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a b s t r a c t

Caveolae are nanoscopic and mechanosensitive invaginations of the plasma membrane, essential for adi-
pocyte biology. Transmission electron microscopy (TEM) offers the highest resolution for caveolae visu-
alization, but provides complicated images that are difficult to classify or segment using traditional
automated algorithms such as threshold-based methods. As a result, the time-consuming tasks of local-
ization and quantification of caveolae are currently performed manually. We used the Keras library in R
to train a convolutional neural network with a total of 36,000 TEM image crops obtained from adipocytes
previously annotated manually by an expert. The resulting model can differentiate caveolae from non-
caveolae regions with a 97.44% accuracy. The predictions of this model are further processed to obtain
caveolae central coordinate detection and cytoplasm boundary delimitation. The model correctly finds
negligible caveolae predictions in images from caveolae depleted Cav1-/- adipocytes. In large reconstruc-
tions of adipocyte sections, model and human performances are comparable. We thus provide a new tool
for accurate caveolae automated analysis that could speed up and assist in the characterization of the cel-
lular mechanical response.
� 2022 Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Bio-
technology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

Caveolae are plasma membrane (PM) invaginations of 50–
100 nm in diameter [1,2] particularly abundant in adipocytes,
fibroblasts and endothelial cells. Caveolar structures constitute
mechanosensitive platforms that flatten upon PM tension increase
to protect cell integrity and transduce mechanical information
from the cell surface into downstream signals [3–8].

Caveolin-1 (Cav1) protein is an essential component for caveo-
lae formation, and Cav1-/- cells lack caveolae. Cav1 depletion or
mutation has been linked to lipodystrophy syndromes in humans
and reduced fat depots in mice [9–14]. Mutations in Cavin-1 (also
called PTRF), another essential caveolar component, have also been
linked to lipodystrophy [15–23], evidencing the importance of the
caveolar structure for adipocyte biology. Thus, caveolar quantifica-
tion often constitutes a significant step in the characterization of
Cav1 and Cavin-1 mutants.
Visualization of nanoscopic caveolar structures requires high-
resolution microscopy techniques. Super-resolution microscopy
offers numerous advantages for caveolae analysis, including
straightforward sample processing, the possibility of imaging liv-
ing cells and a reasonable throughput. This technique also involves
the use of fluorescent labels, enabling the study of different caveo-
lar protein components, their spatial localization and interaction.
Several approaches based on machine learning have been recently
developed for the analysis of caveolar structures visualized by
super-resolution microscopy [24–28]. However, the highest reso-
lution for direct and definitive caveolae visualization is provided
by Transmission Electron Microscopy (TEM). In TEM images, cave-
olae may appear as single-pits connected to the cell surface, inter-
nalized vesicles (cavicles), or organized in clustered structures
(rosettes). These different caveolae categories have been associated
with differential mechanical sensitivity, with a predominance of
internalized or clustered caveolae in low-tension conditions
[7,29–33]. Caveolae structure can thus provide information on
the mechanical state of the cell.

The complexity of TEM images and the absence of fluorescent
labels hampers the use of traditional, threshold-based algorithms
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for automated caveolae analysis. Here, we present a deep-learning
based approach for caveolae quantification and classification in
TEM images. The tool was trained to recognize caveolae and is able
to delimit the cytosolic boundaries with the extracellular matrix
and the lipid droplet. The performance of the tool is comparable
to manual quantification in reconstructed sections of adipocytes,
and the amount of caveolar detections in Cav1-/- adipocytes is neg-
ligible. This tool has a clear potential to enable efficient and effort-
less caveolae detection in TEM images, allowing for thorough
cellular mechanical characterization.
2. Materials and methods

2.1. Sample preparation

Epidydimal adipose tissue was extracted from eight 38–
50 weeks-old C57BL/6 mice fed with LabDiet 5 K67 - JL Rat &
Mouse/Auto 6F. For ultrastructure imaging, epidydimal adipose
depots were immersed immediately after extraction in fixative
solution: 2 % glutaraldehyde (G011 TAAB), 2 % formaldehyde
(28908, Thermo) in phosphate buffer 0.1 M, pH 7.4 and minced
in small pieces to favor surface contact. Samples were fixed over-
night, washed and treated with osmium tetraoxide 1 % in water,
followed by in block contrast with 0.5 % uranyl in water and then
dehydrated with increasing ethanol concentrations (30, 50, 70, 95,
100 %). Finally, samples were acetone washed and included in
epoxy resin Durcupan. Ultramicrotomy sections were performed
with a thickness of 60 nm and then placed in cupper grids and
stained with uranil acetate (2 %) and Reynolds lead.

3T3-L1 cells were plated on permanox plastic chambers (Ther-
moFisher 177445PK) and maintained at 37 �C 5 % CO2 with culture
media DMEM (Gibco 11995073) 10 % FBS (HyClone SV30160.03),
penicillin/streptamicin (Gibco L1953096). Adipogenic differentia-
tion was performed with the following adipogenic factors added
to culture media: 5 lg/ml insulin in 3 mM HCl (Sigma I5500);
25 lg/ml IBMX (Sigma I5879); 1 lg/ml dexamethasone (Sigma
D4902); 0,4415 lg/ml troglitazone (Calbiochem 648469). After
48 h, media was replaced with new differentiation media including
only insulin and troglitazone. From this point, media was changed
every other day adding only insulin. Cells were fixed at 8 days post
differentiation with fixative solution: 2 % glutaraldehyde (G011
TAAB), 2 % formaldehyde (28908, Thermo) in phosphate buffer
0.1 M, pH 7.4. Cells were left for 1 h in fixative solution and then
washed three times in phosphate buffer 0.1 M, pH 7.4. They were
then treated with osmium tetraoxide 1 % in water for 1 h, washed
and contrasted with 0.5 % uranyl acetate. Chamber wells were
removed and dehydration was performed with increasing ethanol
concentrations (30, 50, 70, 95, 100 %) followed by inclusion in Epon
resin. Ultramicrotomy sections were performed with a thickness of
60 nm and then placed in cupper grids and stained with uranil
acetate (2 %) and Reynolds lead.

