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Deep learning-based CT radiomics predicts
prognosis of unresectable hepatocellular
carcinoma treated with TACE-HAIC combined
with PD-1 inhibitors and tyrosine kinase
inhibitors

Linan Yin', Ruibao Liu'", Wei Li%, Shijie Li' and Xunbo Hou'

Abstract

Objective To develop and validate a computed tomography (CT)-based deep learning radiomics model to predict
treatment response and progression-free survival (PFS) in patients with unresectable hepatocellular carcinoma (UHCC)
treated with transarterial chemoembolization (TACE)-hepatic arterial infusion chemotherapy (HAIC) combined with
PD-1 inhibitors and tyrosine kinase inhibitors (TKIs).

Methods This retrospective study included 172 patients with uHCC who underwent combination therapy of
TACE-HAIC with TKIs and PD-1 inhibitors. Among them, 122 were from the Interventional Department of the Harbin
Medical University Cancer Hospital, with 92 randomly assigned to the training cohort and 30 cases randomly assigned
to the testing cohort. The remaining 50 cases were from the Interventional Department of the Affiliated Fourth
Hospital of Harbin Medical University and were used for external validation. All patients underwent liver enhanced CT
examination before treatment. Residual convolutional neural network (ResNet) technology was used to extract image
features. A predictive model for treatment response of combination therapy and PFS was established based on image
features and clinical features. Model effectiveness was evaluated using metrics such as the area under the receiver
operating characteristic (ROC) curve (AUC), concordance index (C-index), accuracy, precision, and F1-score.

Results All patients had a median follow-up of 25.2 months (95% Cl 24.4-26.0), with a median PFS of 14.0 months
(95% Cl 8.5-19.4) and a median overall survival (OS) of 26.2 months (95% Cl 15.9-36.4) achieved. Objective response
rate (ORR) and disease control rate (DCR) was 41.0% and 55.7%, respectively. In the treatment response prediction
model, the AUC for the training cohort reached 0.96, with an accuracy of 89.5%, precision of 85.6%, and F1-score

of 0.896; the AUC for the testing cohort was 0.87, with an accuracy of 80.4%, precision of 74.5%, and F1-score of
0.802. The AUC of the external validation cohort was 0.85, with accuracy of 79.1%, precision of 73.6%, and f1-score of
0.784. In the PFS prediction model, the predicted AUC for 12 months, 18 months, and 24 months-PFS in the training
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with TACE-HAIC combined with PD-1 and TKis.

cohort were 0.874, 0.809, 0.801, respectively. The AUC of testing cohort were 0.762, 0.804, 0.792. The AUC of external
validation cohort were 0.764, 0.796, 0.773. The C-index of the combination model, radiomics model, and clinical
model were 0.75, 0.591, and 0.655, respectively. The calibration curve demonstrated that the combination model was
significantly superior to both the radiomics and clinical models.

Conclusions The study provides a CT-based radiomics model that can predict PFS for patients with uHCC treated

Keywords Deep learning model, Radiomics, Prognosis, Unresectable liver cancer

Introduction

Hepatocellular carcinoma (HCC) represents the most
common malignant tumor worldwide, characterized
by poor prognosis and limited treatment options, espe-
cially for patients with unresectable HCC (uHCC)
[1-3]. According to the Barcelona Clinic Liver Cancer
(BCLC) staging guidelines, transarterial chemoembo-
lization (TACE) serves as standard treatment modality
for intermediate-stage HCC and is widely utilized in the
treatment of uHCC in some countries [4]. Recently, the
combination of TACE and HAIC has emerged as a sig-
nificant therapeutic approach for patients with uHCC,
markedly improving survival rates. Studies have dem-
onstrated that the combination of TACE and HAIC has
better therapeutic effects on unresectable HCC [5, 6].
TACE-HAIC can effectively manage HCC; however, its
overall efficacy is often compromised by tumor recur-
rence and metastasis. Ischemia and hypoxia caused by
embolism and tumor necrosis may lead to an increase in
vascular endothelial growth factor (VEGF) and angiogen-
esis, which enhances the likelihood of tumor recurrence
and metastasis. The treatment landscape for HCC has
recently transitioned to include immunotherapy combi-
nations, with PD-1 inhibitors and tyrosine kinase inhibi-
tors (TKIs) demonstrating potential synergistic effects
when combined with TACE-HAIC [7-9]. However, due
to HCC’s high heterogeneity and the absence of precise
biomarkers for predicting therapeutic efficacy, consider-
able variability exists in the effectiveness of these com-
bination treatments. Consequently, there is currently no
accurate and effective method to screen patients who
may benefit from these combination therapies.

