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Abstract
Objective  To develop and validate a computed tomography (CT)-based deep learning radiomics model to predict 
treatment response and progression-free survival (PFS) in patients with unresectable hepatocellular carcinoma (uHCC) 
treated with transarterial chemoembolization (TACE)-hepatic arterial infusion chemotherapy (HAIC) combined with 
PD-1 inhibitors and tyrosine kinase inhibitors (TKIs).

Methods  This retrospective study included 172 patients with uHCC who underwent combination therapy of 
TACE-HAIC with TKIs and PD-1 inhibitors. Among them, 122 were from the Interventional Department of the Harbin 
Medical University Cancer Hospital, with 92 randomly assigned to the training cohort and 30 cases randomly assigned 
to the testing cohort. The remaining 50 cases were from the Interventional Department of the Affiliated Fourth 
Hospital of Harbin Medical University and were used for external validation. All patients underwent liver enhanced CT 
examination before treatment. Residual convolutional neural network (ResNet) technology was used to extract image 
features. A predictive model for treatment response of combination therapy and PFS was established based on image 
features and clinical features. Model effectiveness was evaluated using metrics such as the area under the receiver 
operating characteristic (ROC) curve (AUC), concordance index (C-index), accuracy, precision, and F1-score.

Results  All patients had a median follow-up of 25.2 months (95% CI 24.4–26.0), with a median PFS of 14.0 months 
(95% CI 8.5–19.4) and a median overall survival (OS) of 26.2 months (95% CI 15.9–36.4) achieved. Objective response 
rate (ORR) and disease control rate (DCR) was 41.0% and 55.7%, respectively. In the treatment response prediction 
model, the AUC for the training cohort reached 0.96, with an accuracy of 89.5%, precision of 85.6%, and F1-score 
of 0.896; the AUC for the testing cohort was 0.87, with an accuracy of 80.4%, precision of 74.5%, and F1-score of 
0.802. The AUC of the external validation cohort was 0.85, with accuracy of 79.1%, precision of 73.6%, and f1-score of 
0.784. In the PFS prediction model, the predicted AUC for 12 months, 18 months, and 24 months-PFS in the training 
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Introduction
Hepatocellular carcinoma (HCC) represents the most 
common malignant tumor worldwide, characterized 
by poor prognosis and limited treatment options, espe-
cially for patients with unresectable HCC (uHCC) 
[1–3]. According to the Barcelona Clinic Liver Cancer 
(BCLC) staging guidelines, transarterial chemoembo-
lization (TACE) serves as standard treatment modality 
for intermediate-stage HCC and is widely utilized in the 
treatment of uHCC in some countries [4]. Recently, the 
combination of TACE and HAIC has emerged as a sig-
nificant therapeutic approach for patients with uHCC, 
markedly improving survival rates. Studies have dem-
onstrated that the combination of TACE and HAIC has 
better therapeutic effects on unresectable HCC [5, 6]. 
TACE-HAIC can effectively manage HCC; however, its 
overall efficacy is often compromised by tumor recur-
rence and metastasis. Ischemia and hypoxia caused by 
embolism and tumor necrosis may lead to an increase in 
vascular endothelial growth factor (VEGF) and angiogen-
esis, which enhances the likelihood of tumor recurrence 
and metastasis. The treatment landscape for HCC has 
recently transitioned to include immunotherapy combi-
nations, with PD-1 inhibitors and tyrosine kinase inhibi-
tors (TKIs) demonstrating potential synergistic effects 
when combined with TACE-HAIC [7–9]. However, due 
to HCC’s high heterogeneity and the absence of precise 
biomarkers for predicting therapeutic efficacy, consider-
able variability exists in the effectiveness of these com-
bination treatments. Consequently, there is currently no 
accurate and effective method to screen patients who 
may benefit from these combination therapies.