Mouse aorta samples were processed similarly to adipose tis-
sue, but fixed instead in 0.1 M cacodylate buffer, pH 7.4 containing
2.5 % glutaraldehyde, 1 mg/ml ruthenium red.

Human dermal skin fibroblasts were treated for 10 min with a
1/10 dilution of DMEM to obtain 30 mOsm or with DMEM as a con-
trol. They were then fixed in 0.1 M cacodylate buffer, pH 7.4 con-
taining 2.5 % glutaraldehyde, 1 mg/ml ruthenium red, and then
post-fixed in 1 % osmium tetroxide, 1 mg/ml ruthenium red, fol-
lowed by treatment with 2 % uranyl acetate. The samples were
dehydrated, embedded in LX112 Epon resin, sectioned and stained.

All animal experiments were approved by CNIC and Universi-
dad Autónoma de Madrid (UAM) Ethics Committees and by the
competent authorities (Comunidad de Madrid, PROEX 051/16) in
compliance with relevant regulations for research animal welfare.
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2.2. Imaging, annotation and datasets

1024x1024 pixel2 TEM images with pixel size 1.478 nm were
obtained in a JEOL JEM1010 (100 kV) equipped with a digital cam-
era Gatan Orius 200 SC with a magnification of 60000x. Three dif-
ferent caveolae experts evaluated 5018 adipose tissue TEM images
and located caveolae central coordinates using the Fiji [34] Cell
Counter plugin [35]. High classification agreement among the
three experts was confirmed and then the cells to which these
images belonged were distributed among the three experts at ran-
dom so each image was analyzed once. At the moment of caveolae
localization, the experts further classified caveolae in three cate-
gories: single-pits (typical caveolar individual invaginations con-
nected to the cell surface), rosettes (caveolar clusters), and
cavicles (invaginated caveolae detached from the cell surface).
One of the experts used the multipoint tool of Fiji to locate sparse
coordinates of lipid droplet (LD), extracellular matrix (ECM) and
cytosol in the same adipose tissue images, and mitochondria,
endoplasmic reticulum (ER) and endosomes in 3883 images of
in vitro differentiated 3T3-L1 adipocytes. 100x100 pixel2

(148x148 nm2) crops centred at the coordinates located by the
experts were automatically extracted with an ImageJ macro. One
of the experts finally assessed all the crops to confirm correct
annotation and discarded those that were not properly centred
and where caveolae were not complete. Annotated image crops
from all 9 categories (Fig. 1a) were randomly assigned to the train-
ing, validation and test set. The training set contained 3000 image
crops of each category, while the validation and test sets both con-
tained 500 image crops for each category. In total, 27,000 training
and 4500 validation crops were used as input in the training pro-
cess of a multiclass (9 categories) classification model. Input crops
were loaded as greyscale and rescaled to values between 0 and 1.
Data augmentation was applied to the training set, with a 40� ran-
dom rotation, 20 % random horizontal shift, random shear transfor-
mations, 20 % random zoom and random horizontal flip. Data
augmentation was intended to increase the generalization capabil-
ity of the tool in caveolae TEM images of different orientations and
magnifications.

Mouse aorta sections were imaged similarly to adipose tissue.
Human dermal skin fibroblasts were examined at 80 kV with a
JEOL JEM-1010 equipped with TVIPS F416 camera.

2.3. Learning architectures and downstream processing

2.3.1. CNN for cell structure classification
Using the Keras library (v 2.2.5) with the Tensorflow backend (v

2.2.0) in RStudio (1.1.463, R version 3.4.4), we implemented a con-
volutional neural network (TEMCell-CNN) with the architecture
depicted in Fig. 1b, to perform classification of TEM image crops
on 9 cellular structures. The network takes 100x100 pixel2 image
crops as input and has five hidden convolutional layers (of 32,
64, 64, 128 and 128 neurons). All convolutional layers use a 3x3
kernel and ReLU as activation function, followed by 2x2 max pool-
ing layers. Outputs are flattened before undergoing a 0.5 dropout
rate and are fed into a densely connected layer of 512 units. The
output layer uses a softmax function returning a size-9 vector of
probability scores, each corresponding to a different class and all
adding up to 1. The class with the highest probability is considered
as the predicted class. The network was trained for 400 epochs
with a callback for early stopping when the validation accuracy
did not improve during 20 epochs. Adam optimizer was used with
learning rate 0.001 and categorical crossentropy as loss function.
All the parameters were tested empirically and selected to maxi-
mize accuracy and avoid overfitting. In short, we first set up a
model with a large number of layers. Layers were removed to
reduce overfitting until the accuracy was affected; then dropout



Fig. 1. Implementation of two CNNs for the classification of cellular and caveolar structures. A: Examples of image crops used in the training set. B: Architecture of TEMCell-
CNN. C: Schematic representation of the scan process with TEMCell-CNN prediction on successive crops from an image and resulting pseudo-segmentation. D: Reassignment
of small isolated areas with prediction errors to the surrounding predominant class to improve pseudo-segmentation consistency. E: Delimitation of cytoplasm surfaces by
contact with ECM or LD. F: Classification of cytoplasm surfaces as PM or LD based on surface intricacy and classification of contact areas. G: Example of ECM containing empty
areas and PM and LD classification based on intricacy. H: Manual stitching of an adipocyte section. I: Organization of PM and LD predictions obtained from individual tiles, and
localized in space based on tile coordinates provided by manual stitching. J: Connection of surface segments by proximity and correction of PM and LD predictions based on
the predominant type among the connected surface components. Scale bar: 0.5 lm in C; scale bar 1.5 lm in H.
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was added until we found no overfitting. We varied the learning
rate until we found a range where the network was able to learn
(between 5�10-5 and 5�10-2), and then we completed the training
with several values within that range and selected the one that
provided the maximum accuracy.