Recently, radiomics has demonstrated great potential
in the diagnosis of liver diseases, analyzing tumor biolog-
ical characteristics, and evaluating prognosis by convert-
ing medical images into quantitative data [10-12]. Due to
its high spatial resolution and rapid imaging capabilities,
computed tomography (CT) is frequently employed in
radiomics research [13]. Studies have indicated that the
preoperative use of CT radiomics features, when com-
bined with clinical features, exhibits excellent perfor-
mance in predicting the efficacy of TACE in patients with
HCC. The area under the curve (AUC) of the prediction
model in the internal and external validation groups was

0.94 and 0.90, respectively [14]. Preoperative CT imag-
ing omics characteristics can accurately predict the effi-
cacy and overall survival (OS) of HAIC for advanced
unresectable colorectal cancer with liver metastasis [15].
Moreover, similar studies have been reported on progno-
sis prediction in surgical resection [16], immunotherapy
[17], and targeted therapy [18, 19], thereby providing a
feasible evaluation tool for patients before treatment.
However, thus far, no studies focusing on the additional
benefits and prognosis prediction of CT radiomics fea-
tures in TACE-HAIC combined with PD-1 inhibitors and
TKIs have yet been published.

This study seeks to develop a deep learning model
based on clinical and radiomics features to predict the
efficacy of TACE-HAIC combined with PD-1 inhibi-
tors and TKIs for treating unresectable HCC, aiming to
enhance the accuracy of comprehensive treatment pre-
diction and optimize patient management and prognosis.

Materials and methods

Study population

This retrospective study was approved by the Ethics
Committee of Harbin Medical University Cancer Hospi-
tal (Ethics Number: 2023-281-1IT). Patients with unre-
sectable HCC treated with TACE-HAIC and TKIs and
PD-1 inhibitor treatment at the Harbin Medical Uni-
versity Cancer Hospital and Affiliated Fourth Hospital
of Harbin Medical University between January 2020 to
December 2022 were included. The diagnosis of HCC
was based on the clinical or pathological diagnostic cri-
teria in the Chinese Guidelines for the Diagnosis and
Treatment of Primary Liver Cancer [20].

The inclusion criteria were as follows: (1) HCC con-
firmed by pathology or clinical examination in two hos-
pitals from January 2020 to December 2022; (2) had
neither received previous treatment nor were suitable
for radical surgery, transplantation, or radical ablation;
(3) aged>18 years; (4) an Eastern Cooperative Oncol-
ogy Group (ECOG) score of 0 or 1 and Child—Pugh grade
of A or B; (5) lesions with imaging reproducibility; and
(6) complete raw data from enhanced CT scans were
obtainable within 7 days prior to treatment. Exclusion
criteria included: (1) abnormal liver and kidney func-
tion and coagulation function that cannot be corrected;



Yin et al. BMC Gastroenterology (2025) 25:24

(2) had clear contraindications for the use of TKIs and
PD-1 inhibitors in cases of uncorrectable cardiopulmo-
nary dysfunction; (3) clear contraindications for TACE
and HAIC; and (4) expected survival time of <3 months
(supplemental Fig. 1).

