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Abstract

Previous functional magnetic resonance imaging (fMRI) studies have shown that brain

responses to nociceptive pain, non-nociceptive somatosensory, visual, and auditory stimuli

are extremely similar. Actually, perception of external sensory stimulation requires complex

interactions among distributed cortical and subcortical brain regions. However, the interac-

tions among these regions elicited by nociceptive pain remain unclear, which limits our

understanding of mechanisms of pain from a brain network perspective. Task fMRI data

were collected with a random sequence of intermixed stimuli of four sensory modalities in

80 healthy subjects. Whole-brain psychophysiological interaction analysis was performed

to identify task-modulated functional connectivity (FC) patterns for each modality. Task-

modulated FC strength and graph-theoretical-based network properties were compared

among the four modalities. Lastly, we performed across-sensory-modality prediction analy-

sis based on the whole-brain task-modulated FC patterns to confirm the specific relation-

ship between brain patterns and sensory modalities. For each sensory modality, task-

modulated FC patterns were distributed over widespread brain regions beyond those typi-

cally activated or deactivated during the stimulation. As compared with the other three

sensory modalities, nociceptive stimulation exhibited significantly different patterns (more

widespread and stronger FC within the cingulo-opercular network, between cingulo-

opercular and sensorimotor networks, between cingulo-opercular and emotional networks,

and between default mode and emotional networks) and global property (smaller modular-

ity). Further, a cross-sensory-modality prediction analysis found that task-modulated FC

patterns could predict sensory modality at the subject level successfully. Collectively, these

results demonstrated that the whole-brain task-modulated FC is preferentially modulated

by pain, thus providing new insights into the neural mechanisms of pain processing.
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1 | INTRODUCTION

Pain perception activates multiple brain regions, such as the primary

and secondary somatosensory cortices, insula, and anterior cingulate

cortex, which are often termed as the “pain matrix” (Apkarian,

Bushnell, Treede, & Zubieta, 2005). However, the “pain matrix” can

also be activated by stimuli of other sensory modalities (Downar,

Crawley, Mikulis, & Davis, 2000; Iannetti & Mouraux, 2010; Legrain,

Iannetti, Plaghki, & Mouraux, 2011). For example, Mouraux, Diukova,

Lee, Wise, and Iannetti (2011) compared functional magnetic reso-

nance imaging (fMRI) responses to nociceptive pain and other three

sensory modalities (non-nociceptive somatosensory, visual, auditory),

and found that different sensory modalities elicited extremely similar

responses in a wide distribution of brain areas, which mainly reflect

multimodal brain processes crucial for all sensory systems. Recently,

some fMRI studies used experimental manipulation to identify brain

activities preferentially involved in pain perception. For example, Su

et al. (2019) found that nociceptive and non-nociceptive somatosen-

sory stimuli elicit activations in overlapping brain regions, but some of

these regions, such as the opercular cortex and supplementary motor

area, were more strongly engaged in the processing of nociceptive

pain. On the other hand, because the brain is functionally integrated,

external tasks could induce specific changes in widespread brain net-

works (Gonzalez-Castillo & Bandettini, 2018). However, the task-

modulated functional connectivity (FC) patterns elicited by nocicep-

tive pain and other sensory modalities remain unclear, which limits

our investigation of brain activities preferentially involved in pain per-

ception from a brain network perspective.

FC analysis was performed for acute pain and tonic pain experi-

ments and it was found that FC between the posterior insula and the

default mode network may differentiate painful state from nonpainful

resting-state (Ibinson et al., 2015; Vogt, Becker, Wasan, &

Ibinson, 2016). In these studies, FC patterns were characterized by

regressing out of the mean task activation and the estimating of the

correlation coefficients of the residuals (Cole et al., 2019). Therefore,

this approach cannot be used to test the hypothesis that the FC pat-

tern should vary depending on the experimental conditions in a single

run, which is necessary for the investigation of FC changes related to

stimulation of different sensory modalities (Cole et al., 2019). Another

widely accepted task-modulated FC estimation approach is psycho-

physiological interaction (PPI), which measures whether and how FC

between brain regions varies with different experimentally conditions

(Di, Zhang, & Biswal, 2020; O'Reilly, Woolrich, Behrens, Smith, &

Johansen-Berg, 2012). PPI has been used to investigate top-down

modulation of acute pain in healthy subjects (Ploner, Lee, Wiech,

Bingel, & Tracey, 2011; Reicherts et al., 2017). For example, regarding

the cognitive-affective domain of pain perception, a stronger PPI

effect was observed between the amygdala of the emotional network

and the anterior insula of the cingulo-opercular network (Reicherts

et al., 2017). However, these earlier investigations of task-modulated

FC in pain-related studies were limited to the activated region of

interest (ROI), and FC involving brain regions that are not classically

known to be part of the “pain matrix” are often overlooked (Kucyi &

Davis, 2015; Necka et al., 2019). But in fact, one recent study has

used the whole-brain PPI analysis to reveal a much broader involve-

ment of brain regions in task-modulated FC than those only including

regional activations (Di & Biswal, 2019).

Perception of external sensory stimulation requires complex

interactions among distributed cortical and subcortical brain regions.

Such as the default mode network, which is perhaps the most studied

large-scale brain network, and task-positive networks usually interact

with the default mode network during perception of external sensory

stimulation (Elton & Gao, 2015). As one of the task-positive networks,

the cingulo-opercular network, also known as the “salience network,”
is generally believed to undertake the fundamental function of tonic

alertness by integrating sensory information (Sadaghiani &

D'Esposito, 2015). According to previous studies, a number of brain

structures within the cingulo-opercular network, such as the anterior

insula/operculum, dorsal anterior cingulate cortex, and thalamus, are

consistently activated during pain stimulation (Borsook, Edwards,

Elman, Becerra, & Levine, 2013). Considering its closer relationship

with pain perception, the cingulo-opercular network might show

stronger within- and between-network task-modulated FC strength.

