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Fractal Geometry-Based Decrease in Trimethoprim-
Sulfamethoxazole Concentrations in Overweight and
Obese People

RG Hall 2nd1, JG Pasipanodya2, C Meek1, RD Leff1, M Swancutt3 and T Gumbo2,4*

Trimethoprim-sulfamethoxazole (TMP-SMX) is one of the most widely drugs on earth. The World Health Organization
recommends it as an essential basic drug for all healthcare systems. Dosing is inconsistently based on weight, assuming
linear relationships. Given that obesity is now a global ‘‘pandemic’’ it is vital that we evaluate the effect of obesity on
trimethoprim-sulfamethoxazole concentrations. We conducted a prospective clinical experiment based on optimized design
strategies and artificial intelligence algorithms and found that weight and body mass index (BMI) had a profound effect on
drug clearance and volume of distribution, and followed nonlinear fractal geometry-based relationships. The findings were
confirmed by demonstrating decreased TMP-SMX peak and area under the concentration-time curves in overweight patients
based on standard regression statistics. The nonlinear relationships can now be used to identify new TMP-SMX doses in
overweight and obese patients for each of the infections caused by the >60 pathogens for which the drug is indicated.
CPT Pharmacometrics Syst. Pharmacol. (2016) 5, 674–681; doi:10.1002/psp4.12146; published online 21 November 2016.

Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
� There are no data describing the PKs of TMP-SMX

in obese people.
WHAT QUESTION DOES THIS STUDY ADDRESS?
� The impact of body size on the TMP-SMX concen-

trations and PK parameters.
WHAT THIS STUDY ADDS TO OUR KNOWLEDGE
� This study provides evidence that weight has a pro-

found effect on TMP-SMX clearance and volume of dis-

tribution, based on nonlinear fractal geometry-based

relationships. Second, it demonstrates the use of smaller

clinical study populations based on optimal design and
AI algorithms to identify complex clinical predictors.
HOW MIGHT THIS CHANGE DRUG DISCOVERY,
DEVELOPMENT, AND/OR THERAPEUTICS?
� The use of AI requires much smaller patient sample
sizes to identify important PK parameters for drug
development and therapeutic studies than currently
used in the field. Second, new TMP-SMX doses may
need to be increased for treatment of many infections
in overweight and obese patients.

Trimethoprim/sulfamethoxazole (TMP-SMX) is commonly

used worldwide to treat infections caused by up to 60 differ-

ent bacterial, protozoal, and fungal species. Consequently,

it is perhaps the most widely prescribed antibiotic in the

world. As an example, it is recommended by the World

Health Organization as one of the essential basic drugs for

any healthcare system.1 The current dose recommenda-

tions for TMP-SMX were established based on studies in

children and then extrapolated to the adult population.2,3

Pharmacokinetic (PK) studies using noncompartmental

techniques in immunocompromised and critically ill patients

have largely supported the same dosing regimen.4 The rec-

ommended dose has been capped at 100 mg/kg for sulfa-

methoxazole and 20 mg/kg for trimethoprim, based on a

patient’s total body weight (TBW). The underlying assump-

tions were that of a linear relationship among ideal body

weight (IBW), TBW, and PK parameters, such as drug elim-

ination and volume of distribution.5,6 These assumptions

were never formally tested for either drug in the combina-

tion and have been in use for more than 5 decades. The

matter is now pressing because the population of the planet

is now predominantly overweight and obese.7,8 As an

example, two of every three patients are either overweight

or obese in the United States. In Polynesian countries,

such as Tonga and Samoa, 90% of adults are obese,

whereas in Middle Eastern countries, such as Egypt, 70%

of women are obese.9 TMP-SMX is already being exten-

sively used in these populations. Here, we performed a pro-

spective clinical experiment to identify the effect of obesity

on TMP-SMX.
To date, we have examined up to eight antibiotics in

carefully planned clinical experiments. In each single case,
obesity was associated with changes in clearance and vol-
ume, which means that heavier patients achieved lower
drug concentrations than leaner ones even when the same
dose in milligram/kilogram was administered.10 The second
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emerging theme has been the relationship between such
factors as clearance and volume to the fractal geometry of
patients, in contradistinction to the idea of linear relation-
ships between weight and xenobiotic metabolism or volume
of distribution.11–15 In a bid to eliminate bias (i.e., one to
find a relationship of weight to xenobiotic metabolism and
volume of distribution), we have switched our analyses to
agnostic machine learning or artificial intelligence (AI) algo-
rithms. With this approach, all clinical parameters, including
clinical chemistry results, demographics, physical examina-
tion findings and characteristics, comorbidities, weight mea-
sures (including IBW and TBW), height, body mass index
(BMI), and body surface area (BSA), are examined as
potential predictors of measures of drug elimination and
volume in one model. We let the unbiased algorithms select
and rank those significant factors that truly drive these PK
parameters in order of importance, without the modeler tip-
ping the scale in favor of their favorite covariate. We have
previously used multiple adaptive regression splines
(MARS) and Random Forests, including their forebear, clas-
sification and regression trees, for identifying and ranking
covariates in PK and pharmacodynamic (PD) modelling
exercises, and each time these approaches have outper-
formed the previously recommended industry standards
based on parametric approaches and frequentist statis-
tics.16–23 The philosophy underlying all these AI methods is
model prediction. Because they are distribution and
assumption-free, they test many important but collinear var-
iables in simultaneous models, as are, for example, mea-
sures of weight, they also test nonlinear and high-order
interactions, not possible with standard PK approaches and
software.24 Importantly, they do not assume what the struc-
ture of the covariate should be like.