Recently, radiomics has demonstrated great potential 
in the diagnosis of liver diseases, analyzing tumor biolog-
ical characteristics, and evaluating prognosis by convert-
ing medical images into quantitative data [10–12]. Due to 
its high spatial resolution and rapid imaging capabilities, 
computed tomography (CT) is frequently employed in 
radiomics research [13]. Studies have indicated that the 
preoperative use of CT radiomics features, when com-
bined with clinical features, exhibits excellent perfor-
mance in predicting the efficacy of TACE in patients with 
HCC. The area under the curve (AUC) of the prediction 
model in the internal and external validation groups was 

0.94 and 0.90, respectively [14]. Preoperative CT imag-
ing omics characteristics can accurately predict the effi-
cacy and overall survival (OS) of HAIC for advanced 
unresectable colorectal cancer with liver metastasis [15]. 
Moreover, similar studies have been reported on progno-
sis prediction in surgical resection [16], immunotherapy 
[17], and targeted therapy [18, 19], thereby providing a 
feasible evaluation tool for patients before treatment. 
However, thus far, no studies focusing on the additional 
benefits and prognosis prediction of CT radiomics fea-
tures in TACE-HAIC combined with PD-1 inhibitors and 
TKIs have yet been published.

This study seeks to develop a deep learning model 
based on clinical and radiomics features to predict the 
efficacy of TACE-HAIC combined with PD-1 inhibi-
tors and TKIs for treating unresectable HCC, aiming to 
enhance the accuracy of comprehensive treatment pre-
diction and optimize patient management and prognosis.

Materials and methods
Study population
This retrospective study was approved by the Ethics 
Committee of Harbin Medical University Cancer Hospi-
tal (Ethics Number: 2023-281-IIT). Patients with unre-
sectable HCC treated with TACE-HAIC and TKIs and 
PD-1 inhibitor treatment at the Harbin Medical Uni-
versity Cancer Hospital and Affiliated Fourth Hospital 
of Harbin Medical University between January 2020 to 
December 2022 were included. The diagnosis of HCC 
was based on the clinical or pathological diagnostic cri-
teria in the Chinese Guidelines for the Diagnosis and 
Treatment of Primary Liver Cancer [20].

The inclusion criteria were as follows: (1) HCC con-
firmed by pathology or clinical examination in two hos-
pitals from January 2020 to December 2022; (2) had 
neither received previous treatment nor were suitable 
for radical surgery, transplantation, or radical ablation; 
(3) aged > 18 years; (4) an Eastern Cooperative Oncol-
ogy Group (ECOG) score of 0 or 1 and Child–Pugh grade 
of A or B; (5) lesions with imaging reproducibility; and 
(6) complete raw data from enhanced CT scans were 
obtainable within 7 days prior to treatment. Exclusion 
criteria included: (1) abnormal liver and kidney func-
tion and coagulation function that cannot be corrected; 

cohort were 0.874, 0.809, 0.801, respectively. The AUC of testing cohort were 0.762, 0.804, 0.792. The AUC of external 
validation cohort were 0.764, 0.796, 0.773. The C-index of the combination model, radiomics model, and clinical 
model were 0.75, 0.591, and 0.655, respectively. The calibration curve demonstrated that the combination model was 
significantly superior to both the radiomics and clinical models.

Conclusions  The study provides a CT-based radiomics model that can predict PFS for patients with uHCC treated 
with TACE-HAIC combined with PD-1 and TKIs.
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(2) had clear contraindications for the use of TKIs and 
PD-1 inhibitors in cases of uncorrectable cardiopulmo-
nary dysfunction; (3) clear contraindications for TACE 
and HAIC; and (4) expected survival time of < 3 months 
(supplemental Fig. 1).

Clinical information for patients prior to treatment was 
retrospectively collected, including age, gender, hepati-
tis status, cirrhosis, Child–Pugh grading, ECOG score, 
maximum tumor diameter, number of tumors, pres-
ence of capsule, diffuse distribution, vascular invasion 
(portal vein tumor thrombus, hepatic vein, and inferior 
vena cava invasion), extrahepatic metastasis, lymph node 
metastasis, CNLC staging, BCLC staging, and AFP level.