Clinical information for patients prior to treatment was
retrospectively collected, including age, gender, hepati-
tis status, cirrhosis, Child-Pugh grading, ECOG score,
maximum tumor diameter, number of tumors, pres-
ence of capsule, diffuse distribution, vascular invasion
(portal vein tumor thrombus, hepatic vein, and inferior
vena cava invasion), extrahepatic metastasis, lymph node
metastasis, CNLC staging, BCLC staging, and AFP level.

Treatment process
TACE-HAIC: TACE treatments utilized the femo-
ral artery approach. A super selective intubation tech-
nique was employed for embolization, with a mixture of
iodized oil (5-20 mL) and pirarubicin (40-60 mg) as the
embolic agent. Appropriate embolization was necessary
to achieve incomplete devascularization for tumors with
a single blood supply. For tumors supplied by multiple
blood vessels, conventional embolization or complete
devascularization was performed on blood vessels with
a lower tumor load, and appropriate embolization was
performed on blood vessels with a higher tumor load.
After embolization, a catheter was placed at the begin-
ning of the tumor blood supply vessel for HAIC, which is
performed following TACE. After 2—3 treatment cycles,
once imaging tests show the tumor lacks significant
activity and hematological indicators like AFP and abnor-
mal thrombin levels normalize, TACE treatment ceases,
and TKI and PD-1 inhibitor therapy proceeds. The
mFOLFOX regimen containing oxaliplatin as the chemo-
therapy regimen was selected. The mFOLFOX regimen
comprised arterial infusion of oxaliplatin 85 mg/m? for
2 h, calcium folinate 400 mg/m? for 1 h, fluorouracil 400
mg/m? for arterial infusion, and continuous arterial infu-
sion of 2,400 mg/m? for 46 h. Dosage adjustments will be
based on the number of treatments, laboratory test out-
comes, and clinical signs. The abovementioned operation
should be repeated every 3—4 weeks. The median num-
ber of treatment sessions in this study was 3+ 1 days.
TKIs and PD-1 inhibitors: The TKIs used in this study
included oral administration of donafenib 0.2 g twice
daily; lenvatinib 8 mg (body weight <60 kg)/12 mg (body
weight>60 kg) orally administered once daily; and
sorafenib 0.4 g orally administered twice daily. The ICIs
used in this study included camrelizumab, sintilimab, and
tislelizumab which were all intravenously administered at
a dose of 200 mg every 21 days. Systemic treatment was
suspended during intervention therapy. Consider dose
reduction, temporary discontinuation of medication, or
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switching to second-line agents in cases of intolerable
toxic side effects or confirmed disease progression.

Follow-up and outcomes

Follow-up assessments were conducted every 6 to 9
weeks after the combination therapy, including radiologi-
cal examinations (enhanced CT or MRI scan of the abdo-
men and plain CT scan of the chest and abdomen) and
laboratory examinations. Two radiologists with senior
professional titles reviewed all collected imaging data,
and the efficacy of the treated tumors was evaluated
according to the Modified Response Evaluation Crite-
ria in Solid Tumors (mRECIST). Efficacy was evaluated
using objective response (OR), no response (NR), com-
plete response (CR), partial response (PR), disease stabil-
ity (SD), and disease progression (PD). OR was defined
as complete response and partial response (CR+PR).
NR was defined as disease stability and disease progres-
sion (SD+PD). An inconsistent efficacy evaluation was
resolved through consultation between radiologists
and clinical doctors. The date of the last follow-up was
October 1, 2023. The assessment of Treatment-Related
Adverse Events (TRAEs) is conducted based on the Com-
mon Terminology Criteria for Adverse Events (CTCAE),
Version 5.0.

Image acquisition and imaging processing

The enhanced CT images of the liver were obtained from
the Picture Archival and Communication System of
Harbin Medical University Cancer Hospital and Affili-
ated Fourth Hospital of Harbin Medical University. All
patients underwent GE (Optima) 64-slice spiral CT or
Siemens (SOMATOM Definition Flash) dual-source spi-
ral CT.