Besides, the topological architecture (i.e., small-worldness) of resting-

state brain networks is related to cognitive performance during the

task (Bullmore & Bassett, 2011; Cohen & D'Esposito, 2016). Consider-

ing the high-level activities involved during pain perception, the

reconfiguration of brain networks might be different compared with

other sensory modalities.

Hence, in the present study, we used an experimental design of

four sensory modalities (nociceptive somatosensory, non-nociceptive

somatosensory, visual, and auditory) and whole-brain PPI analysis to

characterize task-modulated FC patterns in response to the stimula-

tion of different sensory modalities. Besides, we checked whether the

task-modulated FC patterns were predictive of sensory modalities at

the subject level, in order to show the extracted task-modulated FC

patterns elicited by different sensory modalities were accurate and

reliable. In this cross-sensory-modality prediction analysis, if task-

modulated FC patterns are able to predict sensory modalities, it

means these FC patterns contain important and inherent information

that is preferentially or even specific to the type of incoming sensory

stimulation. We expected all sensory modalities to induce wide-

spread task-modulated FC within and between many brain networks.

But we hypothesized that due to the specific aspects of pain percep-

tion, regional and global features of task-modulated FC in a number of

brain networks, such as the default mode and cingulo-opercular net-

works, would show distinguishing differences for nociceptive pain

compared with the other sensory modalities.

2 | MATERIALS AND METHODS

2.1 | Participants

A total of 80 healthy subjects (36 males/44 females, 21 ± 3 years)

participated in this study. All subjects were free of acute or chronic
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pain and gave their written informed consent. The experimental pro-

cedures were approved by the ethics committee of the Institute of

Psychology, Chinese Academy of Sciences (date of approval:

November 2016; approval number: H16021).

2.2 | Experimental paradigm

The experiment of task fMRI acquisition was divided into two ses-

sions. Subjects received brief stimuli of four different sensory modali-

ties: nociceptive somatosensory, non-nociceptive somatosensory,

auditory, and visual. Nociceptive radiant heat somatosensory stimuli

were generated by an infrared neodymium yttrium aluminum perov-

skite (Nd: YAP) laser and delivered on the dorsum of the subject's left

hand (ulnar and radial nerve dermatome). The diameter of the laser

beam was set at approximately 7 mm and the pulse duration was

50 ms. Non-nociceptive somatosensory stimuli (transcutaneous elec-

trical stimuli) consisted of nonpainful constant-current square-wave

pulses (1,000 Hz frequency, 1,000 ms pulse width, and 50 ms pulse

duration) delivered through a pair of electrodes attached on the

median nerve of the left forearm, separated by a 1 cm interelectrode

distance. Diotic auditory stimuli consisted of brief 800 Hz pure tones

(500 ms duration, 5 ms rise and fall times) were delivered through

pneumatic tubing to earphones inserted inside the acoustic canals.

Visual stimuli consisted of a gray disk displayed on the projection

screen for 100 ms. Each type of stimuli included two intensity levels:

3 J and 3.5 J for nociceptive somatosensory stimuli, 2 mA and 4 mA

for non-nociceptive somatosensory stimuli, 76 dB SPL and 88 dB SPL

for auditory stimuli, two gray images with different gray scale values

for visual stimuli. The two levels of intensities were determined for

each sensory modality based on a preliminary psychophysical experi-

ment performed on 10 healthy subjects (three males) recruited from

the same cohort as the subjects included in the formal experiment.

The physical intensities corresponding to the perceived intensity rat-

ing of 4 and 6 were used in the subsequent experiment as the low

and high stimulus intensities, respectively. Within each run, each type

of stimulation was delivered 10 times in a pseudo-random order,

5 times for each level. The inter-stimulus interval was randomized

between 21 s and 24 s. There was an interval of 6 s between the

onset of the trial and the onset of the stimulus period, and an interval

of 10 s between the stimulation period and the beginning of the rating

period. A white fixation cross was displayed at the center of the

screen during the first 6 s period. The stimulation period was 50 ms

for nociceptive and non-nociceptive somatosensory, 100 ms for

visual, and 500 ms for auditory. During the 5 s of the rating period, a

visual analogue scale (VAS, ranging from 0 to 10) was presented on

the screen, and subjects were asked to rate the intensity of each stim-

ulus using a button box (moving the cursor to the location of

corresponding rating number). Stimulus intensity was explained to

subjects as “how intense do you feel the stimulation of this sensory

modality” and the lower and upper ends of the scale were defined as

“no sensation of such modality” and “the most intense sensation tol-

erable” respectively. Taking the laser stimulation as an example,

0 means no feeling of pain, and 10 means the most intense pain inten-

sity that can be tolerated.

2.3 | MRI data acquisition and preprocessing

FMRI data were collected using a GE 3.0 T MRI scanner. A standard

gradient echo planar imaging sequence with the following imaging

parameters was used: 43 oblique slices, thickness/gap = 3/0 mm,

acquisition matrix = 64 � 64, time of repetition = 2000 ms, time of

echo = 30 ms, flip angle = 90�, field of view = 192 � 192 mm2. For

the multi-sensory stimulation task, two sessions with 454 functional

volumes were administered. A resting-state session with 300 volumes

was also collected, with the aim to estimate baseline resting-state FC

for comparison with task-modulated FC. In the resting-state session,

subjects were asked to stay motionless, relax their minds and focus at

a “+” fixation sign on the screen.

FMRI data preprocessing was performed using Statistical Para-

metric Mapping (SPM12, www.fil.ion.ucl.ac.uk/spm/software/spm12).

Data preprocessing steps include: (1) the first three volumes of each

functional time-series were removed for magnetization equilibrium;

(2) for each participant, the images were corrected for differences in

the intravolume acquisition time between slices using sinc interpola-

tion and then corrected for intervolume geometric displacement due

to head movement using a six-parameter (rigid-body) spatial transfor-

mation; (3) the anatomical T1 image was coregistered to the mean

functional image, created during the former step; (4) functional images

were spatially normalized to common template image (T1 template in

Montreal Neurological Institute standard space) using the unified

normalization-segmentation procedure via the structural T1 images

and resampled to a voxel size of 3 � 3 � 3 mm3; (5) spatial smoothing

was performed using 6 mm full-width at half maximum (FWHM)

Gaussian kernel.