Treatment process
TACE-HAIC: TACE treatments utilized the femo-
ral artery approach. A super selective intubation tech-
nique was employed for embolization, with a mixture of 
iodized oil (5–20 mL) and pirarubicin (40–60 mg) as the 
embolic agent. Appropriate embolization was necessary 
to achieve incomplete devascularization for tumors with 
a single blood supply. For tumors supplied by multiple 
blood vessels, conventional embolization or complete 
devascularization was performed on blood vessels with 
a lower tumor load, and appropriate embolization was 
performed on blood vessels with a higher tumor load. 
After embolization, a catheter was placed at the begin-
ning of the tumor blood supply vessel for HAIC, which is 
performed following TACE. After 2–3 treatment cycles, 
once imaging tests show the tumor lacks significant 
activity and hematological indicators like AFP and abnor-
mal thrombin levels normalize, TACE treatment ceases, 
and TKI and PD-1 inhibitor therapy proceeds. The 
mFOLFOX regimen containing oxaliplatin as the chemo-
therapy regimen was selected. The mFOLFOX regimen 
comprised arterial infusion of oxaliplatin 85 mg/m2 for 
2 h, calcium folinate 400 mg/m2 for 1 h, fluorouracil 400 
mg/m2 for arterial infusion, and continuous arterial infu-
sion of 2,400 mg/m2 for 46 h. Dosage adjustments will be 
based on the number of treatments, laboratory test out-
comes, and clinical signs. The abovementioned operation 
should be repeated every 3–4 weeks. The median num-
ber of treatment sessions in this study was 3 ± 1 days.

TKIs and PD-1 inhibitors: The TKIs used in this study 
included oral administration of donafenib 0.2  g twice 
daily; lenvatinib 8 mg (body weight ≤ 60 kg)/12 mg (body 
weight > 60  kg) orally administered once daily; and 
sorafenib 0.4 g orally administered twice daily. The ICIs 
used in this study included camrelizumab, sintilimab, and 
tislelizumab which were all intravenously administered at 
a dose of 200 mg every 21 days. Systemic treatment was 
suspended during intervention therapy. Consider dose 
reduction, temporary discontinuation of medication, or 

switching to second-line agents in cases of intolerable 
toxic side effects or confirmed disease progression.

Follow-up and outcomes
Follow-up assessments were conducted every 6 to 9 
weeks after the combination therapy, including radiologi-
cal examinations (enhanced CT or MRI scan of the abdo-
men and plain CT scan of the chest and abdomen) and 
laboratory examinations. Two radiologists with senior 
professional titles reviewed all collected imaging data, 
and the efficacy of the treated tumors was evaluated 
according to the Modified Response Evaluation Crite-
ria in Solid Tumors (mRECIST). Efficacy was evaluated 
using objective response (OR), no response (NR), com-
plete response (CR), partial response (PR), disease stabil-
ity (SD), and disease progression (PD). OR was defined 
as complete response and partial response (CR + PR). 
NR was defined as disease stability and disease progres-
sion (SD + PD). An inconsistent efficacy evaluation was 
resolved through consultation between radiologists 
and clinical doctors. The date of the last follow-up was 
October 1, 2023. The assessment of Treatment-Related 
Adverse Events (TRAEs) is conducted based on the Com-
mon Terminology Criteria for Adverse Events (CTCAE), 
Version 5.0.

Image acquisition and imaging processing
The enhanced CT images of the liver were obtained from 
the Picture Archival and Communication System of 
Harbin Medical University Cancer Hospital and Affili-
ated Fourth Hospital of Harbin Medical University. All 
patients underwent GE (Optima) 64-slice spiral CT or 
Siemens (SOMATOM Definition Flash) dual-source spi-
ral CT.

The CT raw DICOM format files of the 122 patients 
from the Harbin Medical University Cancer Hospital 
were imported into 3D Slicer software (version: 5.5.0, 
https://www.slicer.org/). Two experienced imaging 
experts, one with 10 years of experience and the other 
with 20 years of experience, will independently identify 
the regions of interest of all tumors. When there were 
significant differences in the regions of interest drawn 
by the two, they negotiated to resolve the disagreement. 
If the disagreement could not be resolved, the region 
of interest identified by the senior expert prevailed. To 
determine the region of interest (ROI) of the tumor, two 
experienced radiologists determined the entire sequence 
of the CT images (including 2,991 HCC slices). All con-
flicting opinions were resolved through negotiation, and 
the resulting ROI included the complete tumor and sur-
rounding tissue.

In the Python 3.9 environment, the dicom2nifti library 
converted DICOM files into NIfTI format. Following this, 
the SimpleITK library was employed to process the NIfTI 

https://www.slicer.org/
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files and extract imaging slices. After filtering out slices 
without a region of interest (ROI), the dataset retained 
consisted of 2,991 valid slices. Each slice was linked to a 
unique DICOM image ID, which was then matched with 
corresponding clinical data, enabling the construction 
of a dataset suitable for the ResNet50 + MLP network 
architecture. Fine-tuning this structure on the dataset 
allowed for the determination of optimal model weights. 
Each slice associated with the same ID was input into this 
structure, and the output from the final layer on the left 
channel, representing the extracted image features, was 
averaged across slices to obtain the imaging features for 
that specific ID.