MARS, which was first introduced by Jerome Friedman19

in 1991, is an AI algorithm that combines adaptive recur-

sive partitioning and spline-fitting procedures in a manner

that retains the positive aspects of both procedures in one

algorithm. This makes MARS suitable for simultaneous

analysis of linear, nonlinear, and highly dimensional inputs.

Here, we used MARS, together with experimental study

design, to examine nonlinear relationships between weight

and clearance and volume of TMP-SMX in obese subjects.

METHODS
Study design and setting
This study was approved by the Institutional Review Boards

of the University of Texas Southwestern Medical Center

(042010-069) and Texas Tech University Health Sciences

Center (A10-3592). The study was registered at clinical-

trials.gov on July 20, 2010 (ClinicalTrials.gov identifier:

NCT01167452). We recruited healthy people 18 years of

age or older without ear infections, urinary tract infections,

bronchitis, traveler’s diarrhea, Pneumocystis carinii pneu-

monia, or any other bacterial infection to determine study

eligibility.
We designed a clinical experiment in which we recruited

and admitted 36 healthy adults distributed equally into the

following BMI categories: <25 kg/m2, 25–40 kg/m2, and

>40 kg/m2. Twelve volunteers with BMI <25 kg/m2, or 25–

40 kg/m2, or >40 kg/m2 were recruited. Each BMI group

had 50% women and 50% men. People who were interest-

ed in the study were consented at the University of Texas

Southwestern Clinical and Translational Research Center.

People who were pregnant, had abnormal liver function

tests (transaminases >10 times upper limit of normal, alka-

line phosphatase >5 times upper limit of normal, total biliru-

bin >5 times upper limit of normal, or history of allergy to

sulfones, sulfonamides, or trimethoprim were excluded from

study participation. People with a history of colon resection,

gastric bypass, lap band, or any other condition that inhibits

gastric absorption were not allowed to participate in the

study. People who provided a signed informed consent, and

were deemed eligible after a screening visit, were sched-

uled for admission in the University of Texas Southwestern

Clinical and Translational Research Center for an overnight

stay. Each person received a single supervised oral dose of

TMP-SMX (1600 mg/320 mg) under supervision of both the

study nurse and physician in the Pharmacology Unit. Blood

was drawn via an intravenous catheter just prior to the

dose, and then at 1, 2, 4, 8, 12, and 24 hours after the

drug dose. The seven different time points over 24 hours

were chosen based on optimal sampling theory.25,26 The

intravenous catheter was removed after the 24-hour blood

draw, and the person was discharged from the study.

Drug assay
A robust liquid chromatography tandem mass spectrometry

method for the analysis of TMP-SMX, sulfamethazine con-

tent in plasma was developed and validated. Each 100 mL

plasma sample was spiked with 100 mL of internal standard

and protein was precipitated from the mixture using a

500 mL mixture of acetonitrile:methanol (80:20). The super-

natant was removed, evaporated to dryness, and reconsti-

tuted with 100 uL of methanol:deionized water (50:50).

Constituents of a 10-mL injection volume were separated

using a gradient elution and Kinetex column (2.6 m, penta-

fluorophenyl 150 3 2.1 mm), and eluted using a gradient

mobile phase (0.1% formic acid in deionized water:0.1%

formic acid in methanol) at 0.25 mL/min. The total sample

run time was 23.5 minutes; 10.5 minutes for sample sepa-

ration and 13 minutes for equilibration. The precursor to

product ions were detected using electrospray ionization-

tandem mass spectrometry in the positive ion mode with

multiple reaction monitoring (trimethoprim, 291.1!230.0

and sulfamethoxazole, 253.9!156.0). The calibration curve

was linear (r 5 0.9990) with a 1 ng/mL lower limit of quanti-

fication and 1,500 ng/mL upper limit of quantification. Total

analytical variation was <5% relative SD; intra-day and

inter-day precision and accuracy were <5% relative SD.

PK modeling
We comodeled all 252 concentrations of either TMP

or SMX using the ADAPT 5 program of D’Argenio et al.,27

and explored a one, two, and three-compartment model

with first-order input and elimination, by implementing

the maximum-likelihood solution via the expectation-

maximization algorithm.26,27 The best number of compart-

ments was chosen using Akaike Information Criteria,
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Bayesian Information Criteria, and rules of parsimony