A second model (TEMCav-CNN) was created to classify image
crops exclusively on the three caveolar categories. The network
architecture was similar to that of TEMCell-CNN, except that the
output layer was composed of only three units for the three-class
classification (single-pit, cavicle, and rosette), and the RMSProp
optimizer was used with a learning rate of 5�10-4.

2.3.2. Image pseudo-segmentation with TEMCell-CNN scan
2.3.2.1. Scan process. Although TEMCell-CNN model performs clas-
sification of image crops, a pseudo-segmentation of whole TEM
images can be performed by using the model to scan through the
image, classifying image crops at different discrete grid-like posi-
tions. Using a sliding-window approach (with a predefined, user-
modifiable, window size and displacement), image crops are
extracted and classified with TEMCell-CNN (Fig. 1c). If the user
does not define the sliding-window parameters, the tool is able
to provide a recommended sliding window and displacement
based on image scale and typical caveolae diameter. Since the net-
work was trained with 100x100 pixel2 crops, if a different sliding-
window size is selected, crops are reshaped before entering the
network. Model predictions are assigned to the central coordinate
of each crop, providing pseudo-segmentation of cell regions
(Fig. 1c): not only predictions for cellular structures, but informa-
tion about the spatial location within the image. User-defined win-
dows size and displacement parameters allow to control the
density of the grid and, therefore, the pseudo-segmentation
obtained.

A knowledge-based refinement of predictions was later applied
to increase pseudo-segmentation spatial consistency. Most classifi-
cation errors involved small and isolated areas with spurious class
predictions, so they are detected and reclassified to the predomi-
nant surrounding type (Fig. 1d). In order to do this, the tool auto-
matically selects an organelle prediction (mitochondria, ER,
endosome, LD) and associates it with the predictions of the same
class that are within a distance equal to sliding window displace-
ment. Then the process is repeated recursively with all the associ-
ated predictions, until no more are found within the displacement
distance. This defines a class consistent patch with spatial contigu-
ity. If the patch is below a certain threshold (5x average caveolae
area for mitochondria, 3x average caveolae area for ER and endo-
somes, 10x for LD), it is assumed erroneous. In this case, the patch
is reassigned to the class that is predominant among the coordi-
nates in its immediate vicinity (i.e., within a distance equal to slid-
ing window displacement, cytoplasm in the case of Fig. 1c-d). If the
predominant class in the vicinity is caveolae, then it is reassigned
to the cytoplasm class to avoid false positive caveolae predictions.

Finally, predictions of caveolar structures (single-pit, rosette
and cavicle) were merged in a single caveolae category for further
processing. Caveolar probability (Pcaveolae) was calculated as Psingle-
pit + Prosette + Pcavicle and instances where Pcaveolae was higher than
the prediction probability or any other category, were reassigned
to the new caveolae category.

2.3.2.2. Cytoplasm-surface delimitation. Coordinates of cytoplasm-
ECM and cytoplasm-LD contact are found based on pseudo-
segmentation of ECM, LD, and cytoplasm classes (Fig. 1e).
Cytoplasm-ECM contact surfaces would in principle correspond
to PM, while cytoplasm-LD contact regions would be classified as
LD surface. However, cytoplasmic areas in contact with the LD
are frequently classified as ECM, which could lead to errors
(Fig. 1d). Similarly, empty regions in ECM can be indistinguishable
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from LD (Fig. 1g). Interestingly, PM profile tends to show a higher
intricacy, as compared to flatter LD surfaces (Fig. 1g). If cytoplasmic
surface coordinates are fitted to a regression line, a R2 and sum of
squared residuals (SSR) can be obtained as measurement of surface
intricacy, since more intricate surface would show a bad fitting to
the regression line. In cases where a cytoplasmic surface is in con-
tact with regions classified as ECM and LD, the surface with a value
of SSR > 1�106 is classified as PM (Fig. 1g).

Surface classification in individual images can lead to errors,
arising, for example, from the existence of precipitates in the LD
area that can lead to wrong surface delimitation and misclassifica-
tions (Supp. Fig. 1a). A global correction and refinement of classifi-
cation of cytoplasm surfaces can be performed when a series of
overlapping TEM image tiles for a cell section are available
(Fig. 1h). The tool can analyse the tiles individually and later use
global coordinates for each tile to organize and join surface seg-
ments of PM and LD predictions (Fig. 1h). Surface segments are
joined by order of proximity, with a maximum of two connections
per segment, and avoiding connections through cytoplasmic pre-
dictions. Segment surface predictions (PM and LD) are corrected
based on the predominant prediction of the connected surface
components (Fig. 1i-j), resulting on a globally consistent determi-
nation of PM and LD boundaries.
2.3.3. Accurate classification of caveolar structures
To provide caveolar structure recognition with further robust-

ness and consistency, the algorithm automatically corrects and fur-
ther analyses grid-like predictions with information from the
surrounding spatial context. The objective is to better detect cen-
tral positions of caveolae and improve their classification into the
three categories of caveolar structures.
2.3.3.1. Central caveolae coordinate detection. Coordinates with
caveolar predictions are classified in isolated, border, or inner
depending on their number of caveolar coordinate neighbours
(Fig. 2a-c). Isolated caveolar predictions are assumed errors and
removed. Border caveolar predictions that are not in contact with
inner caveolar predictions are also removed for caveolar region
smoothing (Fig. 2c-d). Resulting caveolae predictions are then
aggregated in class-consistent groups of spatial continuity
(Fig. 2e). Because caveolae area ranges are known from the litera-
ture, and the number of caveolar predictions in a group is propor-
tional to its size, some are expected to contain a single caveolae
due to their size (Fig. 2f). In those cases where group size is consis-
tent with both big individual caveolae and small caveolae duplets,
the decision is taken based on circularity. Central coordinates for
individual caveolae can then be easily calculated by averaging x,y
coordinates (Fig. 2g). Average caveolae area in the image is calcu-
lated from groups whose size and circularity are compatible with
individual caveolae. If no individual caveolae are found in the
image, an average value based on reported average caveolae area
is used instead for further processing.