Construction and evaluation of the ResNet50 + MLP model
In traditional convolutional neural network (CNN) struc-
tures, as the number of layers increases, gradient vanish-
ing and exploding problems become more severe, which 
limits the depth design of CNN. Residual CNN (ResNet) 
introduces residual learning, which enables the network 
to achieve identity mapping deeply through skip con-
nections and shortcuts, effectively solving the problems 
of vanishing and exploding gradients. Skip connections 
allow a portion of gradients to bypass the nonlinear layer 
during backpropagation and propagate directly, thereby 
making network training faster and more effective. Given 
its superior feature extraction capability and efficient 

performance, ResNet has been widely used in image 
classification, object detection, and image segmentation. 
This study was based on ResNet50 and used two input 
channels (images and clinical features) for predicting 
the efficacy of tumor treatment according to the mRE-
CIST evaluation criteria. The model structure is shown 
in Fig. 1.

To improve the fitting speed of the model and address 
the scarcity of CT image data, transfer learning was used 
to handle imbalanced datasets and sparse sample learn-
ing problems. Model performance and generalization 
ability are enhanced by pretraining on the ImageNet 
database. ImageNet has 14 million images and thousands 
of categories, making transfer learning an extremely 
effective tool when resources are limited. To better meet 
our needs, we froze the first 49-layer parameters of 
ResNet50 in the pre-trained network, which can signifi-
cantly improve the training speed of the network model. 
An additional multilayer perceptron (MLP) layer was 
added. Using MLP to reduce the dimensionality of fea-
ture maps from ResNet50 and to extract abstract features 
through multiple hidden layers identifies the most signifi-
cant information in the image. At the end of the network, 
the filtered image features are concatenated with clinical 
features, and the task is classified using a fully connected 
layer. During the training process, the Adaptive Moment 
Estimation (Adam) algorithm optimizes the weights of 

Fig. 1  Architecture of RseNet50 + MLP model
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the network parameters. The Adam algorithm combines 
the momentum algorithm and the RMSprop algorithm, 
which has better stability in complex and convex opti-
mization problems. By fine-tuning the parameters, the 
learning rate is set to 1e-5, and to ensure that the model 
can fully cover the data and achieve efficient training, 
the number of epochs is 100. The loss function employs 
binary cross-entropy loss and ultimately calculates the 
classification probability of the output layer using the 
SoftMax function on the model’s output. Choose AUC 
and accuracy to evaluate model performance. Among 
172 patients, 122 had CT data divided into training and 
testing cohorts in a 3:1 ratio, with the other 50 serving as 
external validation cohort. The training loss of the model 
and the ROC curves of the training, testing and external 
validation cohort were shown in Fig. 2.

Construction of the nomogram for PFS
Compared with the extensive range of radiomics features 
extractable from medical imaging data including shape 
features, first-order statistical features, texture features, 
and high-order statistical features, the feature extraction 
and filtering capabilities of the ResNet50 + MLP model 
prove more suitable for our study. On the one hand, it 
eliminates the need for extensive analysis and filtering 
of radiomics features. On the other hand, residual struc-
tures effectively associate shallow features with deep fea-
tures, and the MLP algorithm more effectively filters out 
the best abstract features (Fig. 3).

First, the image feature extraction module, represent-
ing the encoding stage in ResNet50 + MLP, is loaded. 
The corresponding feature image is obtained after input-
ting the sliced image into the feature extraction module. 
Subsequently, it is combined with the processed clini-
cal features and the results in Resnet50 + MLP (the clas-
sification probability of mRECIST) to form a covariate. 
Multivariate Cox regression analyzed covariates and ulti-
mately determined the variables required to construct 
the model.

The Kaplan-Meier curve evaluated PFS, and Cox 
regression analyzed the univariate analysis of all clinical 

features. The risk factors affecting patient survival were 
analyzed using Cox regression. To draw nomograms for 
predicting patient prognosis, the RMS software package 
of the R language (version: 4.3.1, ​h​t​t​p​s​:​/​/​w​w​w​.​r​-​p​r​o​j​e​c​t​.​o​
r​g​/​​​​​) was used.

