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Most biological networks are modular but previous work with small model

networks has indicated that modularity does not necessarily lead to increased

functional efficiency. Most biological networks are large, however, and here

we examine the relative functional efficiency of modular and non-modular

neural networks at a range of sizes. We conduct a detailed analysis of efficiency

in networks of two size classes: ‘small’ and ‘large’, and a less detailed analysis

across a range of network sizes. The former analysis reveals that while the

modular network is less efficient than one of the two non-modular networks

considered when networks are small, it is usually equally or more efficient

than both non-modular networks when networks are large. The latter analysis

shows that in networks of small to intermediate size, modular networks are

much more efficient that non-modular networks of the same (low) connective

density. If connective density must be kept low to reduce energy needs for

example, this could promote modularity. We have shown how relative func-

tionality/performance scales with network size, but the precise nature of

evolutionary relationship between network size and prevalence of modularity

will depend on the costs of connectivity.

1. Introduction
Modularity in a network of interactions occurs when the network is subdivided into

relatively autonomous, internally highly connected components [1]. Modularity is

found in diverse systems ranging from an animal’s body organ system to protein

and other molecular networks. To many non-specialists, the concept of modularity

is associated with the brain. Stimulate the base of the forefinger of a monkey and a

distinct area of the brain’s somatic sensory cortex fires. Move a couple of inches

towards the wrist and repeat and a different brain area fires [2]. Information from

different areas of the body is processed by different brain areas (note that this is

onlyone of many types of brain modularity). There is a long-running debate starting

with Fodor’s The modularity of mind [3] regarding the extent of brain modularity,

how to define modularity, and whether each module should have a discrete func-

tion [4]. To many, it will seem obvious that the brain consists of largely independent

areas that undertake specific functions but there is also evidence that important,

apparently discrete, functions are affected in a shared neural apparatus. People

are especially sensitive to faces but training individuals intensively to recognize

cars interferes with their ability to recognize faces, indicating that recognition of

these objects is not organically distinct [5]. While the present work is informed by

and informs this debate, our focus is much narrower and we confine ourselves to

the question: why does the structural entity that is a module (as defined above

from [1]) appear so frequently in biological networks? What are its benefits and

so why has it evolved so frequently?

Much of the computational work on the evolution of modularity had been

done using the artificial neural network [6]: an extreme abstraction of cognition

that nevertheless displays some properties of real animal cognition [7]. While,

strictly speaking, this allies much research on the evolution of modularity to

evolution of brain modularity, the neural network formulation has also been

used to model gene regulatory networks [8] so insights gained using this
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Figure 1. Performance of ‘small’ (b) modular (PMN) and (a,c) non-modular (FCNMN and SNMN) neural networks with the same number of nodes training to
identify subsets of random inputs. Mean networks fitness (n ¼ 20) with 95% CIs is analysed at generation 1000 and 10 000 of training. Statistics: (d ) generation
1000; FCNMN (red) versus PMN (blue), t38 ¼ 4.09; SNMN (green) versus PMN (blue), t38 ¼ 21.50; (e) generation 10 000; FCNMN versus PMN, t38 ¼ 10.8; SNMN
versus PMN, t38 ¼ 22.39. Note that the vertical axes of plots are not standardized and show different ranges. (Online version in colour.)
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model may be more general in application. Indeed the topic of

this paper, the issue of networks size in the evolution modular-

ity, has arguably received most attention in non-neural systems

such as bacterial metabolic networks [9,10], and we also dis-

cuss our results in the context of findings from these systems.

Reasonably, it was thought that organization of biological net-

works into modules is a more efficient way to process

information than doing it through non-modular networks.

Ultimately, this may be the case but computer simulations do

not indicate that the transition from a simple non-modular

neural network to a simple modular one necessarily results

in more efficient information processing [11]. Computer scien-

tists have, therefore, investigated alternative mechanisms that

may promote neural network modularity and these include:

node connection costs, synaptic weight noise and modularly

varying network goals [12–14]. Numerous other mechanisms

are proposed for the evolution of non-neural modularity and

many of these mechanisms may also apply to the evolution

of brain networks [1].

One factor that has not been investigated exhaustively in

previous modelling studies is that of network scale. Most pre-

vious studies ([11–14] and see in [11]) have used small neural

networks of around 50 nodes or in some cases much fewer.

Only one study [15] has systematically considered the issue

of network scale in the evolution of modularity. Bullinaria

[15] challenged neural networks with a ‘what–where’ task,

varied the number of hidden nodes from 9 to 1000, and

showed that the architecture evolved through natural selec-

tion was always non-modular, regardless of network size.