(Occam’s razor).28,29

MARS analysis
MARS builds piecewise general additive models that

describe nonlinear relationships between the target

response and dependent variables allowing for simulta-

neous interactions between the covariates to change the

slope between the target response and each variable using

basis functions (BFs) defined within the dataspace. By

means of knots or hinges for continuous variables or select-

ed groups for ordinal or categorical variables, the BF

essentially uses internal heuristics based on the data to

build models. BFs that minimize mean squared errors are

retained in a backward step elimination process. Because

the MARS heuristic procedures are rooted in information

theory, the BF knots define thresholds, which have been

found to be physiologically meaningful in some of our prior

work. Separate models were explored for each of the fol-

lowing dependent variables: volume, absorption constant,

and elimination constant. The covariates included in each

model were the following: self-identified race, ethnic group,

comorbid conditions, age, gender, height, weight, IBW,

TBW, lean body weight, BSA, BMI, alanine aminotransfer-

ase (ALT), aspartate aminotransferase (AST), blood urea

nitrogen levels, calculated creatinine clearance, and serum

creatinine concentration. Because the MARS algorithms

are inherently resistant to collinearity, have the ability to

rank variable importance, and can assign surrogates for

missing data, we examined models that included the mea-

sured height and weight, as well as calculated values from

these, such as BMI, BSA, and IBW, in addition to the height

and weight variables. The reason was to determine the

best predictor for PK parameters, including those commonly

used measures of patient’s weight and metabolic function:

each measure would be chosen in its own merit agnosti-

cally if it was good predictor. We used both the V-fold

cross-validation procedure and the MARS legacy mode

approaches to test selected models. All other options and

limits were left in the default setting.

Fractal geometry analyses
If measures of body size were selected as significant pre-

dictors by MARS, we log-transformed the values and PK

parameter estimate, after Benoit Mandelbrot’s foundational

work with fractals.10–15,30,31 In this approach, the slope of

the relationship between PK parameter and a measure of

body size is examined as fractal dimension. These factors

were then reincorporated as potential predictors, and then

examined using standard regression models, as described

above.

Software
For compartmental PK analyses, we used the ADAPT 5

program of D’Argenio et al.27 MARS was implemented in

Salford Systems Data Mining and Predictive Analytics Soft-

ware (Salford Systems, San Diego, CA). Graphing was per-

formed by importing data into GraphPad Prism 6

(GraphPad Software, La Jolla, CA).

RESULTS

The clinical and demographic characteristics in the subjects
we recruited are shown in Table 1. The weight ranged from
45–232 kg, a fivefold difference between the minimum and
maximum TBW, demonstrating the intended wide weight
range accomplished by the study design. The weight was
not normally distributed. Forty-four percent were patients
with components of metabolic syndrome, with higher rates
of 23% in BMI 25–40 kg/m2 and 100% in the BMI >40 kg/
m2 group compared to those with BMI <25 kg/m2, as would
be expected. With regard to adverse events, one person
fainted during the screening blood draw, which we judged
not to be related to the study drug. Three people (8.3%)
developed a mild headache postdose, which was deemed
possibly related to the study drug. One of the people who
had a headache also had elevated blood pressure, skin irri-
tation under the transparent medical dressing over the
intravenous line insertion site, as well as a mild rash around
the neck and ears; these reactions were not considered to
be related to the study drug.

Table 2 shows criteria scores for choosing the best SMX
compartment model: by all criteria, the SMX concentrations
were best described by a one-compartment model. Specifi-
cally, this was not a two or three-compartment model with
fat mass and fat-free mass as different compartments. The
population PK parameter estimates values were not nor-
mally distributed for elimination constant and volume
(D’Agostino normality test P< 0.001), but the P value was
0.570 for absorption constant. The median (range) and per-
centage of coefficient of variation for elimination rate con-
stant were: 0.060 (0.015–0.180) hr21 and 54.13%; for
volume 9.60 (3.60–41.0) L and 62.84%; and for absorption
constant 1.10 (0.46–1.90) hr21 and 31.26%. The observed
vs. model predicted concentrations are shown in Supple-
mentary Figure S1.

Table 1 Clinical and demographic characteristics of 36 patients enrolled in

the study

Characteristics Median, range; no. of patients (%)

Female gender 18 (50)

Race

White 26 (72)

Non-white 10 (28)

Ethnicity

Hispanic 6 (17)

Non-Hispanic 30 (87)

Age, years 37 (18–77)

Weight, kg 89.95 (45.80–232)

IBW, kg 84.26 (51.48–172.13)

Height, m 1.69 (1.55–2.05)

BMI, kg/m2 30.25 (16.2–59.1)

Serum creatinine, mg/dL 0.78 (0.54–1.26)

Creatinine clearance, nL/min 129.94 (75.18–359.34)

Blood urea nitrogen, mg/dL 12.5 (7–23)

AST, U/L 20.5 (12–59)

ALT, U/L 19.5 (8–76)

