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Abstract
The ongoing coronavirus disease 2019 (COVID-19) pandemic is of global concern and has recently emerged
in the US. In this paper, we construct a stochastic variant of the SEIR model to estimate a quasi-worst-case
scenario prediction of the COVID-19 outbreak in the US West and East Coast population regions by
considering the different phases of response implemented by the US as well as transmission dynamics of
COVID-19 in countries that were most affected. The model is then fitted to current data and implemented
using Runge-Kutta methods. Our computation results predict that the number of new cases would peak
around mid-April 2020 and begin to abate by July provided that appropriate COVID-19 measures are
promptly implemented and followed, and that the number of cases of COVID-19 might be significantly
mitigated by having greater numbers of functional testing kits available for screening. The model is also
sensitive to assigned parameter values and reflects the importance of healthcare preparedness during
pandemics.
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Introduction

COVID-19 (previously 2019-nCoV) is caused by the new SARS-CoV-2 coronavirus and originated from
Wuhan city, China (Zhu et al., 2020). Although the first case was reported in December 2019, 2020,
COVID-19 has continued to spread around the world and over 150 countries have been affected to this
day (WHO, 2020). COVID-19 was first reported in the US on January 20, 2020 (Holshue et al., 2020).
While little action was taken initially, an exponential increase in the number of cases have spurred
immediate actions to contain COVID-19. For instance, social distancing is being enforced via the closure
of educational institutions, restrictions on travel, and suspension of events. Unfortunately, containment
has been hindered by various factors such as the initial production of defective test kits and a current lack
of test kits andmedical supplies (Yeo &Ganem, 2020). As a result, it is currently unclear how well the US
will cope with COVID-19 over the next fewmonths, especially in view of the lack of adequate projections
of the scale of COVID-19 infections andmortality across the country at the time of completing this study
(March 19, 2020).
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Objective

In this paper, we attempt to construct a mathematical model that simulates the scale of COVID-19
outbreak in the West and East Coast population regions of the US.

Methods
Designing the Model

Tomodel the COVID-19 outbreak in the US, we use a variant of the SEIRmodel (see (Dureau et al., 2013;
Lin et al., 2020) for some examples). We mainly focus on the West and East Coast population regions of
the United States. We assume that there is no travel between the different population zones because
people living at the opposite ends of the coasts seldom intertravel and travels will eventually halt while the
US transitions to lockdown. We also assume that the natural birth and death rates are equal because the
total population does not differ significantly during a short timeframe in the absence of a catastrophe.

Figure 1 depicts the basis of our model, focusing on a particular coast, where arrows indicate the flow
of the population at different stages.

In Fig. 1, S represents the susceptible population, and E represents the exposed population
(i.e. individuals who have been infected but are not yet themselves infectious). The infected population
I is divided into two groups, IH and IC , wherein the subscripts H and C stand for “hospital” and
“community” respectively. IH represents those that are infected and isolated (such as those that have been
pre-tested and found to carry the virus), and IC for those that are infected but not isolated (such as those
with unreported cases or present mild symptoms that are overlooked). Thus, people in IH are unable to
spread the virus whereas those in IC can spread the virus. While IH may potentially contribute to
in-hospital transmissions to health professionals, the relative number of cases would be much lower and
can be negligible because hospitals are equipped with personal protective equipment and proper
sanitization, and health professionals represent a low number of the population. As testing kits in the
US are currently in low supply, the current model projects significantly higher levels of IC than IH at any
given point in time. Once infected, there are two possibilities: either recovery or death; these outcomes are
represented by the populations RH , RC and DH , DC respectively. We also assume the recovered
population will have acquired immunity to the virus and are no longer susceptible (Bao et al., 2020;
Lu et al., 2020).

In summary, below are the key assumptions we used to design the model:

• no travel between coasts,
• equal birth and death rates,
• infected populations that arise from in-hospital transmissions are negligible,
• virus immunity after contracting COVID-19,
• IC ¼ 1 at the start (see implementation of model).

Figure 1. A diagram summarizing our modified SEIR model for each coast.
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The actual mathematical model underlying Fig 1 is as follows.
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In the differential equations above, N ¼ SþEþ IH þ ICþRH þRC represents the effective total
population in the US, i.e. the population that matters for the purposes of virus transmission. The various
parameters in the differential equations and their chosen values (based on (Lauer et al., 2020; Lazzerini
et al., 2020; Lin et al., 2020; Linton et al., 2020; Liu et al., 2020)) are also summarized in the table below. In
particular, in our implementation we account for the variations of incubation period α�1 and infectious
period γ�1 by sampling 100 values from an Erlang distribution of shape 2 with minimum restricted to be
1 day (i.e. minimum possible incubation period is 1 day). The West Coast also takes the lower of the R
values to account for the lower average population density.