Bullinaria [15] (see also [11]) used a network in which there

is no spatial segregation between different inputs on the

input layer. An alternative form used in several other studies

(e.g. [12–14]) and in this study assumes spatial segregation

within the network of different data streams into the net-

work. Here we assume that each input stream is processed

by distinct network modules across network layers and all

information is integrated late in the information processing
sequence. Neural systems of this general form are represen-

ted in nature by, for example, the columnar organization of

the somatic sensory cortex of mammals [2], the processing

of different image attributes within distinct areas of the

retina, superior colliculus, lateral geniculate nucleus and

early visual cortical areas of primates [16], and the early

visual processing apparatus of insects [17].

We present simulations in which the (connective weight)

training efficiency and ultimate performance of three types of

structurally static neural network architectures, each with the

same number of nodes, are investigated: the fully connected,

non-modular network (FCNMN); the perfectly modular net-

work (PMN); and the sparse, non-modular network with the

same number of node connections as the PMN network

(SNMN) (figures 1 and 2). Initially, networks are challenged

with the task of identifying a subset of random input patterns

from a larger set of random patterns. We compare the

performance of ‘small’ (16 input nodes, 8 hidden nodes, 1

output node) networks of the above three types with ‘large’

(96 input nodes, 48 hidden nodes, 1 output node) networks

of the same three types. Large modular networks are pro-

duced by maintaining module dimensions but increasing

module number, with a concurrent increase in the number

of data input streams. By varying network input and task,

network output encoding and artificial neuron properties,

simulations are repeated in four system states to determine

the robustness of effects. Additionally, we undertake a less-

detailed analysis (less replicated and no sensitivity analysis)

of network efficiency across a greater range of network size to

inform on the efficiency–size relationship of each network type.
2. Material and methods
(a) System state 1
We ran simulations in four distinct system states to determine

how robust the effects are. We describe in detail only system
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Figure 2. Performance of ‘large’ (b) modular (PMN) and (a,c) non-modular (FCNMN and SNMN) neural networks with the same number of nodes training to
identify subsets of random inputs. Mean networks fitness (n ¼ 20) with 95% CIs is analysed at generation 1000 and 10 000 of training. Statistics: (d ) generation
1000; FCNMN (red) versus PMN (blue), t38 ¼ 22.83; SNMN (green) versus PMN (blue), t38 ¼ 2.54; (e) generation 10 000; FCNMN versus PMN, t38 ¼ 21.84;
SNMN versus PMN, t38 ¼ 3.01. Refer also to the ‘Material and methods’ section for a complete description of network connectivity. Note that the vertical axes of
plots are not standardized and show different ranges. (Online version in colour.)
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state 1, and changes to this system associated with the other three

states are described in the next section.

We used three-layer, feed-forward artificial neural networks

with McCulloch–Pitts neurons in the hidden and output layers [6],

activation functions of the form: output¼ 1/(1 þ (e^-b*input)),

b¼ 1, and trainable bias. Input nodes simply received the numerical

value of inputs and had weighted connections to the hidden layer.

Hidden and output nodes had trainable bias. The connective archi-

tecture of networks used is shown in figures 1 and 2. In FCNMNs,

each node in the input layer had a weighted connection to each

node in the hidden layer. In the PMNs, each module consisted of

eight input nodes and four hidden nodes which were full connected

but there were no weighted connections between modules. The

probability of a weighted connection between the input and

hidden layer in the SNMN with n nodes was the number of active

connection in the PMN with n nodes/the number of active connec-

tion in the FCNMN with n nodes. Only architecture between the

input and hidden layers of each network was varied and hidden

and output layers were fully connected. Each input set inputting

into a single module or equivalent area in non-modular networks

was a 256 � 8 array consisting of all binary combinations of eight

array elements, positionally randomized with respect to row. The

same 256 � 8 � 2 array and 256 � 8 � 12 array input set was used

within simulations with the small and large networks, respectively.

For each network architecture/network size combination, 20 repli-

cates of 50 networks (the latter is the population size in the genetic

training algorithm) were initiated by choosing each connection

weight from a uniform random distribution between 23 and 3.

Each of the 20 replicates of the small and large SNMNs was also

seeded with a different random connective architecture between

the input and hidden layer. Each of the 20 replicates of each network

size class was allocated a randomly selected subset of 100 inputs

from the relevant input sets, and it was the task of the net-

works within the genetic algorithm to maximize output activity
(output . 0.5) in response to these while minimizing response

(output , 0.5) in response to the remaining 156 inputs. Formally, fit-

ness was defined as (the number of correct responses i.e. output .