ALT, alanine aminotransferase; AST, aspartate aminotransferase; BMI, body

mass index; IBW, ideal body weight.
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Next, the SMX one-compartment model parameter esti-
mates for each patient were then examined together with
all the potential anthropometric, clinical, laboratory, and oth-
er physiological predictors in toto, using MARS. MARS
identifies local relationships in small data regions in a
piecewise fashion, which are delineated by hinges, with

output as BFs. The only predictor for the SMX elimination
rate constant, of all 17 possible covariates, was patient
weight in kilograms, which was described by the BF:max
(0, WT-45.8). This means that for patients with weight
>45.8 kg (i.e., the hinge), the weight was the significant
predictor of elimination rate constant, otherwise for weight
<45 kg the effect was “0” (zero). It should be noted that
the hinge was at the lowest weight in the dataset, thus, we
examined for robustness and interpretability, including
changes in the error rates. We used both the V-fold cross-
validation procedure, in which the algorithm splits the data-
set randomly into smaller datasets to identify post-test
prediction, and identified a post-test R2 of 0.51. Next, we
examined the log-log transformation of elimination rate con-
stant and weight for the region of data identified by the hinge
of weight >45.8 kg, and identified the relationships shown in
Figure 1a. The slope of that log-log transformation was
20.74 6 0.19 (P 5 0.0004), almost exactly three-fourths.
This fractal dimension is well known in the relationship
between metabolic rates and weight of organisms.32,33 In
Figure 1a, the relationship between log-transformed SMX
elimination rate constant (and, hence, clearance) and
weight explained 98% of the variance. Since the total SMX
concentration of the 24-hour dosing interval, defined by the 0–
24 hour area under the concentration-time curve (AUC0–24), is
given by f *dose/clearance (where f is absorbed fraction), this

Table 2 Comparison of a one, two, and three PK compartment model for

TMP and SMX

One-

compartment

Two-

compartment

Three-

compartment

SMX

Akaike Information

Criterion

2,680.91 2,690.24 2,695.75

Bayesian Information

Criterion

2,709.15 2,732.59 2,745.16

Negative 2 log

likelihood

2,664.91 2,666.24 2,667.75

TMP

Akaike Information

Criterion

1,191.04 1,200.62 1,212.85

Bayesian Information

Criterion

1,219.27 1,242.98 1,262.27

Negative 2 log

likelihood

1,175.04 1,176.62 1,184.85

The figures in bold represent best score.

PK, pharmacokinetic; SMX, sulfamethoxazole; TMP, trimethoprim.

Figure 1 Log-log relationship between weight and sulfamethoxazole pharmacokinetics (PKs). The natural logarithm (Ln) was used for the
log-transformation of values. Both weight in kilograms and body mass index (BMI), as well as sulfamethoxazole (SMX) PK parameters
and concentrations, were log-transformed following the method of Mandelbroit et al.30,31 (a) Shows the relationship between elimination
rate (and thus xenobiotic metabolism and excretion) and weight in patients >45.8 kg, which was three-fourths. (b) Shows the slope of the
relationships between the area under the concentration-time curve (AUC), as derived by trapezoidal rule and weight, for which the log-log
slope was also three-fourths. (c) Shows the relationship between volume and BMI in patients with BMI >16.2 kg/m2, that is above the
multiple adaptive regression splines-derived hinge. (d) Shows the relationship between BMI and peak SMX concentration, which showed
a slope of three-fourths on log-log transformation, unlike the volume of distribution.
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means that if the AI (MARS) findings are correct, then, in clini-

cal terms, the SMX AUC0–24 will be lower in heavier patients

compared with leaner patients. Figure 1b shows that this is

indeed the case using the AUC0–24 derived trapezoidal

method directly on the concentrations measured (not PK

model-derived). Uniquely, in Figure 1b, the slope of the

log-transformed data was 20.72 6 0.14 (P< 0.0001), also

close to three-fourths. These results directly confirm the clini-

cal relevance of weight on SMX concentrations achieved, the

accuracy of MARS algorithm in predictor selection of weight

for elimination rate constant, and the fractal relationships,

based on standard regression statistics.
Using similar steps, MARS identified three factors associ-

ated with SMX volume of distribution as BMI, serum creati-

nine, and alkaline phosphatase levels, which were described

by BFs in Table 3, leading to the relationship:

Volume Lð Þ 5 5:24701 1 0:331725 � BF11 2:64024 � BF5 (1)

In Table 3, baseline serum creatinine levels and ALT lev-

els were equally and highest ranked at 100%, followed

closely by BMI at 69%. The three variables explained 64%

of the variance in SMX volume of distribution, which is

somehow reassuring. BF5 is an example of a high-order

interaction: ALT levels >8 U/L (i.e., BF3 with hinge at

8 U/L) affected the effect of serum creatinine on volume,

but only in people with serum creatinine <0.78 mg/dL (i.e,

hinge at 0.78 mg/dL). On the other hand, for BF1, the rela-

tionship between volume and BMI >16.2 kg/m2 (and not the

BMI >25 mg/m2 standardly used to define overweight) was

linear, and is shown in Figure 1c. The slope was

1.18 6 0.25 (P< 0.0001), based on standard frequentist

regression. This illustrates the versatility of MARS in simul-

taneous delineation of linear and nonlinear relationships, as

well as higher order interactions at the same time; once

hinges are identified, standard regression methods con-

firmed the relationship. Because the effect of volume of dis-

tribution is best seen on peak drug concentration (peak is

proportional to dose/volume), we plotted log values of the

observed highest concentration (not PK model-derived) vs.

log BMI, which revealed the results shown in Figure 1d.

The slope was 20.74 6 0.18 (P 5 0.0002), statistically simi-

lar to three-fourths. On the other hand, MARS identified no

predictors for the SMX absorption constant.

For trimethoprim concentrations, PKs were also found to

be best described by a one-compartment model (Table 2).