Due to their size, some groups are expected to contain several
caveolae. To find their multiple central caveolar coordinates in
these cases, k-means-based cluster analysis is performed. Based
on group size and the average caveolae area previously calculated
for the image, an estimated value for the k parameter (number of
caveolae) is assigned based on the formula:

k ¼ round 0:44þ 0:66�ng=A
�� �

Where ng refers to group size and A
�
to average caveolar area in

the image. This formula was empirically determined by establish-



Fig. 2. Postprocessing of caveolar predictions obtained from TEMCell-CNN. A-E: The tool scans through TEM images (A) and TEMCell-CNN produces caveolar predictions (B)
that are classified as isolated, border and inner (C) depending on their number of neighbours; coordinates that are not classified as inner, or that are not in direct contact with
them, are then discarded for caveolar region smoothing (D). Caveolar predictions are finally grouped by spatial continuity (E). F: Finding of isolated caveolae (magenta) and
multicaveolar groups (black) based on group area and circularity. G: Central caveolae finding in groups of isolated caveolae. H: Examples of caveolae in TEM images,
evidencing their circular shape, and a low size variability in the same image. Scale bar: 100 nm. I: Caveolar prediction probabilities. J: Representative example of caveolar
centres obtained from sequential implementations of the k-means algorithm and their respective scores. K: Final caveolae centre selection. l: Final clustering of caveolar
predictions, providing a pseudo-segmentation for individual caveolae. M: Final caveolae classification by TEMCav-CNN. Scale bar in F: 0.5 lm; scale bar in H, 100 nm.
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ing a correlation between the real number of caveolae in rosettes of
some example images and the quotient between group size and
estimated caveolae area.

Because caveolar area in the image presents some variability
(Fig. 2h), k+1 and k-1 values are also considered. For each of the
three options (k-1, k, k+1), the clustering approach based on k-
means algorithm is run 10 times, providing a total of 30 sets of
potential cluster centres (due to the stochastic component of the
algorithm). These repetitive runs of the k-means algorithm are per-
formed with the intention of finding an optimal solution.

Because the CNNs were trained with centred caveolae images,
prediction probabilities tend to be higher at caveolae centres. Thus,
cluster centres should ideally fall close to coordinates with high
prediction probability (Fig. 2i). To achieve this, each of the 30 k-
means implementations is run twice: after the first run of k-
means on 2D coordinates, the obtained centres are used to initiate
a second k-means that weights each point proportionally to its
caveolar prediction probability (round(-log(1-Pcaveolae)) times).
This process intends to increase the probability of cluster centres
falling near a real caveolae centre (Supp. Fig. 1b).

To decide the optimal solution among the resulting 30 sets of
centres, every set of centres (and corresponding clusters) is pro-
vided with a score composed of five components:

Score = circularity – size variability + certainty – distance to
border + centre colour intensity.

1- Circularity: caveolae tend to be highly circular (Fig. 2h), and
thus circular clusters are favoured. For each cluster c in k,
circularity is defined for every cluster as nc

bcð Þ2, where nc equals

the number of points assigned to cluster c, and bc equals the
number of cluster points classified as border (Fig. 2c). The
median of the circularity of the k clusters is then obtained
for each iteration of the k-means.

2- Size variability: caveolae size may vary significantly in dif-
ferent cells, but caveolae in the same image tend to have
very similar area (Fig. 2h). Thus, clusters with caveolae of
similar size are favoured. Size variability is defined asffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPk

c¼1
nc�n

�ð Þ2
k�1

r
, where k equals total number of clusters; nc

equals size of cluster c, and n
�
is the average size for the k

clusters.
3- Certainty: because the CNN was trained with centred caveo-

lae images, prediction probabilities tend to be higher at
caveolae centres. Thus, centres falling close to coordinates
with high prediction probability are favoured (Fig. 2i, j). To
obtain the certainty parameter for a cluster, we first obtain
the prediction probability of all m caveolar predictions of
the group within a distance of (2�displacement) pixels to
the cluster centre. Certainty is then obtained with the
expression:

Pm
i¼1 � logð1� P caveolaeð ÞiÞ where m is the

number of caveolar predictions within a 2�displacement dis-
tance of the cluster centre, and P caveolaeð Þi is the probability
of every caveolar prediction. Median cluster certainty for the
k clusters of a group is then obtained.

4- Distance to border: centres falling close to caveolar predic-
tions classified as border are penalized (Fig. 2c). This param-

eter is defined as
Pk

c¼1
b0c

k , where b0c is the number of border
caveolae predictions within a (short) distance of displace-
ment + 1 pixels to the centre of cluster c and k is the number
of clusters.

5- Colour intensity: most caveolae tend to be lighter in the cen-
tre in TEM images (Fig. 2h). Thus, centres falling in dark
regions are penalized. For every cluster, a 148x148 nm2

matrix M is obtained as a subset of the whole image matrix,
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centred in the cluster centre coordinates. A distance matrix
D is obtained with the distance of every element of M to
the cluster centre. The colour intensities in M are then
weighted by their distances to the centre obtained in

D:
P100
i¼1

P100
j¼1

mij

0:1þ2�dij , where mij refers an element of the ith row

and jth column of M and dij refers to an element of the ith
row and jth column of D. Median colour intensity for the k
clusters of a group is then obtained.

6- Prior to the computation of the score, every component of
the score is normalized to its maximum value obtained dur-
ing the 30 k-means implementations. The k option that
achieves highest sum of scores is selected and, among its
10 implementations, the centre configuration that maxi-
mizes the score is chosen (Fig. 2j-l).

2.3.3.2. Refined classification of caveolar structures. To improve the
initial classification of caveolar regions obtained with the scan
approach using TEMCell-CNN, the specialized TEMCav-CNN model
for classification of caveolar structures (single-pit, rosettes, and
cavicles) is automatically applied to 148x148 nm2 crops centred
at individual caveolae centres found in the previous section
(Fig. 2k, l). Because the definition of a rosette is a caveolae cluster,
all caveolae coming from groups of two or more caveolae (k > 1)
are classified as rosettes. A predefined, user-modifiable confidence
parameter excludes predictions under a probability threshold,
eliminating some erroneous caveolae predictions (Fig. 2m, arrow-
heads in Fig. 2l).