0.5 to the size-100 input subset)/100 � (the number of correct

responses i.e. output , 0.5 to the remaining 156 inputs)/156. This

gave a metric with a value of 1 when behaviour was perfect and 0

when completely imperfect and some level of performance at both

types of task (acceptance and rejection of appropriate subsets) was

required for fitness . 0. Note that while each of the 20 replicates

was allocated a unique size 100 input set, the same set of 20 was

used between network architecture types within network size

classes. The genetic training algorithm proceeded by selecting

the top performing 10 networks from the 50 in each generation, clon-

ing each of these networks five times, and mutating each weight

within these by adding a number selected from a random normal

distribution with mean 0 and s.d. 0.25 to form the next generation.

(b) System state 2
While fundamentally the ‘task’ of the network was changed here

this necessarily involved changes to multiple parts of the system

and this is desirable as it tests the robustness of effects to major

state change. The same input set as system state 1 was employed

but now all 1 s within 140 rows of the 256 row input set were con-

verted to a number from a random uniform distribution between 0

and 0.5, with each row receiving a different random number. This

procedure was repeated 20 times to produce inputs for the 20 repli-

cates per network architecture type (SNMN, PMN or FCNMN).

If one wishes to apply a visual analogy to the input–receiver

system; we have modelled, the 116 inputs that are unmodified

are visually ‘intense’, whereas the modified inputs are visually

‘dull’. The task of the network was to respond with high output

activity to the ‘dull’ inputs (output . 0.5) and to respond with

low activity (output , 0.5) to the ‘intense’ inputs. Formally, fitness
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Figure 3. Performance of ‘small’ and ‘large’ modular (PMN) and non-modular (FCNMN and SNMN) neural networks with the same number of nodes training to
identify subsets of random inputs. Networks are as those in figures 1 and 2 but now the task of the networks is altered. Now 1 s in 140 of the 256 inputs have a
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was defined as (the number of correct responses i.e. output . 0.5

to the size-140 input subset)/140 � (the number of correct

responses i.e. output , 0.5 to the remaining 116 inputs)/116.

Some aspects of this new input-task system (numbers of inputs

in the ‘dull’ subset, decision to ‘accept’ rather than reject dull

inputs) are, within bounds, arbitrary and were chosen in some

cases simply to ensure the system differed substantially from

state 1.

(c) System state 3
The system was as state 1 but the task of the network was now to

respond with an output . 0.9 to the designated size 100 subset of

inputs while minimizing response (output , 0.9) in response to

the remaining 156 inputs.

(d) System state 4
The system was as state 1 but b of the activation functions of

nodes/neurons was set to 0.1. This had the effect of reducing

the extent to which node output varied as a result of variation

in summed input into the node, i.e. nodes were less ‘sensitive’.

(e) Analysis
We measured mean fitness with 95% CIs at generation 1000 (a

measure which we refer to as ‘speed’ of training for convenience,

as it relates the rate at which fitness is gained during the training

period in which fitness is gained at a high rate) for each network

architecture/network size class combination and again at 10 000

generations by which time most network fitness trajectories had

plateaued (we refer to this measure as network ‘ultimate fitness’).

The only exception was in system state 2. The task in this system

state is easy relative to that in the other system states and networks

achieved a high fitness asymptote within 100 generations. We,

therefore, quantified performance at 15 and 500 generations of

training as measures of ‘speed’ and ‘ultimate performance’,

respectively. Variances of datasets to be compared statistically

were invariably homogeneous and data were generally normal,

so we compared means of the modular network with the non-
modular networks within network size classes using t-tests.

While we have been selective in the comparisons we have under-

taken, this still amounts to a considerable number of statistical

comparisons across the whole analysis. Comparisons of marginal

significance at a ¼ 0.05 should be viewed sceptically by the

reader. We also quantified the performance of the modular net-

work relative to each of the non-modular networks as effect size,

d, calculated as eqns 1 and 2 of [18] (figure 6).
( f ) Finer-scale analysis of how network fitness varies
with networks size

Networks were conformed as state 1 but their size was varied in

numerous steps. Sizes considered were 16/8, 24/12, 48/24, 72/36,

96/48, 120/60, 144/72 (number of nodes in input layer/number

in hidden layer, all networks had one output node). Simulations

were run exactly as before but using only five replicates per network

type/size combination owing to computational constraints.
3. Results
We have presented all data as means with 95% CI and associ-

ated statistical significances in figures 1–5, however, readers

may wish to concentrate on figure 6 where all data are pre-

sented in a single figure as effect size relative to the modular

network. In system states 1–3, there is a pronounced and con-

sistent effect. The performance of the modular PMN relative to

the non-modular FCNMN is much greater in large networks

compared with small networks. In system state 1, in small net-

works, PMN performs pronouncedly worse than FCNMN

both at 1000 and 10 000 generations. In large networks in sys-

tems state 1, however, PMN performs significantly better

than FCNMN at 1000 generations and the same as FCNMN

at 10 000 generations. In small networks in system state 2,

there is no difference between the performance PMN and

FCNMN, but in large networks PMN performs better than
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ranges. (Online version in colour.)