The population PK parameter estimates values were

not normally distributed for the elimination constant

(P<0.0001) and volume (P 5 0.034), but were normally

distributed for absorption constant (P 5 0.481). The median

and percentage of coefficient of variation for the elimination

rate constant were: 0.03 (0.02–0.14) hr21 and 51.19%; for

volume 52 (16–141) L and 62.84%; and for absorption con-

stant 2.10 (0.63–3.70) hr21 and 30.53%. The observed vs.

model-predicted concentrations are shown in Supplemen-

tary Figure S2.
MARS identified both BMI and weight as the significant

predictors of the trimethoprim elimination rate constant,

attesting to the ability of the algorithm to break co-linearity

(BMI is calculated from weight) and revealing a complex

nonlinear interaction. Both weight and BMI predicted 41%

of the variance in the elimination rate constant. The rela-

tionship between these parameters and trimethoprim elimi-

nation rate constant was defined by the equation:

Elimination rate constant5 0:0399 1 0:00036 � BF4 (2)

where BFs are as defined in Table 4. As is shown in Fig-

ure 2a, which is a log-log plot, the relationship between

patient’s weight and trimethoprim elimination rate constant

had a slope of 20.61 6 0.17; the R2-value was 0.28. Fig-

ure 2b shows the relationship between BMI and the tri-

methoprim elimination rate constant had a slope

20.56 6 0.20; and the R2 was 0.18. We also confirmed the

effect of weight on the trapezoidal rule-derived AUC0–24,

with the log-log plot shown in Figure 2c, which had a slope

of 0.63 6 0.14 (P< 0.0001), a fractal dimension virtually the

same as for ADAPT-derived elimination rate and weight.
The predictors of trimethoprim volume were BSA, serum

creatinine, and AST levels. The relationship was described

by the equation:

volume 5 32:4053 1 29:1674 � BF11 18:7887 � BF5 (3)

where the BFs are as defined in Table 4. The most impor-

tant predictors were AST levels and serum creatinine levels

at baseline equally weighted at the apex (100%), and inter-

acting with each other, followed by BSA at 77% variable

Table 3 BFs for factors chosen as affecting SMX volume

BF BF definition Coefficients No. (%) of affected patients

Explanation (description

of BF)

BF0 5.24701 36 (100)

BF1 Max (0, BMI-16.2) 0.331725 35 (97) For each increase in BMI

above 16.2, the volume of

distribution increased by

33%

BF3 Max (0, ALT-8) 33 (92) Interacts with BF5

BF5 Max (0, 0.78-SCR)*BF3 2.64024 17 (47) Volume of distribution

increased >2.6 fold increase

when ALT >8 U/L and

serum creatinine levels

<0.78 mg/dL

ALT, alanine aminotransferase; BF, basis function; BMI, body mass index; SCR, serum creatinine; SMX, sulfamethoxazole.
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importance. The model shown in Eq. 3 explained 54% of
trimethoprim volume of distribution variance. The log-log
relationship between BSA and trimethoprim volume had a
slope of 1.312 6 0.357 (P< 0.001), as shown in Figure 3a.
The slope is equivalent to the fractal four-thirds, the inverse
of three-fourths. The change in volume of distribution with
BSA would best be reflected by changes in peak concentra-
tion, which is what was found when peak concentration
was plotted against BSA in Figure 3b in the range delineat-
ed by BF hinges using standard regression analysis. Fig-
ure 3b is not a log-log slope, but had a slope of
23.73 6 1.21 (inverse of one-fourth), with a P 5 0.004.

DISCUSSION

Here, we show that different measures of body size, espe-
cially weight and BMI, have a profound effect on the xeno-
biotic metabolism of TMP-SMX, as well as volume of
distribution based on fractal geometry-based relationships
manifest as the three-fourths and one-fourth power law.
However, none one-fourth fractal signatures were also iden-
tified, including 0.63 for the log-log relationship between
weight and both trimethoprim elimination rate constant and
AUC0–24 as well as 1.18 for SMX volume and BMI. We
show that the effect of body size on these PK parameters
directly affects the concentrations achieved: larger and
heavier patients achieved lower peak and AUC0–24 concen-
trations than their leaner counterparts did. This led to a
5.6-fold range difference in SMX AUC and 6.9-fold in peak
concentrations, for example. PK/PDs science using preclini-
cal models has revealed that in virtually all antibiotics drug
concentrations have a profound influence on microbial
effect and resistance suppression: antibiotics have a
concentration-effect relationship.34 Several groups have
shown the same on microbial response and resistance sup-
pression in patients on antibacterial compounds, antifungal
compounds, and antiparasitic compounds.22;35–38 We
expect to see the same effects in obese patients treated
with TMP-SMX, which is used everywhere across the
globe. PK/PD-based studies for each of the almost 60
pathogens that this drug is used for are urgently needed in
order to identify the optimal exposures to kill each patho-
gen, and with those results and our PK models, optimal
doses designed for treatment of this large patient base, giv-
en the global burden of obesity. With this approach, dosing

can be individualized by type of infection and patient

weight.
Second, our study shows the effect of fractal geometry of

different measures of human body sizes on both xenobiotic

metabolism and volumes of distributions of drugs. We have

previously observed a similar impact of weight in kilograms

and BMI on clearance and volume of echinocandin antifun-

gals, antituberculous agents, and biologics.11–15 The current

study also sheds light on what aspects of body size matter:

there have been decades of old clinical debates as to wheth-

er such parameters as IBW (i.e., weight associated with

maximum life expectancy), TBW, or lean body weight (TBW

minus weight of body fat), BMI, or BSA should be used to

dose. In the case of TMP-SMX, the agnostic method MARS

did not find IBW or lean body weight as important predictors.