Notice that the reproduction rate R is not present in the differential equations. However, R is
important even if the contact rate is hard to directly estimate, and we will use R and γ to estimate β
using the relation β¼Rγ. The reproduction rate is also not static over time; as hinted above in the table,
we will use different values over the following three phases.

• Phase 1: There is no action done on the epidemic.
• Phase 2: Some action is done to slow down the epidemic while preparing for the next phase.
• Phase 3: Coast shutdown; schools moved online, events canceled, and most public areas closed.

To prepare for a quasi-worst-case-scenario, we assume R≥1, a necessary condition for any disease
outbreak (Keeling et al., 2008). This is because R¼ 1 represents a neutral reproduction rate, whereas
R< 1 and R> 1 represents a decline and increase of spread, respectively.

Implementing the Model

We simulated ourmodel inMATLAB to prepare for a quasi-worst-case-scenario.We employed a fourth-
order Runge-Kutta method (Hubbard & West, 1991) to numerically solve the above specified ordinary
differential equations, with the range 0≤t≤250 and stepsize h¼ 1=3 (both measured in days). As for the
initial conditions for each coast, we assume that a single infected person is introduced, and that there were
no pre-existing immune responses that may help defend against the virus due to SARS-CoV-2 being
sufficiently divergent from other CoVs (Bao et al., 2020; Lu et al., 2020). Hence, the entire population is
initially susceptible due to the virus.

Parameter Definition Value (and distribution if applicable)

α�1 Incubation period Erlang with shape 2 and mean 5.2 days

γ�1 Infectious period Erlang with shape 2 and mean 3 days

R 1ð Þ Reproduction rate in Phase 1 2.7 (West Coast); 2.9 (East Coast)

R 2ð Þ Reproduction rate in Phase 2 2.3 (West Coast); 2.5 (East Coast)

R 3ð Þ Reproduction rate in Phase 3 1

β Contact rate per unit time Rγ

ρ Proportion of exposed that are pre-tested 0.1

c Case fatality rate 0.05

Experimental Results 3



Results

Using elements outlined in the previous sections to model the situation for the West and East Coast
population regions, as well as the entire US, we ran 50 simulations using the model described above. We
then compared our simulation results to current data between January 20, 2020 and March 19, 2020
(Kaggle, 2020), assuming a delay in reporting time of about 8 to 10 days and using population estimates
derived from (US Census Bureau, 2020).

The West Coast

The first case of COVID-19 in theWest Coast was reported on January 20, 2020 in Seattle,WA.We used a
population estimate of 53 million. If January 20, 2020 is designated Day 0, we assume Phase 2 started at
around Day 45, and Phase 3 started at around Day 60. The simulation results suggest that, under quasi-
worst-case-scenario, the data for the number of people infected by COVID-19 is far more than reported:
about 80% of IC (those infected but not isolated) are not accounted for. This is probable as many
symptoms of COVID-19 may be passed off as just cases of mild flu. In the quasi-worst-case-scenario, we
predict the number of reported infections at its peak to be about 25,000 and the actual number of
infections at about 90,000 (Fig. 2A).

The East Coast

The first case of COVID-19 in the East Coast was reported on February 1, 2020 in Boston,MA. However,
since no other new cases were reported for about two weeks, we assume a starting time of onemonth later
than for theWest Coast. In the graphs below, we will still plot them starting from the first reported case in
the US (i.e. January 20, 2020). For the East Coast, we used a population estimate of 152million. Based on
government actions, we also assume that the starting dates for Phases 2 and 3 are about a week behind
that of theWest Coast. The simulation results are similar to that of theWest Coast; for a quasi-worst-case
scenario, the actual number of infections is predicted to be about 400,000 for reported, and about
1,450,000 for the actual number of infections (Fig. 2B).

The United States: Hypothetical 25% Infected Worse-Case Scenario

As COVID-19 has escalated into a pandemic, we decided to compare to the previous 2009 Influenza
(H1N1) pandemic. Although H1N1 and SARS-CoV-2 are distinct viruses with different virology and
epidemiology, 2009 H1N1 pandemic influenza is the only other pandemic to have emerged in modern
society and can help potentially help project the full extent of the spread of COVID-19. Considering that
around 24% of people were infected during the 2009 H1N1 pandemic (Kerkhove et al., 2013), as well as
the non-static nature of our parameters, we ran another simulation on the entire US population with
approximately 22% to 26% of the population infected (based on randomness) to predict such a scenario.
For this simulation experiment, the values we used for R and the starting days of the phases was a rough
weighted estimate of the two coasts. The values for the other parameters remained the same, as described
in the previous section. We also assumed five infected individuals were introduced into the population.
As Fig. 2 C illustrates, in this quasi-worst-case-scenario, about 3.8million of the US population would die
from COVID-19 assuming a 5% mortality rate, and the remaining 76.2 million would recover.