The CT raw DICOM format files of the 122 patients
from the Harbin Medical University Cancer Hospital
were imported into 3D Slicer software (version: 5.5.0,
https://www.slicer.org/). Two experienced imaging
experts, one with 10 years of experience and the other
with 20 years of experience, will independently identify
the regions of interest of all tumors. When there were
significant differences in the regions of interest drawn
by the two, they negotiated to resolve the disagreement.
If the disagreement could not be resolved, the region
of interest identified by the senior expert prevailed. To
determine the region of interest (ROI) of the tumor, two
experienced radiologists determined the entire sequence
of the CT images (including 2,991 HCC slices). All con-
flicting opinions were resolved through negotiation, and
the resulting ROI included the complete tumor and sur-
rounding tissue.

In the Python 3.9 environment, the dicom2nifti library
converted DICOM files into NIfTT format. Following this,
the SimpleI TK library was employed to process the NIfT1
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files and extract imaging slices. After filtering out slices
without a region of interest (ROI), the dataset retained
consisted of 2,991 valid slices. Each slice was linked to a
unique DICOM image ID, which was then matched with
corresponding clinical data, enabling the construction
of a dataset suitable for the ResNet50+MLP network
architecture. Fine-tuning this structure on the dataset
allowed for the determination of optimal model weights.
Each slice associated with the same ID was input into this
structure, and the output from the final layer on the left
channel, representing the extracted image features, was
averaged across slices to obtain the imaging features for
that specific ID.

Construction and evaluation of the ResNet50+ MLP model

In traditional convolutional neural network (CNN) struc-
tures, as the number of layers increases, gradient vanish-
ing and exploding problems become more severe, which
limits the depth design of CNN. Residual CNN (ResNet)
introduces residual learning, which enables the network
to achieve identity mapping deeply through skip con-
nections and shortcuts, effectively solving the problems
of vanishing and exploding gradients. Skip connections
allow a portion of gradients to bypass the nonlinear layer
during backpropagation and propagate directly, thereby
making network training faster and more effective. Given
its superior feature extraction capability and efficient
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performance, ResNet has been widely used in image
classification, object detection, and image segmentation.
This study was based on ResNet50 and used two input
channels (images and clinical features) for predicting
the efficacy of tumor treatment according to the mRE-
CIST evaluation criteria. The model structure is shown
in Fig. 1.

To improve the fitting speed of the model and address
the scarcity of CT image data, transfer learning was used
to handle imbalanced datasets and sparse sample learn-
ing problems. Model performance and generalization
ability are enhanced by pretraining on the ImageNet
database. ImageNet has 14 million images and thousands
of categories, making transfer learning an extremely
effective tool when resources are limited. To better meet
our needs, we froze the first 49-layer parameters of
ResNet50 in the pre-trained network, which can signifi-
cantly improve the training speed of the network model.
An additional multilayer perceptron (MLP) layer was
added. Using MLP to reduce the dimensionality of fea-
ture maps from ResNet50 and to extract abstract features
through multiple hidden layers identifies the most signifi-
cant information in the image. At the end of the network,
the filtered image features are concatenated with clinical
features, and the task is classified using a fully connected
layer. During the training process, the Adaptive Moment
Estimation (Adam) algorithm optimizes the weights of

Architecture of RseNet50 + MLP model
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the network parameters. The Adam algorithm combines
the momentum algorithm and the RMSprop algorithm,
which has better stability in complex and convex opti-
mization problems. By fine-tuning the parameters, the
learning rate is set to le-5, and to ensure that the model
can fully cover the data and achieve efficient training,
the number of epochs is 100. The loss function employs
binary cross-entropy loss and ultimately calculates the
classification probability of the output layer using the
SoftMax function on the models output. Choose AUC
and accuracy to evaluate model performance. Among
172 patients, 122 had CT data divided into training and
testing cohorts in a 3:1 ratio, with the other 50 serving as
external validation cohort. The training loss of the model
and the ROC curves of the training, testing and external
validation cohort were shown in Fig. 2.