Instead, patient weight (and not dry weight) and BMI affected

the elimination of both TMP and SMX. Unexpectedly, BSA

had an effect on trimethoprim volume and peak concentra-

tions. A literature search revealed that BSA dosing correction

has been used with the cephalosporin cefotiam in Sumo

wrestlers in Japan, and indeed is commonly used for dosing

of cancer chemotherapy agents.39

Third, our study has implications on study design for use in

PK/PD studies in people, as well as statistical methods used

to analyze these results. We demonstrated the versatility of

AI analyses in identifying covariates of primary PK parame-

ters. This is important for two reasons. First, these findings

were confirmed by standard frequentist statistics. Essentially,

MARS identified relationships and hinges at which of these

relationships changed or ended, after which standard linear

regression methods confirmed the same, with good P values.

The latter was possible because selection of hinges avoids

the problem of averaging out measures of association and

slopes across data regions in which relationships change

direction. In other words, the question is not about if there

are differences in medians or slopes across two samples of

populations, but if there are predictive relationships above

and below certain covariate thresholds, and if these interact

among themselves as well as with the main clinical pharma-

cology parameter. Second, there were some findings on

MARS that while still present when frequentist approaches

were used, no longer reached statistical significance. This is

because of sample sizes. MARS and other AI methods

require much smaller patient sample sizes to identify

important clinical correlates, based on our prior work.21 The

Table 4 BFs for TMP elimination rate constant and volume

BF BF definition Coefficients No. (%) of affected patients Description of BF

Elimination rate constant

BF0 Constant/intercept 0.03999123

BF2 Max (0, 78.5-weight) 20 (56) Weight in kg

BF4 Max (0, BMI-16.2)*BF2 0.00026024 Interacts with BF2

Volume

BF0 Constant/intercept 32.4053

BF1 Max (0, BSA-1.46631) 29.1674 35 (97)

BF4 Max (0, 0.74-SCR) 14 (39) Interacts with BF5

BF5 Max (0, AST-12)*BF4 18.7887 14 (39)

AST, aspartate aminotransferase; BF, basis function; BMI, body mass index; BSA, body surface area; SCR, serum creatinine; TMP, trimethoprim.
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cross-validation features of these algorithms allow for auto-

matic creation of learning and test sets from the same data,
so that the main outcome is predictive accuracy. Third, our

study design was in the form of a clinical experiment. We
recruited equal groups of patients targeted and stratified by

weight bands, so that all other aspects were equal (i.e.,

ceteris paribus), except the weight and weight-related comor-

bid conditions. This eliminates noise and bias, allowing for a

smaller group of patients to be exposed to the study drug.

Fourth, we applied optimal design methods and optimal sam-

pling theory to identify when we would get blood samples,

and targeted the most information-rich timepoints. Our

approach that incorporates these four factors into design and

analyses offers a paradigm to minimize the numbers of

patients exposed to drugs in PK studies that will use AI algo-

rithms that can identify predictors from small numbers of

samples.
In conclusion, different measures of body size, especially

weight and BMI, have a profound effect on the xenobiotic

metabolism of TMP-SMX as well as volume of distribution,

based on fractal geometry based relationships. PD targets

Figure 3 The relationship between body surface area and tri-
methoprim volume. The natural logarithm (Ln) was used for the
log-transformation of values. (a) A surprise was that body sur-
face area was a predictor of trimethoprim volume of distribution,
with a log-log slope of four-thirds or the inverse of three-fourths.
It would have been expected that these two parameters would
be related by 1/length or height. (b) Interestingly, the observed
peak concentration (amount of drug/volume of distribution)
revealed a relationship characterized by the inverse of one-
fourth. Although these dimensions are unusual, they still, never-
theless, are part of the one-fourth power laws.

Figure 2 Log-log relationship between weight and trimethoprim
metabolism. The natural logarithm (Ln) was used for the log-trans-
formation of values. (a) Unlike sulfamethoxazole, the relationship
between trimethoprim metabolism and weight in kilograms, did not
obey the three-fourths power laws, instead with a dimension of
0.61. (b) Similarly, body mass index vs. model-derived elimination
rate constant had a log-log slope of 0.56. (c) Trapezoidal rule
derived 0–24 hour area under the concentration-time curve
(AUC0–24) vs. weight regression revealed a log-log slope that was
virtually the same as for weight and elimination rate in panel a.
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for TMP-SMX are needed to help guide the dosing regimens
for obese patients. The use of MARS and other AI methods
require much smaller patient sample sizes to identify impor-
tant clinical correlates, which is important given the small
numbers of patients enrolled in many PK studies.