Discussion

This paper presents a model for simulating the scale of COVID-19 pandemic in the United States. The
simulations focused on the West and East Coast population regions (Figs. 2A, 2B) and also modeled a
hypothetical worst-case scenario for the entire US (Fig. 2C). The model is different from other
computational models because factors specific to the US are considered, such as the three phases of
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government response, travel restrictions that restrict cross-boundary transmissions, limits to testing kits
and healthcare accessibility resulting in semi-strict isolation, as well as different transmission dynamics
during each response phase.

The model fits the reported data by assuming that about 80% of the non-isolated cases are not
reported; however, the actual number of cases may be much higher (Figs. 2A, 2B). That assumption
agrees with a prior study (Li et al., 2020) and provides another evidence that COVID-19 is not easy to
contain.We arrived at an 8 to 10 days reporting delay in amethod similar to (Li et al., 2020).While this is
an important factor to consider in disease modeling, the actual reporting delay of COVID-19 is currently
too early to tell, and reporting delays usually show very high variance for many reasons (e.g. nature of the
disease, transparency of healthcare systems). It may be worthwhile to note that some common distinctive
respiratory viral diseases were found to have a mean of 9 days in reporting delay elsewhere (Marinović
et al., 2015), a value which aligns with our simulation estimates. The model also predicts that the peak of

(A)

(B)

(C)

Figure 2. Simulations of COVID-19 in the West (A) and East (B) Coasts. On the x-axis, the starting date at the origin is January
12, 2020, and numbers represent the days that have since elapsed (each interval is approximately 1 month). Each line
represents one simulation. (A, B): Left: The estimated total number of reported infections IR over time using the formula
IR ¼ IHþ0:2IC ; Center: A magnification that includes available data to date. The circles represent the actual data of reported
cases (adjusted for delay); Right: The estimated number of total infections I over time, using the formula I¼ IHþ IC . The
number of reported cases is much lower than the actual number of cases. (C): A hypothetical scenario where 25% of the US
will be infected; Left: the estimated number of infected people over time; Right: the cumulative number of deaths by
considering a constant 5% mortality at each unit time.
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the outbreak would occur by early April, and the outbreak would wind down by the start of July.
However, the model does not account for delays in reporting; as such, one should expect the peak
reported number of infections to occur aroundmid-April. The peakwould also occur sooner on theWest
Coast, which was affected first. All peaks should occur around mid-April unless there are major changes
to the reproduction rates (for which there is no current evidence), significant lapses during the handling
of COVID-19 or maintaining social distancing. Otherwise, COVID-19 will only continue to progress for
the worse in terms of scale and duration; for instance, the July cool-down might be delayed, or worse,
the US could even face subsequent outbreaks reminiscent of historical outbreaks. It should be noted that
the trends in themodel’s estimates share similarities with the epidemic curves in some nations during the
SARS-CoV-1 outbreak (Wallinga et al., 2004).

One way to mitigate the spread of COVID-19 is to successfully isolate more infected people, i.e. to
have a higher relative proportion of IH over IC . That outcome should be achieved when defective testing
kits are replaced and more testing kits are allocated, so that more exposed people can be tested and
isolated accordingly. For instance, if 50%more people had been tested since the start of the outbreak, the
model would predict 40% of the projected severity (Figs. 3A, 3B). As the US faced mishaps in the
allocation of testing kits during the initial handling of COVID-19 (Yeo&Ganem, 2020), the original peak
is likely inevitable. Testing more people from this point onwards (i.e. late March) would help accelerate
the reduction; a simulation for is shown in Figs. 3C, 3D. Additional ways to mitigate the mortality of
COVID-19 include improving accessibility to healthcare and boosting quantities of essential supplies
such as masks, respirators, and ventilators. However, the sudden onset of COVID-19 and the overall
unpreparedness of the United States make these data inaccessible (Yeo &Ganem, 2020). It should also be
noted that while the currently global mortality of COVID-19 is 3.8%, it is noticeably different across
nations (Kaggle, 2020; Lazzerini et al., 2020). As such, the actual case-fatality rate of COVID-19 in the US
cannot be accurately determined currently until further progress of COVID-19. As a result, we chose a
5% mortality rate in our quasi-worst-case scenario prediction of COVID-19 in the US, which is the
weighted average of top 5 mortality rates in countries with noticeable number of COVID-19 cases
(>1500) as of March 18 (Lazzerini et al., 2020). It is also important to note that other factors (e.g. abiotic,
immunological) can further modulate our parameters and affect our current projections. As a result, our
study used data from prior studies based on other countries hit relatively hard by COVID-19 such as
China and Italy, and enables us to construct a quasi-worst-case model of COVID-19 in the US.