2.4 | Parcellation atlas

Whole-brain parcellation was adopted using Dosenbach's 160 ROIs

(Dosenbach et al., 2010). The identification of nodes (i.e., ROIs) is the

key factor in studying the properties of FC, but anatomical atlas, such

as the AAL atlas, contained little information about FC, and their

capacity for accurately representing FC was limited (Craddock

et al., 2013). The selected Dosenbach 160-region atlas was generated

based on a meta-analysis of task-related fMRI data, and it is more reli-

able and suitable for the construction of FC networks than anatomical

atlases (Yao, Hu, Xie, Moore, & Zheng, 2015). We excluded 20 cere-

bellar ROIs for incomplete coverage of the cerebellum of several sub-

jects and included four extra ROIs related to emotional processing (Di,

Gohel, Kim, & Biswal, 2013; Sabatinelli et al., 2011): the right amyg-

dala (Montreal Neurological Institute, MNI, coordinates: 20, �4, �15),

the left amygdala (�20, �6, �15), the right parahippocampus

(14, �33, �7), and the left parahippocampus (�20, �33, �4). These

selected 144 ROIs made up six FC networks according to Dosenbach
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atlas: (1) cingulo-opercular network, (2) default mode network,

(3) frontoparietal network, (4) occipital network, (5) sensorimotor net-

work, and (6) emotional network (Dosenbach et al., 2010).

2.5 | Resting-state functional connectivity (FC)
analysis

Resting-state FC was estimated to provide a reference or baseline for

task-modulated FC. Additional postprocessing steps were performed

on the preprocessed resting-state fMRI data. First, the following nui-

sance variables were regressed out from resting-state data: linear

trend, 24 head motion regressors, mean signals of white matter, and

cerebrospinal fluid. Then the data were then temporal band-pass fil-

tered (0.01–0.1 Hz). The mean time series of all 144 ROI was

extracted and the Pearson's correlations were calculated between all

pairs of ROIs. The obtained correlation matrix for each subject was

normalized using Fisher's z-transformation.

2.6 | GLM analysis of task fMRI data for activation
detection

In order to extract ROI time series for ROI-based activation analysis

and PPI analysis, voxel-wise general linear model (GLM) analysis was

performed in MATLAB relying on the SPM12 toolbox and custom-

made MATLAB scripts. Because this task was divided into two ses-

sions for each subject, the data of these two sessions were modeled

as separate regressors and covariates in a single subject-level GLM.

Specifically, for each session, the occurrence of the stimuli from each

modality was modeled as a separate regressor with parametric modu-

lation by their corresponding VAS ratings, and the rating period was

also modeled as an additional regressor. Head motion parameters (six

rigid-body transformations, their one time-point lags, and all their cor-

respondent squared time series), and the mean of each session was

included as covariates in the GLM. After model estimation, an “effects
of interest” F-contrast was defined. For each of the 144 ROIs, the first

Eigen variate (principal component) of the time courses within this

ROI was extracted for each run. Effects of no interest (24 head

motion regressors, including 6 rigid-body transformations, their one

time-point lag, and all their correspondent squared time series) were

adjusted to minimize the head motion effects. Note that, the time

series of ROIs used in the GLM for PPI analyses were the same as

those in the GLM analyses for ROI-wised activations.

ROI-wise activation analysis was also performed to compare the

regional activation results with later PPI results. Similar GLMs as in

the voxel-wise analysis but without nuisance regressors were applied

to the ROI time series because the effects of no-interest have been

removed during the time series extraction. After model estimation,

four contrasts of interests were calculated, corresponding to the acti-

vation by the stimulation of four sensory modalities of each subject.

The contrast maps for each sensory modality were used in further

group analysis.

2.7 | Psychophysiological interaction analysis

In the present study, task-modulated FC was inferred from PPI effects

using the generalized PPI framework, which models each task condi-

tion separately with reference to all other conditions and then com-

pare the PPI effects between the conditions of interests (McLaren,

Ries, Xu, & Johnson, 2012). The time-series of an ROI was first dec-

onvolved with the hemodynamic response function (HRF), and then

point-by-point multiplied with the psychological variable of each sen-

sory modality to form the PPI term of neuronal level (Di, Reynolds, &

Biswal, 2017). Next, the PPI terms of neuronal level were convolved

with the HRF to obtain the blood-oxygen-level-dependent level PPI

terms. Then single subject-level GLM for PPI effect analysis was built

with 10 explanatory variables (four regressors of task conditions for

each sensory modality, four regressors of PPIs calculated for each sen-

sory modality, the time series of the ROI, and one constant term) for

each ROI, and were fitted to the time-series of all other ROIs

(as dependent variable) separately. Because a constant term that rep-

resents the overall effect (intercept) is usually added in a regression

model, when modeling n conditions, we need n–1 additional regres-

sors. In present study, we utilized an event-related design, and all the

experimental conditions were included, and the baseline condition

was left out of the model (implicit baseline). Therefore, regressors of

PPI terms in this GLM model represented the differences between

the modeled stimulation conditions with respect to all the other con-

ditions (Di et al., 2020). After estimation of GLM, the contrasts of

interest were the PPI effect for each sensory modality. This process

was repeated for every ROI pair (i.e., for a given target ROI, the

modeling was repeated for every other ROI as the predictor ROI),

yielding a 144 � 144 asymmetric contrast matrix for each sensory

modality and each subject. PPI approach measures the task-

modulated FC changes in terms of the strength of regression of activ-

ity in one region on another; however, it does not make an inference

about the direction of information flow (Friston et al., 1997; McLaren

et al., 2012). Therefore, the PPI matrix was symmetrized by averaging

them with their transpose (Di et al., 2017). The symmetric PPI matri-

ces for all four sensory modalities were used in further group analysis.

