plankton in boreal/polar and tropical areas are scarce. Because 
thermal variability increases towards the poles51 and some  
high-latitude regions such as the Arctic are warming faster than 
the global average52, it becomes crucial to understand how the  
interplay between interacting environmental drivers modulates 
community responses in different biomes.
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Table 1. Qualitative effects of warming (W) and warming under fluctuating temperatures (W×F) on 
microbial plankton properties measured over different biological organization levels, temporal 
scales, and ecosystems.

Biol. Org. Level Response Variable W W×F Temporal scale Ecosystem
C

o
m

m
u

n
it

y
Cyanobacteria biomass1

Months

Fr
es

hw
at

er

Cyanobacteria recruitment1

Heterotrophic bacteria abundance2

Phytoplankton abundance (< 20 μm)2

Phytoplankton abundance (20–150μm)2

Phytoplankton evenness2

Phytoplankton richness2

Zooplankton:phytoplankton biomass2

Bsi specific growth rate3

Days

M
ar

in
e

POC specific growth rate3

Specific dominance3 

P
o

p
u

la
ti

o
n

Bioflim formation5 

Months

M
ar

in
e

Carbon quota4 

Carbon use efficiency4 

Carbon:nitrogen ratio4 

Carbon:phosphorous ratio4 

Cell size4 

Chlorophyll:carbon ratio4 

Gross photosynthesis4 

Nitrogen quota4 

Nitrogen: phosphorous ratio4 

Phosphorous quota4 

Phytoplankton growth5 

Protein content4 

Respiration4 

RNA content4 

Calcification:photosynthesis6 

Days

M
ar

in
e

Calcification6 

Carbon:chlorophyll ratio6 

Carbon:nitrogen ratio6 

Nitrogen:phosphorus ratio6 

Photosynthesis6 

Phytoplankton growth6 

PIC:POC ration6 

Rectangles represent absence of effect (white), negative effect (orange), strongly negative effect (red), positive effect  
(light green), and strongly positive effect (green). Superscript numbers in response variables represent studies where 
interactive effects of temperature fluctuations and warming were tested. Sources are 1Urrutia-Cordero et al.50, 2Rasconi 
et al.45, 3Kling et al.44, 4Schaum et al.43, 5Schaum et al.46 and 6Wang et al.42. Bsi represents biogenic silica, a proxy for 
diatom-specific rates, and PIC and POC are particulate inorganic and organic carbon, respectively.
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Future research directions
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