0.01 > p > 0.05

p > 0.05 p > 0.05

p > 0.05 p > 0.05

p < 0.01
p < 0.01

p < 0.01

small network, 1000 generations of training small network, 10 000 generations of training

large network, 10 000 generations of traininglarge network, 1000 generations of training

fi
tn

es
s

fi
tn

es
s

0.46 0.60

0.62

0.64

0.66

0.68

0.70

0.72

0.74

0.76

0.47

0.57 0.78

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.59

0.61

0.63

0.65

0.67

0.69

0.71

0.73

0.48

0.49

0.50

0.51

0.52

0.53
(a) (b)

(c) (d)
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not standardized and show different ranges. (Online version in colour.)
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FCNMN at both 15 and 500 generations of training. In small

networks in system state 3, PMN performs significantly

worse than FCNMN at both 1000 and 10 000 generations. In

large networks, however, there is no significant difference in

the performance of these networks.
A much weaker effect in the relative performance of the

modular PMN and non-modular SNMN networks is suggested

in system states 1–3 (figure 6). Generally, there is no significant

difference in the performance of PMN and SNMN in small net-

works (one exception showing marginal significance in system
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state 1 at 10 000 generations, figure 6). In large networks, how-

ever, performance of the modular PMN is significantly greater

than the non-modular SNMN in numerous instances, includ-

ing: networks state 1, 1000 and 10 000 generations; networks

state 2, generation 10 000; networks state 3, generation 10 000.

We again emphasize that these effects are not pronounced.

For example, effect sizes for PMN versus SNMN in small and

large networks are quite similar by eye; it just happens that

effect in the large networks cross the a ¼ 0.05 threshold on

two occasions but only once in the small networks.

None of these effects appear to apply to system state 4

in which neuron properties are changed relative to system

state 1. PMN performance is lower than that of FCNMN in

small networks at both 1000 and 10 000 generations. In

large networks, the same applies but effect size is even

greater. There is little difference in the performance of PMN

and SNMN in networks of either size.

In summary, network size is an important determinant of

the relative performance of modular and non-modular net-

works in the system studied. In three of the four system

states considered, an increase in network size is associated

with an increase in the performance of the modular relative

to the non-modular networks considered. In the remaining

system state, the opposite is true.

The finer-scale analysis of network fitness variation with

size revealed a wealth of interesting details, however, the

most notable effect (an effect not likely be predicted from

the coarse-scale analysis above) is that the network effi-

ciency–size relationship of the sparse SNMN differs

qualitatively from the FCNMN efficiency–size and PMN

efficiency–size dynamic (figure 7). Readers are advised to

concentrate on results at 10 000 generations of training as

those at 1000 generations are similar but less pronounced.

One effect of this difference in the SNMN efficiency–size

relation is that in the smaller networks considered here, a per-

fect modular network is considerably more efficient than a

non-modular network with the same number of connections

between its input and hidden layer. We cannot confirm that
the precise relative efficiencies of the different large networks

types analysed in the coarse-scale analysis above (i.e. the

PMN networks commonly performing significantly better

than the non-modular SNMN and FCNMN) are found in

the even larger networks (due to lower replication number),

however, there is a general convergence of performance

level in very large networks.
4. Discussion
We have identified two effects here, that depend on scale of

the networks, and that could influence the evolution of mod-

ularity in networked systems. Considering first the analysis

that is coarse with respect to network size but detailed

within each network size (high replication and sensitivity

analysis). In the small networks considered, the modular

network is inferior in performance to the fully connected

non-modular network and usually not significantly different

in performance to the sparsely connected non-modular net-

work. In the large networks, the situation is different and

the modular network is now commonly superior to both

types of non-modular network or if not absolutely superior

there is at least an increase in relative performance of the

modular relative to the non-modular network. We cannot

say whether modular networks are also commonly superior

in performance to non-modular ones in even larger networks

as the more detailed analysis with respect to network size

was less fully replicated owing to computational demands.