Since PM and LD surfaces were properly delimited from the
pseudo-segmentation obtained with TEMCell-CNN model (section
2.3.2.2), information about caveolar distance to periphery can be
exploited. Single-pit predictions farther than 150 nm from the
PM are automatically deemed erroneous and reassigned to the sec-
ond most likely class (Fig. 3a-c). The subtool is also able to calcu-
late PM-LD distance through caveolar coordinates in an
automated manner, which can be useful for further spatial caveo-
lae analysis (Fig. 3b). All refinement and postprocessing steps are
performed in the same run as cell pseudosegmentation and caveo-
lae detection, without need of further user input.
3. Results

3.1. TEMCell-CNN correctly classifies most cellular structures

TEMCell-CNN model was trained to classify TEM image crops in
9 categories (LD, ECM, cytoplasm, mitochondria, ER, endosomes,
and three caveolar structures: single-pits, rosettes, and cavicles)
using 36,000 crop images including test, training and validation
sets (Supp. Fig. 1c). Defining accuracy as the percentage of cor-
rectly classified instances, the test set reached a global accuracy
of 83.84 %, with most of the confusion involving wrong caveolar
classification (Fig. 3d). However, the network showed a high ability
to discriminate between caveolar vs non-caveolar structures,
reaching a 97.44 % caveolae/non-caveolae classification accuracy.
Caveolae/non-caveolae classification accuracy was calculated by
adding the number of caveolae classified as cavicle, rosette or
single-pit, plus the number of non-caveolaer structures (LD, ECM,
cytoplasm, ER, mitochondria or endosomes) that are classified as
any non-caveolar class, and dividing this sum by the number of
total instances. A complete list of evaluation metrics can be found
in Supplementary Table 1.

Most classification errors occur among caveolar categories,
achieving a 67,3% of classification accuracy (Fig. 3d). A possibility
is that this confusion derives from the high number of categories



Fig. 3. Further caveolae classification refinementand tool validation inadipocytes. A: TEMCav-CNNpredictions are sometimesobviously erroneous, finding somesingle-pit caveolae
inregionsdistant fromthePM.B:SincePMandLDaredelimited, caveolar distance fromthesesurfaces canbeobtained.C:Single-pitpredictions located far fromthePMare reassigned
to the secondmost probable caveolar type. D: Confusionmatrix for the test set of TEMCell-CNN. E: Confusionmatrix for the test set of TEMCav-CNN. F: Total caveolae counts for the
whole adipocyte section on Fig. 1g. The table includes counts from one human (Human1) at two different time points (t1 and t2, where t2-t1 > 10 months) and a second human
(Human2), as compared with the model. G: Representative results for the adipocyte section on Fig. 1h, showing comparable caveolae localization by Human1 and the model. H:
Correlationofcaveolaetotalcountsprovidedbythemodelandahumanexpert in100independentimagetiles fromdifferentcellsorcellular locations forcontrol (yellow)and40image
tiles fromcaveolae-depletedcells (pink). I:Correlationofcaveolae total countsprovidedby twodifferenthumanexperts. J: Final caveolaedetection inCav1+/+ (left) andCav1-/- (right)
adipocytes frommouse epidydimal tissue. Scale bar: 0.5 lm.

María C.M. Aboy-Pardal, D. Jimenez-Carretero, S. Terrés-Domínguez et al. Computational and Structural Biotechnology Journal 21 (2023) 224–237

230



María C.M. Aboy-Pardal, D. Jimenez-Carretero, S. Terrés-Domínguez et al. Computational and Structural Biotechnology Journal 21 (2023) 224–237
included, and thus accuracy could be improved with a more spe-
cialized model. To test this possibility, we trained a second model
exclusively on the three caveolar categories using the same data,
TEMCav-CNN, reaching a slight improvement on test set accuracy
of 71.27 % (Fig. 3e), but supporting the need of refinements and a
specialized, automated downstream analysis of caveolar structures
to improve their final classification. See Supp. Table 1 for a full
evaluation of both models.

In order to achieve some explicability for the predictions our
neural networks, we used Gradient-weighted Class Activation
Mapping (Grad-CAM [36]) (Supp. Fig. 1d,e). This approach pro-
duces localization maps highlighting the regions of the image that
are important for class prediction. Some patters can be recognized
in Grad-CAM maps: for the case of single-pits, the four convolu-
tional layers of TEMCell-CNN focus on caveolae membrane, partic-
ularly at the region of the neck and the surrounding flat membrane,
while the vesicle interior produces negative output values, partic-
ularly in the fourth convolutional layer. In the case of rosettes, both
caveolae membrane and inner regions appear highlighted, while in
the case of cavicles, caveolae borders and surrounding areas pro-
duce the more positive values. LD crops show sparse highlights
through the whole crop area and, for the rest of the categories,
highlights coincide with relevant aspects of the image (collagen
fibers for ECM, ribosomes for cytoplasm, cisternae borders for ER,
mitochondrion double-membrane and endosome membrane).
Some patterns are also observable in TEMCav-CNN Grad-CAM
maps, which focus on neck regions for single pits and rosettes, as
well as cavicle borders and surrounding areas.

3.2. Whole image scan with TEMCell-CNN provides consistent pseudo-
segmentations

The TEMCell-CNN model performs classification of image crops,
while our objective remains on the more complex spatial localiza-
tion of caveolar and cell structures in full TEM images and large
reconstructions of them. First, to transform classification labels
into spatial data, the tool scans through the image using a
sliding-window approach, extracting crops with a user-defined
window size and displacement (Fig. 1c). Crops were then fed to
the TEMCell-CNN model to obtain predictions. Because the net-
work shows a higher than expected confusion among caveolar
types, single-pit, rosette and cavicle predictions were merged in
a single caveolae category for further processing and advanced
reclassification using the TEMCav-CNN model. Model predictions
of final 7 categories are assigned to the central coordinate of each
crop, providing a pseudo-segmentation of cell regions (Fig. 1c).