2.8 | Calculation of graph-theoretical network
metrics of task-modulated FC

Graph-based network analysis reveals meaningful information about

the topological architecture of human brain networks. Task-fMRI-

based brain networks can be constructed with ROIs as nodes and

task-modulated FC strength (PPI effects) as edges. In addition to local-

izing specific FC modulated by a sensory modality, a further question

is the topological reconfiguration of the brain in response to external

stimulation of different sensory modalities. To characterize different

characteristics of network reconfiguration during stimulation of four

sensory modalities, global network metrics were calculated by using

the Brain Connectivity Toolbox (brain-connectivity-toobox.net)

(Rubinov & Sporns, 2010). First, binary unidirectional networks were
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built for each sensory modality and each subject by thresholding

the absolute task-modulated FC matrix at 10, 20, and 30% sparsity

levels respectively. Enforcing the same sparsity levels among the

four sensory modalities could ensure that the differences observed

in the network properties are not due to the difference in the num-

ber of edges. These sparsity levels were used because the large-

scale brain networks revealed small-world properties within the

range of 6–40% (Achard & Bullmore, 2007). We calculated two rep-

resentative small-world metrics, the global efficiency and mean

clustering coefficient, and the modularity for these thresholded

task-modulated FC networks (Bullmore & Sporns, 2009). The global

efficiency characterizes the efficiency of information integration of

the whole network, and the mean clustering coefficient character-

izes the efficiency of the information flow around local nodes in a

network (Watts & Strogatz, 1998). The modularity characterizes

the extent to which the network can be divided into sub-

communities (Newman, 2006).

2.9 | Cross-sensory-modality prediction based on
task-modulated FC

Lastly, we checked whether the task-modulated FC patterns were

predictive of sensory modalities at the subject level. Specifically,

we performed across-sensory-modality prediction analysis based

on the whole-brain task-modulated FC features. First, a template

was computed for each sensory modality by averaging the task-

modulated FC matrices of (N�1) subjects, where N is the total num-

ber of subjects. The task-modulated FC matrices of the remaining

one subject were used as the target matrices. To predict the sen-

sory modality, the similarity between the target matrix and the tem-

plate matrix of each sensory modality was computed as the

Pearson correlation coefficient between the vectorized target

matrix and template matrix, and the predicted sensory modality

was the one with the maximal similarity score. This procedure was

repeated for N times so that prediction accuracy for each sensory

modality was calculated.

2.10 | Statistical analysis

All statistical analyses were performed using the MATLAB

(MathWorks Inc., MA) or SPSS (SPSS Statistics, IBM, Armonk, NY)

software.

2.10.1 | Behavioral data analysis

For each subject and each sensory modality, the mean VAS rating of

all stimuli was calculated. Further, we adopted one-way repeated-

measure ANOVA (factor: sensory modality) to investigate differences

in subjective ratings across sensory modalities. We compared the rat-

ings of different stimuli because we wanted to make sure that the

differences of FC were not caused by differences in perceived stimu-

lus intensity. Otherwise, FC differences of different sensory modali-

ties may be caused by the differences in ratings. In another word,

“ratings” could be a confounding factor when comparing FC of differ-

ent sensory modalities, so ratings should be well controlled (i.e., to

make it comparable across different sensory modalities).

2.10.2 | Group-level analysis of resting-state FC

For group-level analysis of resting-state FC, the one-sample t-tests

were performed on Fisher r-to-z-transformed correlation matrices and

false discovery rate (FDR) correction was used for multiple compari-

sons (Benjamini & Hochberg, 1995; Benjamini & Yekutieli, 2001).

2.10.3 | Group-level analysis of ROI-wise GLM
activations

In order to examine the average activation during each condition, con-

trast maps extracted from subject-level ROI-wise GLM analyses were

entered into a second-level one-sample t-test to obtain group-level

results after FDR correction.

2.10.4 | Group-level analysis of task-modulated FC
strength

Group-level analysis of task-modulated FC was performed to com-

pare within- and between-network FC strength (PPI effects)

between conditions of interest. For each sensory modality, one-

sample t-test across subjects was performed for group effect of

each condition at each pair of ROIs with FDR correction. After the

group analysis, all the ROI pairs with significant group main effect

were extracted for each sensory modality. These ROI pairs were

grouped according to the selected brain parcellation atlas (within

and between these networks) and mean FC strength was calculated

for each sensory modality. Then one-way repeated-measure

ANOVA was performed to assess the difference of within- and

between-network FC strength among the four sensory modalities.

FDR correction was applied for multiple comparisons. For within-

or between-network FC which showed significant differences

among four modalities, pairwise comparisons were performed using

Bonferroni post hoc tests.

2.10.5 | Group-level analysis of network metrics of
task-modulated FC

To investigate different characteristics of network reconfiguration

during stimulation of four sensory modalities, one-way repeated-

measure ANOVA and Bonferroni post hoc tests were performed to

make a comparison of network metrics.
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2.10.6 | Permutation tests for cross-sensory-
modality prediction performance

To assess the statistical significance of the prediction accuracy for

each sensory modality, we performed nonparametric permutation

testing of 1,000 repetition times. In each iteration, the class labels of

the template matrices were randomly permuted. The real prediction

accuracy was then compared with the randomized distribution to

determine statistical significance.

3 | RESULTS

3.1 | Subjective ratings

Average VAS ratings for four sensory modalities are: 4.9 ± 1.5 for

nociceptive somatosensory stimulation, 4.7 ± 1.3 for non-nociceptive

somatosensory stimulation, 4.8 ± 1.1 for visual stimulation, and 4.6

± 1.2 for auditory stimulation. One-way repeated-measures ANOVA

of VAS ratings showed no significant difference among the four sen-

sory modalities (p = .124; as shown in Figure 1).