We can, however, conclude that while certain small non-

modular networks substantially outperform the perfectly

modular one considered here this does not appear to apply

to a range of much larger networks where performance of

all networks types appears more similar. In this respect,

then, there is likely to be a shift in favour of evolution of

modularity in large networks: while modularity is inferior

to other strategies in small networks, this does not appear

to be the case in large networks.
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Considering now the analysis that is detailed with respect

to network size but coarse within each network size. Prob-

ably the most interesting observation from this analysis

was the qualitatively different efficiency–size relationship

shown by the connectively sparse networks relative to the

other two network types. A consequence of this was that in

networks of small-to-intermediate size, sparse non-modular

networks with the same number of connections as the mod-

ular networks performed dramatically worse than those

modular networks. This effect presumably lessens as sparse

networks become more connectively dense as fully connected

non-modular networks performed better than the modular

networks. Applying these results to real biology and in

particular real neural networks, in networks within a particu-

lar size range (what that range may be in real biological

networks is unknown), when the costs of adding connections

is significant in the overall energy budget of an organism

[19,20] and so connective density should be kept low, there

may be a considerable advantage in adopting the modular

network conformation in preference to a non-modular one

with the same connective density.

Most previous modelling studies using small neural net-

works have indicated that modularity is not expected to be

favoured under a broad range of systems states [11,21,22]. To

some extent, this study supports this conclusion. In the small

networks, we have modelled there are non-modular networks

that are more efficient. However, with variation in network size
and the addition of realistic biological assumptions (that con-

nective architecture should be kept low in density for energy

efficiency) modularity becomes a more efficient solution. The

large networks of the general form we have modelled here in

which numerous different input streams are handled by differ-

ent modules across different layers of neurons are by no means

uncommon in nature [2,16,17], and it is tempting to suggest

that such systems may have evolved in the first instance

(before evolution of alternative functions within such systems)

because the modular form is most computationally efficient,

without the need for supplementary mechanisms [12–14]

(although such additional mechanisms would presumably

present further incentive for the evolution of modularity).

We do, however, stop short of making this assertion as we

have not carried out simulations of structural evolution and

it is possible that large networks may have a very pronounced

local minimum for non-modularity or that a form of non-mod-

ular network intermediate to those we consider here has high

fitness. Such simulations are, of course, the next logical step

in this research programme investigating the influence of net-

work size on the evolution of modularity. We have only

analysed in detail the relative performance of networks of

one ‘large’ size, and we do not know if modular networks of

even greater size are also commonly more efficient than non-

modular networks. Moreover, where we did analyse the per-

formance of large networks in detail, increased relative

performance of modular networks with size is not a universal

property of the system studies here as it does not hold in one of

the four system states considered. It may be that real, large bio-

logical networks embody such components that are not

conducive to the evolution of modularity. In the remaining

three system states, it would be useful to know which aspect

of increased scale is responsible for the reduced efficiency of

fully connected networks: the increased complexity of the

input set, or the very large number of node interconnections.

Determination of an exact scale threshold for when large,

non-modular networks become less efficient than modular

ones and a study of how relative performance varies as net-

works continue to increase in size would also be welcomed.

The results presented here are, nevertheless, striking enough

to suggest that authors of many previous studies on the evol-

ution of modularity in neural networks (see Introduction)

may wish to return to their simulations to examine the evol-

ution of network form when networks are varied in size from

‘small’ to ‘large’. This work suggests that modularity may

become more relatively efficient as networks become ‘large’.

The relationship between network size and number of

modules is known for bacterial metabolic networks:

number of modules increases with network size, though

this increase in modularity with network size plateaus at

intermediate network sizes [10]. Many researchers investi-

gating such relationships would probably not consider the

‘function’ of the network or its components as the principal

determinant of such a relationship, but instead would focus

on the way in which evolutionary novelties are incorporated

into the existing network. Thus, Maslov et al. [9] took such a

structural approach and found that the number of proteins

encoded in an organism’s genome is expected to increase

slower than linearly with the number of metabolic tasks it

can accomplish (metabolic modules it has) because as the

number of enzymes grows larger, it can re-use its enzymes

more often and thus needs to get fewer new ones to master

each new task. There are some superficial analogies between
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the artificial neural network formulation and metabolic func-

tion, and we think it worth suggesting that the positive

metabolic network size–module number relationship could

be because modularity is more efficient in large networks

as shown in this study.

The present findings also have technological implications.

A common applied use of artificial neural networks is to inte-

grate many complex datasets to assist decision making, for

example, in financial prediction where a variety of social

and economic predictors may be integrated to inform trader

behaviour [23]. If, owing to the nature of input sets, networks

become large, users of such networks may wish to consider a
modular design. It is also interesting to note that fully con-

nected networks, a common architecture in technological

applications of neural networks, trained for 10 000 gener-

ations are most efficient at small to intermediate sizes in

this study (figure 7).
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