The sliding window approach was successful, specially to differ-
entiate between caveolar and non caveolar regions (Fig. 1d). We
have obtained optimum results using a 70x70 pixel2 sliding win-
dow size and 10 pixel displacement for 1024x1024 pixel2 images
of 1.478 nm pixel size (Supp. Fig. 2). These predefined parameters
may need adjustment depending on expected caveolae size. A
higher dimension for the sliding windowmay cause merging of dif-
ferent class-consistent caveolar groups, and thus complicate
downstream cluster analysis and caveolar centre finding (Supp.
Fig. 2). Higher values for sliding window displacement may lead
to insufficient resolution for caveolar area delimitation, and lower
values involve an increase in processing time with small benefit.
Supp. Fig. 2 displays an example of results obtained with different
set-ups for the sliding-window approach.

Initial predictions contained isolated areas of clearly erroneous
patches that were corrected (Fig. 1c, d) after consistency-based
reclassification. Coordinates of plasma membrane (PM,
Cytoplasm-ECM contact regions) and LD surface (cytoplasm-LD
contact regions) were detected and annotated automatically (Fig. 1-
e-f). In large reconstructions of adipocyte sections, a final global
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classification refinement of PM and LD surfaces was applied by
ensuring consistency in the set of TEM image tiles corresponding
to the same cell (Fig. 1h-j). Detailed information about these cor-
rections and refinements driven by the consistency of spatial con-
text can be found in Materials and Methods section. Results
(Fig. 1d) display good predictions of caveolar structures and accu-
rate pseudo-segmentations of these specially challenging TEM
images.

Consistent with the fact that caveolae image crops used for the
training were centred in caveolae, caveolae prediction probabilities
tended to be higher when the crop resulting from the sliding-
windowwas centred at caveolae (Fig. 2i,k). On the contrary, predic-
tion probability was lower and entropy higher at caveolae borders
(Fig. 2k, Supp. Fig. 3a,b), indicating a higher uncertainty.

3.3. Improved detection of caveolar structures is comparable to experts
in adipocytes

To improve results of classification into the three caveolar cat-
egories obtained with TEMCell-CNN and TEMCav-CNN models,
additional automatic downstream analysis was developed to refine
both detection of caveolar locations and their classification, by
using information from the surrounding spatial context, increasing
robustness and consistency of results.

First, grid-like coordinates of caveolar predictions obtained with
TEMCell-CNN model were cleaned and grouped spatially, repre-
senting individual or clustered caveolae (Fig. 2a-f). Cluster analysis
was performed in these class-consistent caveolar groups in order
to locate caveolar central coordinates, using a score based on bio-
logical characteristics of caveolae that also select the correct num-
ber of cluster elements (caveolae) in each group (Fig. 2j-k).
Additionally, pseudosegmentation for individual caveolae is
obtained (Fig. 2l).

TEMCav-CNN model was used to classify these caveolar central
coordinates (Fig. 2m) in the three categories (single-pit, cavicle,
and rosette). To further increase accuracy in caveolae classification,
contextual spatial information was again taken into account,
reclassifying caveolar clusters to the rosette category, and using
distance to PM to refine single-pit category assignations (Fig. 3a-
c). The result is a set of coordinates representing central locations
of caveolae, which can be used to quantify abundances for each
caveolar category.

In a reconstructed section of a whole cell (Fig. 1f,g), the model
provided total caveolae counts that were within the range of vari-
ability of different human observers (Fig. 3f), and successfully
located caveolae centres, with a performance comparable to
human manual caveolae localization (Fig. 3g). Despite the stochas-
tic initiation of the k-means algorithm, we find consistent results
in several runs of analysis of the same section, obtaining only
minor variations in rosette counts (Supp. Table 2). Some discrep-
ancy is expected between model and human counts, since TEM
images are sometimes ambiguous and human observers also show
some level of disagreement in caveolae classification (Supp.
Fig. 3c). When run on image tiles from adipocytes that were inde-
pendent from the training set, the model predicted caveolae num-
bers that were highly correlated to those obtained by human
manual count (Fig. 3h), showing some dispersion that was
expected, since there is also some level of discrepancy among
two independent human observers (Fig. 3i). To further demon-
strate the performance of the tool, images of Cav1-/- caveolae
depleted cells were also evaluated. Contrary to human observers,
the model predicted a small but positive amount of caveolae in
Cav1-/- cells (Fig. 3h, i). This is probably caused by the presence
of a high number of vesicles and organelles in the cytoplasm of
caveolae depleted cells (Fig. 3j), in contrast with the highly uniform
cytoplasm of the controls. Despite of this, the model was able to
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find a drastic reduction in caveolae numbers in Cav1-/-, similar to
human manual count (Fig. 3h, i). Regarding the performance of the
model for caveolae classification, we obtained a low agreement
between model and human, especially for single-pits, that are very
often misclassified (Supp. Fig. 3d-f). A big disagreement can be
found also for two different human observers, although in this case
the class with the highest disagreement was rosettes (Supp. Fig. 3-
g-i), likely due to image ambiguity, such as in the example in Supp.
Fig. 3c. An example of disagreement between human and model
single-pit localization is included in Supp. Fig. 3j-k. In this example,
the model was able to properly localize caveolae, but most single-
pits are misclassified as rosettes. This happens with all the single-
pits that are in close vicinity to other single-pits, while the one that
is more isolated at the right corner is properly classified. Indeed,
we found other examples where the single-pit category is properly
assigned when caveolae are sparser (Supp. Fig. 3l), probably indi-
cating that the tool tends to classify caveolae as rosettes when they
are tightly packed together. Other possible errors in caveolae clas-
sification may arise in cases of incorrect surface delimitation, that
may lead to reclassification of single-pits when a long caveolae-PM
distance is obtained (Supp. Fig. 3m). Another possible source of
error is that unusual, elongated caveolae morphologies are pre-
dicted at lower probability, and thus are disregarded when increas-
ing the confidence threshold (Supp. Fig. 3n).