3.2 | GLM activations

According to ROI-wise GLM analysis results (as shown in Figure 2 and

Table S1), stimulation of different sensory modalities elicited activa-

tions in widely distributed and largely overlapping brain regions,

including the primary sensory cortices (such as the postcentral gyrus

for somatosensory perception, the superior temporal cortex for audi-

tory perception, and the occipital cortex for visual perception), and

brain areas related to higher cognitive functions (such as the cingulo-

opercular and fronto-parietal regions). On the other hand, deactiva-

tion was mainly observed in brain areas belonging to the default mode

network (such as the medial prefrontal cortex), the left precentral

gyrus, and the occipital cortex.

3.3 | PPI analysis results

3.3.1 | Resting-state FC and task-modulated FC

Figure 3 illustrates the raw and FDR-corrected matrices of resting-

state FC and task-modulated FC of four sensory modalities. During

resting-state, significant within-network FC was observed for all six

networks, and the default mode network is anticorrelated with other

networks, such as the cingulo-opercular and sensorimotor networks

(Figure 3, left panel). As shown in the right panel of Figure 3, the PPI

analysis revealed that four sensory modalities all elicited statistically

significant task-modulated FC. During the stimulation of each sensory

modality, both positive and negative FC were observed, and they all

covered many different brain networks. Different from the resting-

state FC, within-network FC turned negative during tasks. For all four

sensory modalities, positive FC was mainly observed between the

default mode network and other networks, including the frontal–pari-

etal, occipital and sensorimotor networks, while negative FC was

observed between the occipital and emotional networks.

Most previous PPI studies only focused on the brain regions

which showed task-related regional activations. In this study, inter-

mixed positive/negative task-modulated FC was observed not only

among activated brain regions but also among deactivated and even

nonactivated brain regions for all sensory modalities (as shown in

Figure S1). For increased FC of each sensory modality, there was a

clear-cut pattern showing that one node is a task-activated brain

region, and the other one can be activated, deactivated, or not acti-

vated. For example, nociceptive somatosensory stimulation elicited

significant activation over brain regions of the cingulo-opercular net-

work (e.g., the anterior cingulate cortex and anterior insula). We can

find increased connectivity between these activated regions and other

activated regions (e.g., the precuneus and post cingulate cortex of the

default mode network), deactivated regions (e.g., the ventral medial

prefrontal cortex of the default mode network), and nonactivated

regions (e.g., the anterior prefrontal cortex and inferior parietal cortex

of the fronto-parietal network).

3.3.2 | Comparison of task-modulated FC strength
across sensory modalities

To better illustrate the difference of task-modulated FC among four

sensory modalities, we compared the mean FC strengths (PPI effects)

using one-way repeated-measure ANOVA (see Figure 4). FC strengths

were calculated as the contrasts of interest (arbitrary units) using the

constructed GLM models for PPI analysis. Compared with the other

three sensory modalities, the nociceptive somatosensory stimulation

elicited relatively stronger positive FC between the cingulo-opercular

and sensorimotor networks, between the cingulo-opercular and

F IGURE 1 Visual analogue scale (VAS) ratings of four modalities
of stimulation: nociceptive somatosensory, non-nociceptive
somatosensory, visual, and auditory. Each dot denotes the averaged
VAS rating of one participant
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emotional networks, between the default mode and emotional net-

works, and between the sensorimotor and emotional networks. Dif-

ferently, non-nociceptive somatosensory stimulation elicited

significantly stronger negative FC within the cingulo-opercular and

default mode networks, between the cingulo-opercular and emotional

networks, and between the default mode and emotional networks.

During the visual stimulation, significant FC was observed between

the cingulo-opercular and occipital networks, between the sensorimo-

tor and occipital networks, and within the fronto-parietal network.

For the auditory stimulation, we also observed positive connections

between the cingulo-opercular and occipital networks, between the

cingulo-opercular and sensorimotor networks, but the FC strength

was relatively weaker than the other three sensory modalities. It

should be noted that no ROI pair within the emotional network was

obtained for significant group effect during nociceptive somatosen-

sory and visual stimulation, so the mean FC strength within the emo-

tional network was not compared among the four sensory modalities.

3.3.3 | Comparison of graph–theoretical network
metrics of task-modulated FC

For comparison of graph–theoretical network metrics of task-

modulated FC networks, binary unidirectional networks were built by

thresholding the absolute task-modulated FC matrix at 10%, 20%, and

30% sparsity levels, respectively. Using the same sparsity levels could

ensure that the differences observed in the network metrics are not

due to the difference in the number of edges. According to the results,

one-way repeated-measures ANOVA revealed a significant effect of

sensory modality for modularity at sparsity levels of 10% (F = 5.440,

p = .001) and 20% (F = 3.759, p = .012). Furthermore, significant post

hoc pair-wise differences of modularity were observed between noci-

ceptive somatosensory and visual, between nociceptive somatosen-

sory and auditory, and between non-nociceptive somatosensory and

auditory (Figure 5a). However, no significant difference was observed

for the other two network metrics: the global efficiency and clustering

coefficient (Figure 5b,C).

3.3.4 | Cross-sensory-modality prediction based on
task-modulated FC

Table 1 shows the performance of using the whole-brain task-

modulated FC matrices as features to predict sensory modality. The

successful rate was 44% (p < .001) for nociceptive somatosensory,

25% (p = .428) for non-nociceptive somatosensory, 38% (p = .003)

for visual, and 40% (p = .001) for auditory. Except for non-

nociceptive somatosensory, all other three sensory modalities had

F IGURE 2 Region of interest (ROI)-wise general linear model (GLM) analysis results. Activated and deactivated ROIs during nociceptive, non-
nociceptive, visual, and auditory stimulation. Significant results were identified at p < .05 with FDR correction. The size of each node (ROI) is in
proportion to the mean contrast values of the ROI
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prediction accuracies significantly greater than the chance

level (25%).

4 | DISCUSSION

In this study, we hypothesized that regional and global features of

task-modulated FC in a number of brain networks, such as the default

mode and cingulo-opercular networks, would show distinguishing dif-

ferences for nociceptive pain compared with other sensory modalities.