Statistical analysis
Statistical analysis was conducted using Statistical Pack-
age for the Social Sciences (version 29, IBM, Armonk, 
NY, USA) and Python v3.11.5 software. The sample 
size estimation was performed using PASS 15 software 
and involved a single-sample log-rank test. To deter-
mine whether data conformed to a normal distribution, 
the Kolmogorov–Smirnov test was utilized; quantita-
tive data were expressed as means ± standard deviation 
(SD). Quantitative data comparisons were made using 
the independent sample t-test or Mann–Whitney U-test. 
Counting data comparisons utilized the chi-square test. 
Univariate and multivariate Cox regression analyses were 
employed to screen for clinical variables and establish 
regression models. The Kaplan–Meier method was uti-
lized to plot the survival curve. The prediction of treat-
ment response relied on the AUC, and the accuracy, 
precision, and F-1 score were utilized to evaluate the 
effectiveness of the model. For the PFS prediction model, 
performance evaluation utilized the ROC curve and 
C-index (consistency index). Bilateral P < 0.05 was indica-
tive of a statistically significant difference.

Results
Clinical characteristics of the patients
A total of 122 HCC patients participated in the study, 
comprising 92 in the training set and 30 in the inter-
nal testing set (Supplemental Fig.  1). No significant 
differences were observed in clinical characteristics 
between the training set and the internal testing set. Of 
these patients, 104 (85.2%) and 18 (14.8%) were male 
and female patients, respectively, with a median age 
of 54 ± 10.2 years. Of the patients, 82 (67.2%) had cir-
rhosis. Hepatitis B patients comprised 76.2%, hepatitis 
C patients comprised 7.4%, and non-hepatitis patients 

Fig. 2  The ROC curves of the training, testing and external validation cohort
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comprised 16.4%. Moreover, 105 (86.1%) cases of Child–
Pugh grade A were recorded, including 61 (50.0%) and 44 
(36.1%) cases of A5 and A6, respectively, and 17 (13.9%) 
cases presented Child–Pugh grade B. Other clinical fea-
tures are shown in Table 1.

The median follow-up time was 25.2 (95% confidence 
interval [CI]: 24.4–26.0) months, with a median PFS 
of 14.0 (95% CI: 8.5–19.4) months and a median OS of 
26.2 (95% CI: 15.9–36.4) months (Supplemental Fig. 2). 
Following treatment, 12 (9.8%) patients achieved CR, 
38 (31.1%) achieved PR, 18 (14.8%) achieved SD, and 54 
(44.3%) achieved PD. In addition, 54 patients remained 
alive during the most recent follow-up. The cumulative 
12-, 18-, 24-, and 30-month OS rates were 77.0%, 59.8%, 
35.2%, and 18.0%, respectively. The 6-, 12-, 18-, 24-, and 
30-month PFS rates were 91.0%, 62.3%, 52.5%, 32.0%, and 
15.6%, respectively. The overall ORR was 41.0%, and the 
overall DCR was 55.7%. Among all enrolled cases, the 
incidence rate of treatment-related adverse events of any 
grade was 100%, with a 19.7% (24/122) incidence rate of 
grade 3–4 treatment-related adverse events. No grade 

5 adverse events occurred are shown in supplemental 
Table 1.

Predictive performance of deep learning models for 
treatment response
The CT data of all enrolled patients were randomly 
divided into a training group and a testing group at a 
ratio of 3:1. Changes in training loss and the ROC curves 
of the training and validation sets are depicted in Fig. 2. 
A clinical-radiomics multimodal model was constructed 
using five selected clinical features and radiomics features 
extracted by ResNet50 + MLP. The model was employed 
to predict the treatment response to combination therapy 
based on mRECIST. The AUC of the model in the train-
ing cohort reached 0.96, with an accuracy of 89.5%, a pre-
cision of 85.6%, and an F-1 score of 0.896. The AUC of 
the model in the testing cohort was 0.87, with an accu-
racy of 80.4%, precision of 74.5%, and an F-1 score of 
0.802. The AUC of the model in the external validation 
cohort reached 0.85, with an accuracy of 79.1%, a preci-
sion of 73.6%, and an F-1 score of 0.784 (Fig. 4).