Construction of the nomogram for PFS

Compared with the extensive range of radiomics features
extractable from medical imaging data including shape
features, first-order statistical features, texture features,
and high-order statistical features, the feature extraction
and filtering capabilities of the ResNet50 + MLP model
prove more suitable for our study. On the one hand, it
eliminates the need for extensive analysis and filtering
of radiomics features. On the other hand, residual struc-
tures effectively associate shallow features with deep fea-
tures, and the MLP algorithm more effectively filters out
the best abstract features (Fig. 3).

First, the image feature extraction module, represent-
ing the encoding stage in ResNet50+MLP, is loaded.
The corresponding feature image is obtained after input-
ting the sliced image into the feature extraction module.
Subsequently, it is combined with the processed clini-
cal features and the results in Resnet50 + MLP (the clas-
sification probability of mRECIST) to form a covariate.
Multivariate Cox regression analyzed covariates and ulti-
mately determined the variables required to construct
the model.

The Kaplan-Meier curve evaluated PFS, and Cox
regression analyzed the univariate analysis of all clinical

ROC Curve (Test and Validation)

var acc
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features. The risk factors affecting patient survival were
analyzed using Cox regression. To draw nomograms for
predicting patient prognosis, the RMS software package
of the R language (version: 4.3.1, https://www.r-project.o
rg/) was used.

Statistical analysis

Statistical analysis was conducted using Statistical Pack-
age for the Social Sciences (version 29, IBM, Armonk,
NY, USA) and Python v3.11.5 software. The sample
size estimation was performed using PASS 15 software
and involved a single-sample log-rank test. To deter-
mine whether data conformed to a normal distribution,
the Kolmogorov—Smirnov test was utilized; quantita-
tive data were expressed as means *standard deviation
(SD). Quantitative data comparisons were made using
the independent sample t-test or Mann—Whitney U-test.
Counting data comparisons utilized the chi-square test.
Univariate and multivariate Cox regression analyses were
employed to screen for clinical variables and establish
regression models. The Kaplan—Meier method was uti-
lized to plot the survival curve. The prediction of treat-
ment response relied on the AUC, and the accuracy,
precision, and F-1 score were utilized to evaluate the
effectiveness of the model. For the PFS prediction model,
performance evaluation utilized the ROC curve and
C-index (consistency index). Bilateral P<0.05 was indica-
tive of a statistically significant difference.

Results

Clinical characteristics of the patients

A total of 122 HCC patients participated in the study,
comprising 92 in the training set and 30 in the inter-
nal testing set (Supplemental Fig. 1). No significant
differences were observed in clinical characteristics
between the training set and the internal testing set. Of
these patients, 104 (85.2%) and 18 (14.8%) were male
and female patients, respectively, with a median age
of 54+10.2 years. Of the patients, 82 (67.2%) had cir-
rhosis. Hepatitis B patients comprised 76.2%, hepatitis
C patients comprised 7.4%, and non-hepatitis patients
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comprised 16.4%. Moreover, 105 (86.1%) cases of Child—
Pugh grade A were recorded, including 61 (50.0%) and 44
(36.1%) cases of A5 and A6, respectively, and 17 (13.9%)
cases presented Child—Pugh grade B. Other clinical fea-
tures are shown in Table 1.

The median follow-up time was 25.2 (95% confidence
interval [CI]: 24.4-26.0) months, with a median PFS
of 14.0 (95% CI: 8.5-19.4) months and a median OS of
26.2 (95% CI: 15.9-36.4) months (Supplemental Fig. 2).
Following treatment, 12 (9.8%) patients achieved CR,
38 (31.1%) achieved PR, 18 (14.8%) achieved SD, and 54
(44.3%) achieved PD. In addition, 54 patients remained
alive during the most recent follow-up. The cumulative
12-, 18-, 24-, and 30-month OS rates were 77.0%, 59.8%,
35.2%, and 18.0%, respectively. The 6-, 12-, 18-, 24-, and
30-month PFS rates were 91.0%, 62.3%, 52.5%, 32.0%, and
15.6%, respectively. The overall ORR was 41.0%, and the
overall DCR was 55.7%. Among all enrolled cases, the
incidence rate of treatment-related adverse events of any
grade was 100%, with a 19.7% (24/122) incidence rate of
grade 3—4 treatment-related adverse events. No grade

Load data into the model

MLP

Survival analysis using multivariate cox regression

Input
clinical
data

5 adverse events occurred are shown in supplemental
Table 1.