To validate this hypothesis, we characterized the differences in task-

modulated FC (as measured by PPI) elicited by stimuli of four sensory

modalities (nociceptive somatosensory, non-nociceptive somatosen-

sory, visual, and auditory), which were delivered in random order. Our

results indicate positive/negative task-modulated FC was distributed

over widespread areas for all four sensory modalities, and task-

modulated FC of nociceptive somatosensory showed significantly dif-

ferent regional and global task-modulated FC features from those of

the other three sensory modalities.

4.1 | Task-modulated local activity and FC

Neuroimaging studies of pain revealed distributed brain regions of

regional activations (Duerden & Albanese, 2013), and found that

different sensory modalities elicited extremely similar responses,

which mainly reflect multimodal brain processes crucial for all sensory

systems (Mouraux et al., 2011). In accordance with that, GLM activa-

tion analysis here also revealed that stimuli of pain and other three

sensory modalities elicited very similar brain responses all over the six

brain networks (Mouraux et al., 2011). Specifically, similar to nocicep-

tive somatosensory stimuli, the application of the other three types of

sensory modalities also produces significant activations within the

“pain matrix,” such as the thalamus, insula, cingulate cortex. Besides,

deactivations were observed in regions of the default mode network,

such as the medial prefrontal cortex, as well as in the lateral occipital

regions, contralateral somatosensory areas, and premotor area. Previ-

ous studies suggested the functional dissociation between activated

and deactivated brain regions, and the deactivations were normally

interpreted in terms of shifting attention, cross-modal inhibition, and

withdrawal of unnecessary movement (Kong et al., 2010). An in-depth

investigation of GLM-based activation/deactivation is definitely useful

and interesting, but it is beyond the scope of this work (focusing on

task-modulated FC). Future experiments and analyses will be needed

to clarify the functional dissociation between task-modulated FC pat-

terns of activated and deactivated regions.

Previously published multisensory studies were mainly focused

on the comparison of regional activations (Iannetti & Mouraux, 2010;

Legrain et al., 2011; Liang, Mouraux, Hu, & Iannetti, 2013; Liang, Su,

Mouraux, & Iannetti, 2019), but only investigating local activation

F IGURE 3 Left panel: whole-brain resting-state functional connectivity (FC) matrices, unthresholded (top row) and thresholded (bottom row;
p < .05, FDR corrected). Right panel: whole-brain task-modulated FC matrices for nociceptive somatosensory, non-nociceptive somatosensory,
visual, and auditory, unthresholded (top row) and thresholded (bottom row; p < .05, FDR corrected). The color bars on the left and on the top side
of each matrix represent 6 functional brain networks: (1) cingulo-opercular, (2) default mode, (3) fronto-parietal, (4) occipital, (5) sensorimotor, and
(6) emotional networks
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patterns is not sufficient to characterize the responses of the complex

and interconnected brain (Bullmore & Sporns, 2012; Cole et al., 2013).

Pain studies using high-temporal-resolution imaging techniques, such

as electroencephalography and magnetoencephalography, have

shown that somatosensory stimulation could elicit rapid changes of

FC among elicited neural sources (Hu, Zhang, & Hu, 2012). Therefore,

segregated brain regions without information transmission are insuffi-

cient to produce the perception of pain, and only considering local

activations ignore the important functional communication between

regions during pain perception.

In the field of pain research, two FC analysis approaches have

been applied to task-based fMRI studies: DCM and PPI. Song

et al. (2021) used DCM approach to investigate the hierarchical orga-

nization for the processing of nociceptive and tactile information in

the somatosensory system. For DCM analysis, pre-defined ROIs and

clear hypotheses are needed. Specifically, researchers need to define

multiple and competing statistical models based on different assump-

tions regarding how predefined ROIs interact and how experimental

manipulations modulate those interactions (Friston, Harrison, &

Penny, 2003). Therefore, DCM cannot be used to check whole-brain

FC changes during the task. Also, the selection of DCM models and

ROIs has a huge effect on the results. For example, two multisensory

comparison studies of pain applied DCM to test whether nociceptive

and non-nociceptive information is processed in the primary and sec-

ondary somatosensory cortices in parallel, and they achieved largely

different results (Khoshnejad, Piché, Saleh, Duncan, & Rainville, 2014;

Liang, Mouraux, & Iannetti, 2011). PPI can also be used to estimate

FC changes during a task and ROI-based PPI analysis has been

adopted in previous neuroimaging works to examine task-modulated

FC in pain (Ploner et al., 2011; Reicherts et al., 2017). For example,

consistent with our results, a stronger task-modulated FC effect was

observed between the amygdala of the emotional network and the

F IGURE 4 Top panel: averaged task-modulated functional connectivity (FC) strength (psychophysiological interaction [PPI] effects) for each
sensory modality (diagonal = within-network, off-diagonal = between-network), and FC strength was calculated as the contrasts of interest using the
constructed general linear model (GLM) models for PPI analysis; no region of interest (ROI) pairs within the emotional network was obtained for
significant group effect during nociceptive somatosensory and visual stimulation (marked as “N/A”). The strength of task-modulated FC was indicated
in the color bar. Bottom panel: within- and between-network comparisons with significant differences among four sensory modalities were shown; for
each comparison, four colorful bars represent the mean task-modulated FC strength of each sensory modality (error bars represent the SD); p-values
were obtained from one-way repeated-measure ANOVA analysis and Bonferroni post hoc paired comparisons (* p < .05, **p < .005)

LI ET AL. 1069



anterior insula of the cingulo-opercular network during acute pain

perception (Reicherts et al., 2017). The ROI-based PPI analysis is usu-

ally done by choosing activation regions of the selected contrast of

interest because it assumes that only activated or deactivated brain

regions have changed FC. However, consistent with previous studies,

we found that there was no clear relationship between regional acti-

vations (activated/deactivated/nonactivated) and FC changes

(increased/decreased; Di & Biswal, 2019). Therefore, the whole-brain

PPI, as conducted in the current study, could expand the coverage of

brain regions under investigation, thus enabling the identification of

more task-related regions and connections during stimulation of noci-

ceptive pain and other sensory modalities.