Our model and projections can be further improved when transmission dynamics in the US begin to
be documented and governmental response begin to be properly executed. As of today (August 8, 2020;
manuscript revision), the trends observed initially bore resemblance to our simulations, albeit at a smaller
scale as we are doing a quasi-worst case scenario. However, this has sharply deviated since the start of
June where the US is currently experiencing a substantial surge of new cases, especially a spike of new
cases in July that is twice the April peak (CDC, 2020). This can be attributed to many clear evidences that
distancing measures have not been properly followed nor well-implemented. Some examples include
several states actively pushing for re-opening despite warnings from health officials, social justice
movements across the US, et cetera. In consideration of these unexpected events that have significantly
perturbed the reproduction rate, we can introduce a “Phase 4” to account for this by increasing the
reproduction rate in the East and West Coasts at Day 135 (see Supplementary Material).

We are mindful that computational simulations are, by their very nature, approximations. There are
currently no predictive models that satisfactorily produce a picture of the spread or clinical impact of the
disease, including ours, as too many factors can affect the spread of a disease. In our model, we consider
the East and West Coasts of the US as strictly isolated regions with static total population. While this is
not true in reality, minimal movements between the coasts is expected once distancing measures are
implemented. Moreover, our predictions can vary noticeably with small variations in assumptions and
assigned parameter values. To cite one example, minor changes in the distribution between IH , IC , and R
can dramatically affect the model’s predictions (see Supplementary Material). Also, at the societal level,
the length of time that the cohort of patients remain hospitalized is often unknown in the early stages of a
pandemic and can greatly influence the use and deployment of medical supplies and personnel, thus
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(A)

(B)

(C)

(D)

Figure 3 Comparison of COVID-19 in the coastal US if more people were tested (solid) versus current projection (translucent).
Left: West Coast; Right: East Coast. On the x-axis, the starting date at the origin is January 12, 2020, and numbers represent the
days that have since elapsed (each interval is approximately 1 month). Each line represents one simulation. (A): 50% more
people tested since onset, considering only the infected that are reported. (B): 50% more people tested since onset,
considering the total number of infected. (C): 3X the number of people tested starting late March, considering only the
infected that are reported. Note that more reported cases would have been observed than originally projected because
testing many more people shifts many potentially unreported IC to the IH cohort. Two peaks are observed for the West Coast
(left), since the original peak is projected to have already passed, and implementing 3X more tests will result in another peak
of reported infections. (D): 3X the number of people tested starting late March, considering the total number of infected
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altering the course of the infection and recovery rates. In addition, our test-and-isolate scenario is also
quite optimistic as we assumed that hospitalized individuals can be fully isolated regardless of medical
capacity despite a potential surge in COVID-19 patients. While some countries have been able to
successfully contain COVID-19 by relying on efficient tests and isolation, it remains uncertain whether
the US is able to similarly do so in light of constrains to testing, healthcare supplies, and capacities (Yeo &
Ganem, 2020). Nevertheless, the few scenarios presented and discussed in this paper strongly suggest that
even with current containment and mitigation efforts, COVID-19 outbreak will significantly impact the
health of the US population in the East and West Coast.

Conclusion

We constructed a modified SEIR computational model using current data that reflect the initial stages of
COVID-19 in the US while considering different transmission dynamics across the anticipated phases of
response to COVID-19 over the next months. Our current model projects that the number of new cases
would peak around mid-April 2020, but our projections could potentially change over the course of
COVID-19 in consideration of external factors (e.g. abiotic factors and governmental responses) that can
significantly modulate transmission dynamics in the US, as well as the sensitivity of our model to
adjustments in values assigned for each parameter. Future work will include adjusting the model
accordingly to real-time COVID-19 situations (e.g. see Supplementary Material) and implementing
the model to different disease outbreaks and other communities. We hope that this study provides an
effective framework for modeling future disease outbreaks, help the mathematical modeling community
to project COVID-19 and other past/present/future outbreaks, and make the nation more aware of the
scope and nature of COVID-19.
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