Acknowledgments. Grant KL2RR024983 (‘‘North and Central Tex-
as Clinical and Translational Science Initiative’’) to the University of Texas
Southwestern Medical Center from the National Center for Research
Resources/National Institutes of Health supported R.G.H. Recruitment,
admission of volunteers for the study, and collection of blood samples was
performed by UT Southwestern Medical Center’s Clinical and Translation-
al Research Center personnel within the Center, which is supported by
the National Institutes of Health Clinical and Translational Science Awards
grant UL1RR024982.

Conflict of Interest. T.G. is the founder of Jacaranda Biomed Inc.
R.G.H. is on the Advisory Board for Genetech. J.G.P., C.M., R.D.L., and
M.S. declared no conflict of interest.

Author Contributions. R.G.H., J.G.P., C.M., R.D.L., M.S., and
T.G. wrote the article. R.G.H., R.D.L., and T.G. designed the research.
R.G.H., M.S., and T.G. performed the research. R.G.H., J.G.P., C.M.,
R.D.L., and T.G. analyzed the data.

1. World Health Organization. WHO Model List of Essential Medicine. 19th list. <http://
www.who.int/medicines/publications/essentialmedicines/en/>. Accessed 4 June 2016.

2. Hughes, W.T., Feldman, S., Chaudhary, S.C., Ossi, M.J., Cox, F. & Sanyal, S.K.
Comparison of pentamidine isethionate and trimethoprim-sulfamethoxazole in the
treatment of Pneumocystis carinii pneumonia. J. Pediatr. 92, 285–291 (1978).

3. Furio, M.M., Weidle, P.J., Wordell, C.J. & Liu, H.H. Management of Pneumocystis
carinii pneumonia in patients with AIDS and other conditions: experience in a Phila-
delphia university teaching hospital. Pharmacotherapy 8, 221–234 (1988).

4. Chin, T.W., Vandenbroucke, A. & Fong, I.W. Pharmacokinetics of trimethoprim-
sulfamethoxazole in critically ill and non-critically ill AIDS patients. Antimicrob. Agents
Chemother. 39, 28–33 (1995).

5. Huxley, J.S. Problems of Relative Growth (The Dial Press, New York, 1932).
6. Green, B. & Duffull, S.B. What is the best size descriptor to use for pharmacokinetic

studies in the obese? Br. J. Clin. Pharmacol. 58, 119–133 (2004).
7. Kontis, V. et al. Regional contributions of six preventable risk factors to achieving the

25 x 25 non-communicable disease mortality reduction target: a modelling study. Lan-
cet Glob. Health 3, e746–e757 (2015).

8. Ogden, C.L., Carroll, M.D., Kit, B.K. & Flegal, K.M. Prevalence of childhood and adult
obesity in the United States, 2011–2012. JAMA 311, 806–814 (2014).

9. Swinburn, B.A. et al. The global obesity pandemic: shaped by global drivers and local
environments. Lancet 378, 804–814 (2011).

10. Hall, R.G. 2nd, Swancutt, M.A., Meek, C., Leff, R.D. & Gumbo, T. Ethambutol phar-
macokinetic variability is linked to body mass in overweight, obese, and extremely
obese people. Antimicrob. Agents Chemother. 56, 1502–1507 (2012).

11. Hall, R.G., Swancutt, M.A. & Gumbo, T. Fractal geometry and the pharmacometrics
of micafungin in overweight, obese, and extremely obese people. Antimicrob. Agents
Chemother. 55, 5107–5112 (2011).

12. Pasipanodya, J.G., Hall, R.G. 2nd & Gumbo, T. In silico-derived bedside formula for
individualized micafungin dosing for obese patients in the age of deterministic chaos.
Clin. Pharmacol. Ther. 97, 292–297 (2015).

13. Hall, R.G. 2nd, Swancutt, M.A., Meek, C., Leff, R. & Gumbo, T. Weight drives caspo-
fungin pharmacokinetic variability in overweight and obese people: fractal power sig-
natures beyond two-thirds or three-fourths. Antimicrob. Agents Chemother. 57,
2259–2264 (2013).

14. Jain, M.K., Pasipanodya, J.G., Alder, L., Lee, W.M. & Gumbo, T. Pegylated interferon
fractal pharmacokinetics: individualized dosing for hepatitis C virus infection. Antimi-
crob. Agents Chemother. 57, 1115–1120 (2013).

15. Hope, W.W. et al. Population pharmacokinetics of micafungin in pediatric patients and
implications for antifungal dosing. Antimicrob. Agents Chemother. 51, 3714–3719 (2007).

16. Breiman, L. Random forests. Machine Learning 45, 5–32 (2001).
17. Swaminathan, S. et al. Drug concentration thresholds predictive of therapy failure

and death in children with tuberculosis: bread crumb trails in random forests. Clin.
Infect. Dis. 63(suppl. 3), S63–S74 (2016).

18. Breiman, L., Friedman, J., Stone, C.J. & Olshen, R.A. Classification and Regression
Trees (Chapman and Hall, CRC, Boca Raton, FL, 1984).

19. Friedman, J.H. Multivariate adaptive regression splines. Ann. Statist. 19, 1–67 (1991).
20. Modongo, C., Pasipanodya, J.G., Zetola, N.M., Williams, S.M., Sirugo, G. & Gumbo,

T. Amikacin concentrations predictive of ototoxicity in multidrug-resistant tuberculosis
patients. Antimicrob. Agents Chemother. 59, 6337–6343 (2015).