4.2 | Task-modulated FC preferentially elicited by
nociceptive pain

Task fMRI experiments and whole-brain PPI analysis allow us to inves-

tigate FC changes, within and between different brain networks,

related to pain processing. During the resting state, there is stronger/

positive within-network FC and weaker/negative between-network

FC (Bullmore & Sporns, 2012; Chai, Castañ�on, Ongür, & Whitfield-

Gabrieli, 2012; Greicius, Krasnow, Reiss, & Menon, 2003). According

to the whole-brain PPI analysis results, external sensory stimulation

alters the baseline network FC and produces a task-specific FC pat-

tern (Petersen & Sporns, 2015), that is, increases of between-network

FC and decrease of within-network FC. Decreased within-network FC

and increased between-network FC may reflect a rebalance to ensure

efficient communication at the whole-brain level (Di & Biswal, 2019).

More specifically, compared with non-nociceptive somatosensory,

nociceptive somatosensory stimulation elicited more wide-spread and

stronger FC within the cingulo-opercular network, between the

default mode and emotional networks, and between the cingulo-

opercular and emotional networks; compared with visual and auditory

stimulation, nociceptive somatosensory stimulation elicited stronger

FC between the cingulo-opercular and sensorimotor networks.

The default mode network is perhaps the most studied large-scale

brain network and its definition was based on the observation of

F IGURE 5 Comparison of three network properties (modularity, global efficiency, and clustering coefficient) of task-modulated functional

connectivity (FC) among four different sensory modalities. The absolute psychophysiological interaction (PPI) effect matrix was thresholded at
three sparsity levels (10, 20, and 30%), and the network properties were calculated separately. * p < .05 for Bonferroni corrected post hoc tests.
The error bars represent the SD of each group

TABLE 1 The confusion matrix showing the results of cross-sensory modality prediction using psychophysiological interaction (PPI) matrices

Predicted class

Nociceptive
somatosensory

Non-nociceptive
somatosensory Visual Auditory

Successful rate p-value Successful rate p-value Successful rate p-value Successful rate p-value

Actual

class

Nociceptive

somatosensory

44% <.001** 20% .824 18% .921 19% .873

Non-nociceptive

somatosensory

28% .253 25% .428 23% .677 25% .431

Visual 21% .761 23% .642 38% .003** 19% .876

Auditory 14% .988 33% .049* 14% .989 40% .001**

Note: The statistical significance p-value was calculated based on 1,000 permutations (* p < .05, **p < 0.005).
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consistently decreased activities during goal-oriented tasks (Andrews-

Hanna, Reidler, Sepulcre, Poulin, & Buckner, 2010; Raichle

et al., 2001). Default mode network generally has negative FC with

other task-positive networks during resting-state, but it had wide-

spread positive between-network task-modulated FC during stimula-

tion of all four sensory modalities. This supports the task-general role

of the default mode network as proposed in (Utevsky, Smith, &

Huettel, 2014). But, task-positive networks may have different interac-

tions with the default mode network during the perception of different

sensory modalities. For example, compared with the baseline, informa-

tion integration between the default mode network and emotional net-

work increased during the nociceptive somatosensory stimulation but

decreased during non-nociceptive somatosensory stimulation. The

default mode network is involved in general monitoring of the environ-

ment and the fulfillment of its function should be accompanied by

increased FC with regions of other brain networks (Elton & Gao, 2015).

Hence, for nociceptive somatosensory, the task-modulated FC

between the default mode network and the emotional network may be

related to the affective dimension of nociceptive pain processing

(Neugebauer, Li, Bird, & Han, 2004; Phelps & LeDoux, 2005). For non-

nociceptive somatosensory stimulation, the task-modulated FC

between the default mode network and the emotional network was

negative. The decreased task-modulated FC may suggest less interfer-

ence from task-unrelated regions to ensure more efficient communica-

tions among task-related regions (Di & Biswal, 2019). Therefore, the

non-nociceptive somatosensory showed positive task-modulated FC

for the sensorimotor network and negative task-modulated FC for the

emotional network, since the sensory component is more prominent

for non-nociceptive somatosensory information processing.

The cingulo-opercular network, centered on the anterior insula and

the anterior cingulate cortex, is usually referred to as a “salience” net-
work and closely related to pain perception (Borsook et al., 2013;

Seeley et al., 2007). As one of the most consistently observed task-

positive networks, the cingulo-opercular network is generally believed

to undertake the fundamental function of tonic alertness by integrating

sensory information to assess the homeostatic relevance or “salience”
of internal and external stimuli (Sadaghiani & D'Esposito, 2015). The

salience network serves as a “switch” between the default-mode net-

work and other task-positive networks, because it evaluates extrinsic

stimuli as worthy or unworthy of further attentional resources

(Menon, 2015; Sridharan, Levitin, &Menon, 2008; Zhou et al., 2018). In

the present study, stronger task-modulated FC between the cingulo-

opercular and sensorimotor networks was observed during somatosen-

sory stimulation. This is an intuitive finding because it is well

established that both nociceptive and non-nociceptive somatosensory

inputs are processed in the somatosensory cortex (Mountcastle, 2005).

Similarly, visual stimulation-induced stronger task-modulated FC

between the cingulo-opercular and occipital networks. Furthermore,

both visual and nociceptive somatosensory stimulation-induced signifi-

cantly increased task-modulated FC between the occipital, cingulo-

opercular, and sensorimotor networks. This can be explained by the

multisensory visual-motor integration and the involvement of the

occipital areas in pain processing through descending inhibitory

mechanism (Reis et al., 2010). It is worth noting that, as compared with

the other three sensorymodalities, nociceptive somatosensory stimula-

tion elicited enhanced task-modulated FC between the cingulo-oper-

cular, sensorimotor, and emotional networks. This may be explained by

the inherently highly salient content of nociceptive input, which is

related to both the sensory-discriminative and affective-motivational

dimensions of the complex experience of pain (Apkarian et al., 2005).