3.4. The tool performs well in endothelial cells but provides poor
results in human skin fibroblasts.

Regarding caveolae total counts, the performance of the tool in
endothelial cells is similar to the performance in adipocytes
(Fig. 4a). However, similarly to what we found for adipocytes, the
performance is lower in the case of caveolae classification (Fig. 4
b-d). A known source of error is the occasional incorrect estimation
of average caveolae area, which may lead to an incorrect estima-
tion of the k parameter to calculate the number of caveolae con-
tained in a cluster. If estimated average caveolae area is small,
total caveolae counts can be overestimated (Fig. 4 e), even when
caveolar area was perfectly segmented (Fig. 4f). Another source
of error is the inability of the tool to detect the basement mem-
brane, which is not present in the adipocytes for which it was
designed. This impedes single pit localization at this membrane
(Fig. 4e, g). However, the luminal PM is correctly delimited.
Although the tool was designed to differentiate between PM and
LD, a parameter indicating if the LD is expected can be modified
so any cytoplasmic surface will be assigned as PM, thus avoiding
unnecessary errors.

Despite known errors and the evident need to readjust the tool
to the particularities of this cell type, several examples show a very
promising performance (Fig. 4h-j).

Images of human skin fibroblasts showed a number of chal-
lenges that diminish the performance of the tool, but open new
opportunities to understand and improve its applicability. These
cells show a much lower spatial density of caveolae, and a higher
proportion of single pits (Fig. 5). They also show no big LDs as
opposed to adipocytes, and their ECM is less evident, often not
even observable. To adapt the tool to this situation, we performed
the following adjustments: 1) we eliminated the steps needed to
differentiate between PM and LD, as in the case of endothelial cells
and, thus, all cytoplasmic surfaces were assigned to PM; 2) caveo-
lae belonging to a cluster were only reassigned to the rosette type
if they were not classified as single-pits by TEMCav-CNN.

Another limitation that we found is that these cells have a high
cytoplasmic content and a high proportion of organelles. This is a
source for error that diminishes the performance of the tool, even
when caveolae were almost perfectly localized (Fig. 5a). In this
case, a high number of caveolar predictions are assigned to ER
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membranes and intracellular membranes, indicating that the tool
likely needs retraining with image crops from the cytoplasm of
these cells. This did not happen always, and most image tiles show
no incorrect predictions even in the presence of large amounts of
ER and nucleus (Fig. 5b).

The tool also misses a significant amount of caveolae, and some
are misclassified as ER (Fig. 5 c,d). This reaffirms the need for speci-
fic retraining (or transfer learning) for this cell line. Despite the evi-
dent errors, the tool is able to see a slight reduction in caveolae
numbers as a result of 10 min of hypoosmotic treatment (1/10
dilution of DMEM), as shown in Fig. 5 e,f, Fig. 6a. This difference
was particular to the cavicle type (Fig. 6a) which is a clear disagree-
ment with the results obtained by human experts (Fig. 6b), which
demonstrate that the rosette class is the most affected by the
hypoosmotic shock [31]. This demonstrates again that the tool per-
formance is more reliable for caveolae localization and counting
than for caveolae classification. Total human and tool counts are
correlated, but the underestimation of caveolae numbers by the
tool is evident, as well as some instances of erroneously high
counts corresponding to false positives throughout cytoplasmic
organelles (Fig. 6c, Fig. 5a). The discrepancy is also high between
tool and human expert for the different caveolae classes (Fig. 6c).
Thus, the tool is not reliable at this step for caveolae analysis in
human skin fibroblasts, and needs further adjustment and retrain-
ing for this cell line.
4. Discussion

TEM provides complicated images that are often analysed man-
ually, involving a considerable amount of repetitive and tedious
work, which limits throughput and reproducibility. Thus, there is
a need for new approaches on automated image analysis centred
on TEM, which would be relevant for the study of nanoscopic cel-
lular structures such as caveolae.

Here, we generated a training set with numerous caveolae
images and trained a convolutional neural network that can differ-
entiate them from different cytosolic structures present in adipo-
cytes, thus potentially replacing the tedious manual work that is
currently needed to locate caveolae in TEM images. As a result,
we provide a new tool for the automated quantification of caveolae
and cytoplasmic boundaries, with possible applications for the
study of plasma membrane mechanical dynamics.

The tool is designed to work automatically, and it is able to esti-
mate optimal sliding window parameters based on reported cave-
olae size from the literature and image scale from metadata (if
available). Only minimal user input is needed when the use of
non-default parameters is preferable. However, some optimization
is recommended in a subset of images to ensure acceptable perfor-
mance. The user can specify the image scale and tune sliding win-
dow parameters and/or expected caveolae size ranges, set a
confidence threshold (minimum caveolae prediction probability
required), or modify the estimated average caveolae area for k esti-
mation during cluster analysis. The user can also specify if a LD
droplet is expected, if they want caveolae distances to PM and
LD calculated, or if they want clustered caveolae to be reassigned
as rosettes despite TEMCav-CNN predictions. A full manual with
troubleshooting suggestions is available at https://github.com/
MariaAboy/DLCaveolae.

We acknowledge that this tool may present several limitations.
First of all, this tool is designed for unlabelled TEM images, and we
don’t expect it to perform well in other EM techniques. Impor-
tantly, caveolae identification and classification in unlabelled
TEM images is a challenging and subjective task with significant
variation among human observers. Immunogold labelling of cave-
olar components could increase the certainty of caveolae classifica-

https://github.com/MariaAboy/DLCaveolae
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Fig. 4. Tool performance in endothelial cells from mouse aorta. A: Correlation of caveolae total counts provided by the model and a human expert. B: Correlation of single-pit
counts provided by the model and a human expert. C: Correlation of rosette counts provided by the model and a human expert. D: Correlation of cavicle counts provided by
the model and a human expert. E: Example of caveolae localization provided by the model, showing an excess of caveolae coordinates. F: Example of correct caveolae area
pseudo-segmentation by the tool. G: Caveolae localization by a human expert in the same image. H: Example of successful caveolae localization provided by the model. I:
Correct pseudosegmentation of caveolae regions by the tool in the same image. J: Caveolae localization by a human expert in the same image.
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tion, but would in turn impact sample preservation and render
images with lower contrast. Unlabelled, conventional TEM thus
provides the highest resolution for caveolae structures and is com-
monly used for caveolar structure classification.