21. Chigutsa, E. et al. Impact of nonlinear interactions of pharmacokinetics and MICs on
sputum bacillary kill rates as a marker of sterilizing effect in tuberculosis. Antimicrob.
Agents Chemother. 59, 38–45 (2015).

22. Pasipanodya, J.G., McIlleron, H., Burger, A., Wash, P.A., Smith, P. & Gumbo, T.
Serum drug concentrations predictive of pulmonary tuberculosis outcomes. J. Infect.
Dis. 208, 1464–1473 (2013).

23. Gumbo, T., Hiemenz, J., Ma, L., Keirns, J.J., Buell, D.N. & Drusano, G.L. Population
pharmacokinetics of micafungin in adult patients. Diagn. Microbiol. Infect. Dis. 60,
329–331 (2008).

24. Breiman, L. Statistical modeling: the two cultures. Statist. Sci. 16, 199–231 (2001).
25. Reed, M.D. Optimal sampling theory: an overview of its application to pharmacokinet-

ic studies in infants and children. Pediatrics 104(3 Pt 2), 627–632 (1999).
26. Hiruy, H. et al. Subtherapeutic concentrations of first-line anti-TB drugs in South Afri-

can children treated according to current guidelines: the PHATISA study. J. Antimi-
crob. Chemother. 70, 1115–1123 (2015).

27. D’Argenio, D.Z., Schumitzky, A. & Wang, X. ADAPT 5 user’s guide: pharmacokinetic/
pharmacodynamic systems analysis software (Biomedical Simulations Resource, Los
Angeles, CA, 2009).

28. Akaike, H. A new look at the statistical model identification. IEEE Trans. Automat.
Contr. 19, 716–723 (1974).

29. Ludden, T.M., Beal, S.L. & Sheiner, L.B. Comparison of the Akaike Information Crite-
rion, the Schwarz criterion and the F test as guides to model selection. J. Pharmaco-
kinet. Biopharm. 22, 431–445 (1994).

30. Mandelbrot, B. How long is the coast of Britain? Statistical self-similarity and fraction-
al dimension. Science 156, 636–638 (1967).

31. Mandelbrot, B.B. The Fractal Geometry of Nature (W.H. Freeman and Company, San
Francisco, CA, 1982).

32. West, G.B., Brown, J.H. & Enquist, B.J. A general model for the origin of allometric
scaling laws in biology. Science 276, 122–126 (1997).

33. West, G.B., Savage, V.M., Gillooly, J., Enquist, B.J., Woodruff, W.H. & Brown, J.H.
Physiology: why does metabolic rate scale with body size? Nature 421, 713; discus-
sion 714 (2003).

34. Ambrose, P.G. et al. Pharmacokinetics-pharmacodynamics of antimicrobial therapy:
it’s not just for mice anymore. Clin. Infect. Dis. 44, 79–86 (2007).

35. Srivastava, S., Pasipanodya, J.G., Meek, C., Leff, R. & Gumbo, T. Multidrug-resistant
tuberculosis not due to noncompliance but to between-patient pharmacokinetic vari-
ability. J. Infect. Dis. 204, 1951–1959 (2011).

36. Dorlo, T.P. et al. Failure of miltefosine in visceral leishmaniasis is associated with low
drug exposure. J. Infect. Dis. 210, 146–153 (2014).

37. Forrest, A., Nix, D.E., Ballow, C.H., Goss, T.F., Birmingham, M.C. & Schentag, J.J.
Pharmacodynamics of intravenous ciprofloxacin in seriously ill patients. Antimicrob.
Agents Chemother. 37, 1073–1081 (1993).

38. Gumbo, T., Angulo-Barturen, I. & Ferrer-Bazaga, S. Pharmacokinetic-pharmacodynamic
and dose-response relationships of antituberculosis drugs: recommendations and stand-
ards for industry and academia. J. Infect. Dis. 211(suppl. 3), S96–S106 (2015).

39. Chiba, K., Tsuchiya, M., Kato, J., Ochi, K., Kawa, Z. & Ishizaki, T. Cefotiam disposi-
tion in markedly obese athlete patients, Japanese sumo wrestlers. Antimicrob. Agents
Chemother. 33, 1188–1192 (1989).

VC 2016 The Authors CPT: Pharmacometrics & Systems
Pharmacology published by Wiley Periodicals, Inc. on
behalf of American Society for Clinical Pharmacology and
Therapeutics. This is an open access article under the
terms of the Creative Commons Attribution-
NonCommercial-NoDerivs License, which permits use and
distribution in any medium, provided the original work is
properly cited, the use is non-commercial and no
modifications or adaptations are made.

Supplementary information accompanies this paper on the CPT: Pharmacometrics & Systems Pharmacology website
(http://www.wileyonlinelibrary.com/psp4)

Obesity Reduces Cotrimoxazole Concentrations
Hall et al.

681

www.wileyonlinelibrary/psp4

http://www.who.int/medicines/publications/essentialmedicines/en/
http://www.who.int/medicines/publications/essentialmedicines/en/

	l