Predictive performance of deep learning models for
treatment response

The CT data of all enrolled patients were randomly
divided into a training group and a testing group at a
ratio of 3:1. Changes in training loss and the ROC curves
of the training and validation sets are depicted in Fig. 2.
A clinical-radiomics multimodal model was constructed
using five selected clinical features and radiomics features
extracted by ResNet50 + MLP. The model was employed
to predict the treatment response to combination therapy
based on mRECIST. The AUC of the model in the train-
ing cohort reached 0.96, with an accuracy of 89.5%, a pre-
cision of 85.6%, and an F-1 score of 0.896. The AUC of
the model in the testing cohort was 0.87, with an accu-
racy of 80.4%, precision of 74.5%, and an F-1 score of
0.802. The AUC of the model in the external validation
cohort reached 0.85, with an accuracy of 79.1%, a preci-
sion of 73.6%, and an F-1 score of 0.784 (Fig. 4).
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Table 1 Baseline characteristics of patients in training cohort, testing cohort, and validation cohort

Characteristics Total Training cohort Testing cohort P value Validation cohort (N=50)
(N=122) (N=92) (N=30)

Age, (years), mean (SD) 54.0(10.2) 53.9(10.7) 54.5(8.7) 0.773 58.8(10.6)
Sex, No. (%) 1.000

Female 18 (14.8) 14 (15.2) 4(13.3) 4(8.0)

Male 104 (85.2) 78 (84.8) 26 (86.7) 46 (92.0)
CNLC Stage, No. (%) 0.093

lla 14(11.5) 8(8.7) 6 (20.0) 0(0.0)

IIb 25 (20.5) 23 (25.0) 2(6.7) 0(0.0)

llla 35(28.7) 26 (283) 9(30.0) 38(76.0)

llb 48(39.3) 35(38.0) 13(433) 12 (24.0)
BCLC Stage, No. (%) 0.623

B 39(32.0) 31(337) 8(26.7) 0(0.0)

C 83 (68.0) 61 (66.3) 22 (73.3) 50 (100.0)
Hepatitis, No. (%) 0.549

No 20(16.4) 14 (15.2) 6(20.0) 7(14.0)

Hepatitis B 93 (76.2) 70 (76.1) 23 (76.7) 38 (76.0)

Hepatitis C 9(7.4) 8(8.7) 1(3.3) 5(10.0)
Child Pugh Score, No. (%) 0.872

A5 61 (50.0) 45 (48.9) 16 (53.3) 17 (34.0)

A6 44 (36.1) 34 (37.0) 10(33.3) 19 (38.0)

B7 16 (13.1) 12(13.0) 4(13.3) 10 (20.0)

B8 1(0.8) 1(1.1) 0(0.0) 4(8.0)
Largest Tumor Diameter (mm), mean (SD) 954 (38.1) 93.8 (38.0) 99.2 (41.1) 0.508 116.2 (48.3)
Number of Tumors, No. (%) 0814

<5 73 (59.8) 54 (58.7) 19 (63.3) 31(62.0)

>5 49 (40.2) 38 (41.3) 11 (36.7) 19 (38.0)
Tumor in One Lobe, No. (%) 69 (56.6) 54 (58.7) 15 (50.0) 0534 24 (48.0)
Encapsulation, No. (%) 25 (20.5) 17 (18.5) 8(26.7) 0481 20 (40.0)
Diffuse Type, No. (%) 44 (36.1) 34 (37.0) 10 (33.3) 0.889 16 (32.0)
Portal Vein Tumor Thrombus, No. (%) 51(41.8) 36 (39.1) 15 (50.0) 0.404 50 (100.0)
VP, No. (%) 0.096