Fig. 3  Image feature extraction module
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Construction of a nomogram and predictive performance 
of for PFS
Cox regression analysis showed that five clinical fea-
tures such as AFP level ≥ 400 ng/mL, VP4 type portal 
vein tumor thrombus, tumor diameter > 10 cm, presence 
of capsule, and diffuse tumor type and six imaging fea-
tures, significantly correlated with PFS in patients with 
HCC (Supplemental Fig. 3). A predictive model for PFS 
was constructed using clinical features. The predicted 

AUCs for 12-, 18-, and 24-month PFS in the training 
cohort were 0.854, 0.797, and 0.803, respectively. The 
AUC values for the testing cohort were 0.757, 0.675, and 
0.69, respectively. The AUC values for the external vali-
dation cohort were 0.755, 0.663, and 0.696, respectively. 
The radiomics model constructed from seven radiomics 
features had AUCs of 0.765, 0.793, and 0.774 for 12-, 
18-, and 24-month PFS in the training cohort, respec-
tively. The AUC of the testing cohort were 0.763, 0.754, 

Table 1  Baseline characteristics of patients in training cohort, testing cohort, and validation cohort
Characteristics Total

(N = 122)
Training cohort
(N = 92)

Testing cohort
(N = 30)

P value Validation cohort (N = 50)

Age, (years), mean (SD) 54.0 (10.2) 53.9 (10.7) 54.5 (8.7) 0.773 58.8 (10.6)
Sex, No. (%) 1.000
  Female 18 (14.8) 14 (15.2) 4 (13.3) 4 (8.0)
  Male 104 (85.2) 78 (84.8) 26 (86.7) 46 (92.0)
CNLC Stage, No. (%) 0.093
  IIa 14 (11.5) 8 (8.7) 6 (20.0) 0 (0.0)
  IIb 25 (20.5) 23 (25.0) 2 (6.7) 0 (0.0)
  IIIa 35 (28.7) 26 (28.3) 9 (30.0) 38 (76.0)
  IIIb 48 (39.3) 35 (38.0) 13 (43.3) 12 (24.0)
BCLC Stage, No. (%) 0.623
  B 39 (32.0) 31 (33.7) 8 (26.7) 0 (0.0)
  C 83 (68.0) 61 (66.3) 22 (73.3) 50 (100.0)
Hepatitis, No. (%) 0.549
  No 20 (16.4) 14 (15.2) 6 (20.0) 7 (14.0)
  Hepatitis B 93 (76.2) 70 (76.1) 23 (76.7) 38 (76.0)
  Hepatitis C 9 (7.4) 8 (8.7) 1 (3.3) 5 (10.0)
Child Pugh Score, No. (%) 0.872
  A5 61 (50.0) 45 (48.9) 16 (53.3) 17 (34.0)
  A6 44 (36.1) 34 (37.0) 10 (33.3) 19 (38.0)
  B7 16 (13.1) 12 (13.0) 4 (13.3) 10 (20.0)
  B8 1 (0.8) 1 (1.1) 0 (0.0) 4 (8.0)
Largest Tumor Diameter (mm), mean (SD) 95.4 (38.1) 93.8 (38.0) 99.2 (41.1) 0.508 116.2 (48.3)
Number of Tumors, No. (%) 0.814
  < 5 73 (59.8) 54 (58.7) 19 (63.3) 31 (62.0)
  ≥ 5 49 (40.2) 38 (41.3) 11 (36.7) 19 (38.0)
Tumor in One Lobe, No. (%) 69 (56.6) 54 (58.7) 15 (50.0) 0.534 24 (48.0)
Encapsulation, No. (%) 25 (20.5) 17 (18.5) 8 (26.7) 0.481 20 (40.0)
Diffuse Type, No. (%) 44 (36.1) 34 (37.0) 10 (33.3) 0.889 16 (32.0)
Portal Vein Tumor Thrombus, No. (%) 51 (41.8) 36 (39.1) 15 (50.0) 0.404 50 (100.0)
VP, No. (%) 0.096
  VP3 35 (28.7) 22 (23.9) 13 (43.3) 41 (82.0)
  VP4 16 (13.1) 14 (15.2) 2 (6.7) 9 (18.0)
Hepatic Vein Cancer Thrombus, No. (%) 6 (4.9) 5 (5.4) 1 (3.3) 1.000 0 (0.0)
Abdominal Lymph Node Metastasis, No. (%) 18 (14.8) 13 (14.1) 5 (16.7) 0.965 5 (10.0)
Extrahepatic Metastasis, No. (%) 39 (32.0) 28 (30.4) 11 (36.7) 0.682 15 (30.0)
Cirrhosis, No. (%) 82 (67.2) 63 (68.5) 19 (63.3) 0.766 48 (96.0)
mRECIST, No. (%) 0.231
  CR 12 (9.8) 10 (10.9) 2 (6.7) 7 (14.0)
  PR 38 (31.1) 28 (30.4) 10 (33.3) 5 (10.0)
  SD 18 (14.8) 15 (16.3) 3 (10.0) 30 (60.0)
  PD 54 (44.3) 39 (42.4) 15 (50.0) 8 (16.0)
mRECIST evaluation was performed every 6 to 9 weeks after combination therapy
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and 0.763, respectively. The AUC of the external valida-
tion cohort were 0.733, 0.754, and 0.763, respectively. In 
the training cohort, the predictive AUCs of the clinical–
radiomics multimodal model for 12-, 18-, and 24-month 
PFS were 0.874 and 0.809 and 0.801, respectively. The 
AUC of the testing cohort were 0.762, 0.804, and 0.792, 
respectively. The AUC of the external validation cohort 
were 0.764, 0.796, and 0.773, respectively. The ROC and 
calibration curves of the aforementioned three models 
are displayed in Figs. 5 and 6. The C-indices of the clini-
cal–radiomics multimodal model, radiomics model, and 
clinical model were 0.75, 0.591, and 0.655, respectively. 
The calibration curve demonstrated that the performance 
of the clinical–radiomics multimodal model was signifi-
cantly superior to that of the other two models. Based on 
the selected clinical and radiomic features, a nomogram 
was constructed for predicting PFS following combina-
tion therapy, as illustrated in Fig. 7.