Similar to the cingulo-opercular network, the fronto-parietal net-

work is another consistently observed brain network that involves

task-positive regions (Dosenbach et al., 2007; Seeley et al., 2007). The

fronto-parietal network is a control-type network and it is involved in

a wide variety of tasks by initiating and modulating cognitive control

abilities (Dosenbach, Fair, Cohen, Schlaggar, & Petersen, 2008). For all

four sensory modalities, significant positive task-modulated FC was

observed between the cingulo-opercular and fronto-parietal net-

works. This supports the recognized role of these frontal and parietal

areas in attention: they are involved in selectively biasing the cortical

processing of incoming sensory inputs according to their salience and

relevance (Corbetta & Shulman, 2002; Yantis, 2008).

By comparing graph-theory network configurations of the task-

induced coactivation networks and resting-state networks, a previous

study found that the brain during task exhibits smaller modularity and

greater small-worldness that facilitate both regional and global informa-

tion transmission (Xin, Suril, Kim, & Biswal, 2013). Small modularity has

been observed during noxious somatosensory stimulation compared with

innocuous somatosensory stimulation in a research study, suggesting pain

integrates brain systems into fewer functional communities (Zheng

et al., 2020). Here we made a further comparison of global network prop-

erties for task-modulated FC networks among different sensory modali-

ties. FC networks modulated by nociceptive/non-nociceptive

somatosensory stimulation showed smaller modularity compared with

visual and auditory, and this could be related to the more high-level cogni-

tive activities involved during the perception of somatosensory stimula-

tion (Gonzalez-Castillo & Bandettini, 2018; Kitzbichler, Henson, Smith,

Nathan, & Bullmore, 2011; Vatansever, Menon, Manktelow, Sahakian, &

Stamatakis, 2015). At present, the use of graphic network metrics in task-

modulated FC network research is still in its infancy, and our results here

provide more evidence that graphic network analysis is valuable for cap-

turing cognitive processes during task conditions.

This work also used the task-modulated FC patterns (whole-brain

PPI matrices) to predict the sensory modality that the participants per-

ceived, with the aim to validate the reliability of PPI features. Because

fMRI measures suffer from low reliability in general (Elliott et al., 2020),

PPI, as a higher-order measure than conventional task activations and

FC, may also have low reliability. Indeed, a study has demonstrated very

limited reliability of PPI effects in a simple visual task (Di &

Biswal, 2017). To show the PPI patterns elicited by different sensory

modalities were accurate, reliable, and closely related to corresponding

sensory modalities, we performed cross-modality prediction analysis

using the whole-brain PPI effects as features. We found better-than-

chance classification accuracies, especially for the nociceptive somato-

sensory stimulation, supporting the potential use of multivariate statis-

tics to reflect behavioral phenotypes.
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4.3 | Limitations and future work

Several limitations of this study should be mentioned here. First, the

task-modulated FC patterns were inferred from PPI effects, which

can only estimate unidirectional relationships among brain regions

and is unable to reveal directional (causal) information flow among

multiple brain regions. As mentioned earlier, DCM can characterize

causal relationships, but it can hardly be used for the whole brain.

Multivariate Granger causality analysis may be a potential tool to infer

the directional relationship among brain regions in a task, but it also

suffers from the high dimensionality and a limited number of samples

of fMRI. New and efficient whole-brain directional FC estimation

methods will advance our knowledge about task-modulated FC during

nociceptive perception. Second, the cerebellar network was not

included in the whole-brain PPI analysis here because of the incom-

plete coverage of the cerebellum of several subjects. Third, because

the resting-state FC and task-modulated FC were calculated by two

different methods, it is inappropriate to directly compare these two

types of FC in terms of FC strength or graphic metrics. Fourth, mathe-

matically, the PPI approach is based on a regression model, and the

task-modulated FC matrix is not symmetric, depending on whether

one region is used as a seed (independent variable) or a dependent

variable. Indeed, if FC between two regions is modulated by a task

(no matter in which direction or in both directions), a PPI effect is

likely significant no matter which region is used as seed or dependent

variable. Therefore, it is a common practice in current literature to

symmetrize a PPI matrix without considering the difference between

lower and upper diagonal elements. There is indeed a certain degree

of difference in the PPI effects between the two directions (see

Figures S2 and S3), and the symmetrization procedure might cause

the loss of some useful information about the network structure of

task-modulated FC. Therefore, analysis of the PPI effects without

symmetrizing might obtain different results. However, in order to

keep consistency with literature for a fair comparison and to ensure

the interpretability of the results, the PPI matrices were symmetrized

by averaging corresponding lower and upper diagonal elements. Last

but not least, the findings of this study are potentially useful in the

development of a new and objective tool of pain assessment in clini-

cal practices because these task-modulated FC patterns can effec-

tively distinguish the perception of pain from other types of sensory

perception. However, the current results were obtained with healthy

subjects and transient stimuli of nociceptive pain and other sensory

modalities, which limit the translational applications of this study.

Future studies are needed to investigate task-modulated FC related

to pain perception in patients with chronic pain.

5 | CONCLUSION

We performed a multisensory comparative study of whole-brain task-

modulated FC in healthy subjects, with the aim to reveal whether

nociceptive pain could elicit different task-modulated FC patterns

from other sensory modalities. We identified broader involvement of

brain networks for all four sensory modalities and found differences in

regional and global features of task-modulated FC networks for noci-

ceptive somatosensory, as compared with the other three sensory

modalities. Specifically, nociceptive somatosensory stimulation elicits

more widespread and stronger within-/between-network task-

modulated FC of the default mode, the cingulo-opercular, and the

fronto-parietal networks, and the task-modulated FC network elicited

by nociceptive stimulation also has smaller modularity. The results

obtained in the present study could provide new insights from the

perceptive of task-modulated FC networks into the neural mecha-

nisms of pain processing.
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