VP3 35(28.7) 22 (23.9) 13 (43.3) 41(82.0)

VP4 16 (13.1) 14(15.2) 2(6.7) 9(18.0)
Hepatic Vein Cancer Thrombus, No. (%) 6 (4.9) 5(54) 1(3.3) 1.000 0(0.0)
Abdominal Lymph Node Metastasis, No. (%) 18 (14.8) 13(14.1) 5(16.7) 0.965 5(10.0)
Extrahepatic Metastasis, No. (%) 39(32.0) 28 (30.4) 11(36.7) 0.682 15 (30.0)
Cirrhosis, No. (%) 82 (67.2) 63 (68.5) 19 (63.3) 0.766 48 (96.0)
mRECIST, No. (%) 0.231

CR 12(9.8) 10(10.9) 2(6.7) 7(14.0)

PR 38 (31.1) 28 (30.4) 10 (33.3) 5(10.0)

SD 18 (14.8) 15(16.3) 3(10.0) 30 (60.0)

PD 54 (44.3) 39 (42.4) 15 (50.0) 8(16.0)

mMRECIST evaluation was performed every 6 to 9 weeks after combination therapy

Construction of a nomogram and predictive performance
of for PFS

Cox regression analysis showed that five clinical fea-
tures such as AFP level 2400 ng/mL, VP4 type portal
vein tumor thrombus, tumor diameter > 10 c¢m, presence
of capsule, and diffuse tumor type and six imaging fea-
tures, significantly correlated with PFS in patients with
HCC (Supplemental Fig. 3). A predictive model for PFS
was constructed using clinical features. The predicted

AUCs for 12-, 18-, and 24-month PFS in the training
cohort were 0.854, 0.797, and 0.803, respectively. The
AUC values for the testing cohort were 0.757, 0.675, and
0.69, respectively. The AUC values for the external vali-
dation cohort were 0.755, 0.663, and 0.696, respectively.
The radiomics model constructed from seven radiomics
features had AUCs of 0.765, 0.793, and 0.774 for 12-,
18-, and 24-month PFS in the training cohort, respec-
tively. The AUC of the testing cohort were 0.763, 0.754,
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and 0.763, respectively. The AUC of the external valida-
tion cohort were 0.733, 0.754, and 0.763, respectively. In
the training cohort, the predictive AUCs of the clinical—-
radiomics multimodal model for 12-, 18-, and 24-month
PES were 0.874 and 0.809 and 0.801, respectively. The
AUC of the testing cohort were 0.762, 0.804, and 0.792,
respectively. The AUC of the external validation cohort
were 0.764, 0.796, and 0.773, respectively. The ROC and
calibration curves of the aforementioned three models
are displayed in Figs. 5 and 6. The C-indices of the clini-
cal-radiomics multimodal model, radiomics model, and
clinical model were 0.75, 0.591, and 0.655, respectively.
The calibration curve demonstrated that the performance
of the clinical-radiomics multimodal model was signifi-
cantly superior to that of the other two models. Based on
the selected clinical and radiomic features, a nomogram
was constructed for predicting PFS following combina-
tion therapy, as illustrated in Fig. 7.

Discussion

In this study, a clinical-radiomic (C-R) model was devel-
oped and validated based on deep learning, utilizing ret-
rospective data from 172 patients with unresectable HCC
treated at Harbin Medical University Cancer Hospital
and Affiliated Fourth Hospital of Harbin Medical Uni-
versity. The model predicts treatment response and PFS
in patients undergoing treatment with a combination of
TACE-HAIC, PD-1 inhibitors, and TKIs. The treatment
response predicted by our C-R model was identified as
an independent prognostic factor for OS. The C-R model
accurately categorize patients with uHCC into treatment-
responsive and non-responsive groups based on post-
treatment response. Patients predicted by the model to
have objective reactions are recommended to receive the

combination therapy. Conversely, for patients predicted
to be non-responsive, alternative interventional treat-
ments such as D-TACE, TARE, or combining of other
therapies like radiotherapy and ablation therapy, are sug-
gested to potentially enhance treatment response and
improve OS.