Discussion
In this study, a clinical-radiomic (C-R) model was devel-
oped and validated based on deep learning, utilizing ret-
rospective data from 172 patients with unresectable HCC 
treated at Harbin Medical University Cancer Hospital 
and Affiliated Fourth Hospital of Harbin Medical Uni-
versity. The model predicts treatment response and PFS 
in patients undergoing treatment with a combination of 
TACE-HAIC, PD-1 inhibitors, and TKIs. The treatment 
response predicted by our C-R model was identified as 
an independent prognostic factor for OS. The C-R model 
accurately categorize patients with uHCC into treatment-
responsive and non-responsive groups based on post-
treatment response. Patients predicted by the model to 
have objective reactions are recommended to receive the 

combination therapy. Conversely, for patients predicted 
to be non-responsive, alternative interventional treat-
ments such as D-TACE, TARE, or combining of other 
therapies like radiotherapy and ablation therapy, are sug-
gested to potentially enhance treatment response and 
improve OS.

In recent years, several studies have focused on the effi-
cacy of TACE or HAIC combined with TKIs and ICIs. 
However, as the clinical practice of HAIC deepened, 
it became apparent that simple HAIC presents limita-
tions in treating liver tumors, including multiple tumors 
located in different liver lobes or supplied by multiple 
blood vessels, large tumors, and arteriovenous fistulas. 
When HAIC alone is used to treat these patients, posi-
tioning the catheter satisfactorily poses a challenge. 
Consequently, the advantages of HAIC cannot be fully 
realized. In our study, for tumors with multiple blood 
supply arteries including the superior mesenteric artery, 
diaphragmatic artery, and left gastric artery—excluding 
the left and right hepatic arteries—we performed embo-
lization on the non-main blood supply branches prior 
to catheter placement and subsequently positioned the 
catheters in the main blood supply vessels for chemo-
therapy drug infusion.