Caveolae TEM images can sometimes be ambiguous and this
tool will be affected by all the limitations of TEM imaging. For
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example, cavicles may seem detached from the cell surface in 2D
sections, but in fact be connected with other caveolae or with
the cell surface at another level. Indeed, the number of true cavi-
cles may be significantly lower than we could initially assume by
observing 2D sections, and most of them could actually be
single-pits or rosettes whose connections do not appear in the sec-



Fig. 5. Tool performance in human skin fibroblasts. A: Evidence of false positive caveolae localization in ER areas. B: Example of correct caveolae localization with no evident
false positive localization. C: Example of insufficient caveolae localization, with evident false negative instances. D: Example of incorrect detection of caveolae areas as ER in
the same image as in C. E: Representative example of caveolae detection in a isosmotic control. F: Representative example of caveolae detection in a fibroblasts treated with
hypoosmotic media.
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Fig. 6. Quantification of tool performance in human skin fibroblasts. A: Model counts of total caveolae and different caveolae classes in isosmotic and hypoosmotic
conditions. B: Human expert counts of total caveolae and different caveolae classes in isosmotic and hypoosmotic conditions. C: Correlation of model and human expert
counts for total caveolae and different caveolae classes.
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tion, as it has been shown previously by other authors
[31,32,37,38].

Important to note also is that the cluster analysis approach to
find caveolae centres can have some limitations. When there are
several caveolae clustered together, there is chance for several
sources of error; for example, caveolae area is assumed to be con-
stant in the image, but some variability exists. A prediction group
where some caveolae are smaller than estimated can result in
some caveolae being missed because the algorithm seeks for a
number of clusters that is smaller than the real caveolae number.
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The same way, if a prediction group is composed by caveolae that
are bigger than average, it can result in overestimation of caveolae
numbers and some caveolae being located twice. Another limita-
tion of this approach is that, if caveolae cluster centres are not
properly localized because the solution found by the k-means is
suboptimal, then the crop that is obtained to reclassify caveolae
may be not centred and thus the prediction probability may be
low. Also, caveolae classification may be impaired if, for example,
the uncentered crop does not include existing caveolae necks or
connections.
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There is also a possible downside to classifying all clustered
caveolae as rosettes. This approach compensates the tendency of
TEMCav-CNN to erroneously classify a significant proportion of
rosettes as cavicles (Fig. 3e), but it may lead to the wrong classifi-
cation of individual single pits that are too close to each other to be
found separately (Supp. Fig. 3j). This effect will be more important
the bigger the sliding window size. Also, by design of the training
set, all clustered caveolae are assigned to the rosette category, and
the tool is unable to differentiate other caveolar clustered struc-
tures or elongated tubules.

Also of note, the approach we have presented demands a high
spatial consistency to consider caveolae predictions as reliable.
Discarding isolated caveolae predictions as in Fig. 2a-e requires
that a caveolae is detected several consecutive times to be consid-
ered for downstream analysis. This is required to ensure that the
tool is robust and the false positives are kept to a minimum, but
can lead to some undetected caveolae.

Another important limitation is that this tool has been opti-
mized solely in TEM images from adipocytes. Although we showed
a satisfactory performance also in endothelial cells, further testing
is needed to assess applicability to different cell types, which may
need retraining, especially in the presence of staining artefacts or
cellular structures that are uncommon in adipocytes and have
not been included in the training. This is the case of skin fibrob-
lasts, where the tool could detect a reduction in caveolae counts
as a result of hypoosmotic treatment, but would need retraining
and significant adjustments to provide better, more reliable
results. The tool is also unable to recognize nuclei, and mostly clas-
sifies nuclear regions as cytoplasm or mitochondria (Supp. Fig. 4).
Also, the tool provides caveolae counts per tile, and cell surface
reconstruction has been optimized for images with a single adipo-
cyte (Fig. 1h-j). Future work will focus on providing caveolae
counts per cell within each tile, and exploring cell surface recon-
struction in sections with several adipocytes.

The tool was also optimized in images with a pixel size of
1.478 nm, and, although it is able to provide a recommended slid-
ing window size and displacement depending on the scale, some
adjustment of sliding window parameters may be needed in the
case of caveolae with diameters outside the 50–80 nm range.
Importantly, in the case of caveolae-depleted adipocytes, the tool
finds a significant amount of erroneous caveolae. This is probably
due to the particular structure of Cav1-/- cytoplasm, that shows
an increased density of vesicles and organelles as compared to con-
trol cells. Thus, the tool may perform badly on cells that show a
high density of non-caveolar vesicles, and will likely be unable to
differentiate between caveolae and other non-caveolar vesicles
that have not been included in the training. Because the tool has
not been trained in non-caveolar vesicles like clathrin coated pits,
we don’t expect it to be able to differentiate them from caveolae,
especially in cases when their size is similar. This could also lead
to false positive caveolae detections.

Another limitation of the tool is the slow sliding-window
approach, since the R script is unable to automatically process sev-
eral images in parallel. Processing of a single 1024x1024 pixel2

image with a window displacement of 10 pixels in a i7 2.7–
3.6 GHz processor can take up to 12 min, although several images
can be run in parallel in different R sessions. Decreasing the sliding
window parameter leads to a quadratic increase in the number of
predictions, thus leading to an equivalent increase in processing
time.

In conclusion, we have presented a new tool for automated
caveolae detection in TEM images, aiming to facilitate the detailed
study of PM ultrastructure. This work also opens new possibilities
for the automated recognition of different cellular structures,
including caveolae, ER, mitochondria and endosomes.
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