In this study, uHCC patients receiving TACE-HAIC 
combined with TKIs and PD-1 inhibitors achieved a 
median PFS of 14 months and a median OS of 26.2 
months. Compared to previous clinical studies, patients 
have better survival benefits [21–24]. However, this 
study’s ORR (41.0%) and DCR (55.7%) were lower than 
those reported in previous studies, potentially due to the 
advanced tumor stages of participants, especially those 
with a larger average tumor diameter (95.38 ± 38.12 mm) 
and a high prevalence of BCLC stage C (83 patients, 

Fig. 4  Predictive performance of clinical-radiomics multimodal model using five clinical features selected and radiomics features
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68.0%). Interestingly, our findings closely aligned with 
a similar retrospective study that utilized TACE in con-
junction with HAIC, molecular targeted drugs, and 
immunotherapy. In that study, the combination therapy 
group demonstrated a significant advantage in PFS com-
pared to the control group receiving TACE alone, with 
PFS of 14.8 months versus 2.3 months (P < 0.001), respec-
tively. Unfortunately, the median OS was not reached in 
this study [5]. This suggests that this quadruple therapy 
approach can significantly enhance the overall prognosis 

for patients with unresectable hepatocellular carcinoma, 
particularly for those with portal vein tumor thrombosis. 
Nevertheless, a subset of patients may not benefit from 
this combination treatment, making the prediction of 
such differences before undergoing combination therapy 
particularly crucial.

The integration of artificial intelligence to combine 
radiomics features with clinical features for construct-
ing clinical-radiomic models has been widely applied 
in predicting treatment outcomes, demonstrating good 

Fig. 5  The ROC curves of the abovementioned three models
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predictive performance. In our study, we employed deep 
learning technology to build a multimodal model that 
achieved high predictive performance, with an AUC of 
0.97 and accuracy of 0.91. Such predictive capability was 
similar to the results obtained in several previous studies 
using machine learning or deep learning-based C-R mod-
els [14, 25, 26]. Compared to these studies, our model 
was developed on a more limited dataset. We achieved 
comparable predictive performance by further enhanc-
ing the ResNet50 algorithm. Specifically, an additional 
MLP (Multilayer Perceptron) layer was incorporated, 
ensuring comprehensive data coverage and efficient 
model training. This modification allowed for the effec-
tive selection of key image features, thereby reducing the 
computational burden on subsequent classification lay-
ers. By employing L2 regularization and Dropout within 
the MLP, overfitting issues associated with smaller data-
sets were effectively mitigated. This integrated approach 
facilitated the construction of a more robust predictive 
model. Through this model, we can explore the inter-
actions between imaging data and clinical characteris-
tics, enabling more comprehensive and precise disease 
assessment.

Most studies use univariate and multivariate Cox 
regression analyses to select variables and construct 
models based on clinical and radiomic characteristics. 
We constructed clinical, radiomic, and clinical-radiomic 
combined prediction models, and found that the clinical-
radiomic model demonstrated superior predictive capa-
bilities, similar to previous studies [15, 27]. The clinical 
features included in clinical-radiomic model were ele-
vated levels of AFP, type VP4 portal vein tumor throm-
bus, larger tumor diameter, and the presence of tumor 
capsule. This slightly differs from previous studies [14, 
27, 28], potentially due to the limited sample size in our 
study. Nonetheless, we observed that certain clinical 
features not included in the combined model, such as 
the number of tumors and the presence of extrahepatic 
metastasis, could significantly impact prognosis.

This study had some limitations. First, it was a single-
center retrospective study with a small sample size, 
potentially reducing the reliability of the model. There-
fore, to develop a more accurate predictive model, a 
prospective, multicenter study with a larger sample size 
is necessary. Second, due to the short follow-up period, 
obtaining final survival-related data for most patients was 
not feasible, preventing the construction of OS-related 

Fig. 6  The calibration curves of the abovementioned three models

 



Page 11 of 13Yin et al. BMC Gastroenterology           (2025) 25:24 

Fig. 7  The nomogram for predicting PFS following combination therapy
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prediction models; therefore, constructing OS-related 
prediction models was not possible. Further follow-up 
could address this limitation. Third, in this study, the 
frequency of receiving TACE-HAIC combination ther-
apy was inconsistent, which may affect the treatment 
response and survival time of patients. Future research 
will aim to analyze the correlation between various fre-
quencies of combination therapy and their efficacy.

Conclusion
The study developed and validated a joint model of 
imaging omics and clinical data based on deep learn-
ing, designed to serve as a tool for predicting treatment 
response and PFS in patients receiving TACE-HAIC 
combined with TKIs and PD-1 inhibitor combination 
therapy. It offers potential to provide critical evidence for 
clinical doctors in identifying patients who may benefit 
from combination therapy.
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