In recent years, several studies have focused on the effi-
cacy of TACE or HAIC combined with TKIs and ICIs.
However, as the clinical practice of HAIC deepened,
it became apparent that simple HAIC presents limita-
tions in treating liver tumors, including multiple tumors
located in different liver lobes or supplied by multiple
blood vessels, large tumors, and arteriovenous fistulas.
When HAIC alone is used to treat these patients, posi-
tioning the catheter satisfactorily poses a challenge.
Consequently, the advantages of HAIC cannot be fully
realized. In our study, for tumors with multiple blood
supply arteries including the superior mesenteric artery,
diaphragmatic artery, and left gastric artery—excluding
the left and right hepatic arteries—we performed embo-
lization on the non-main blood supply branches prior
to catheter placement and subsequently positioned the
catheters in the main blood supply vessels for chemo-
therapy drug infusion.

In this study, uHCC patients receiving TACE-HAIC
combined with TKIs and PD-1 inhibitors achieved a
median PFS of 14 months and a median OS of 26.2
months. Compared to previous clinical studies, patients
have better survival benefits [21-24]. However, this
study’s ORR (41.0%) and DCR (55.7%) were lower than
those reported in previous studies, potentially due to the
advanced tumor stages of participants, especially those
with a larger average tumor diameter (95.38 +38.12 mm)
and a high prevalence of BCLC stage C (83 patients,
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Fig. 5 The ROC curves of the abovementioned three models

68.0%). Interestingly, our findings closely aligned with
a similar retrospective study that utilized TACE in con-
junction with HAIC, molecular targeted drugs, and
immunotherapy. In that study, the combination therapy
group demonstrated a significant advantage in PFS com-
pared to the control group receiving TACE alone, with
PES of 14.8 months versus 2.3 months (P<0.001), respec-
tively. Unfortunately, the median OS was not reached in
this study [5]. This suggests that this quadruple therapy
approach can significantly enhance the overall prognosis

for patients with unresectable hepatocellular carcinoma,
particularly for those with portal vein tumor thrombosis.
Nevertheless, a subset of patients may not benefit from
this combination treatment, making the prediction of
such differences before undergoing combination therapy
particularly crucial.

The integration of artificial intelligence to combine
radiomics features with clinical features for construct-
ing clinical-radiomic models has been widely applied
in predicting treatment outcomes, demonstrating good
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predictive performance. In our study, we employed deep
learning technology to build a multimodal model that
achieved high predictive performance, with an AUC of
0.97 and accuracy of 0.91. Such predictive capability was
similar to the results obtained in several previous studies
using machine learning or deep learning-based C-R mod-
els [14, 25, 26]. Compared to these studies, our model
was developed on a more limited dataset. We achieved
comparable predictive performance by further enhanc-
ing the ResNet50 algorithm. Specifically, an additional
MLP (Multilayer Perceptron) layer was incorporated,
ensuring comprehensive data coverage and efficient
model training. This modification allowed for the effec-
tive selection of key image features, thereby reducing the
computational burden on subsequent classification lay-
ers. By employing L2 regularization and Dropout within
the MLP, overfitting issues associated with smaller data-
sets were effectively mitigated. This integrated approach
facilitated the construction of a more robust predictive
model. Through this model, we can explore the inter-
actions between imaging data and clinical characteris-
tics, enabling more comprehensive and precise disease
assessment.

Most studies use univariate and multivariate Cox
regression analyses to select variables and construct
models based on clinical and radiomic characteristics.
We constructed clinical, radiomic, and clinical-radiomic
combined prediction models, and found that the clinical-
radiomic model demonstrated superior predictive capa-
bilities, similar to previous studies [15, 27]. The clinical
features included in clinical-radiomic model were ele-
vated levels of AFP, type VP4 portal vein tumor throm-
bus, larger tumor diameter, and the presence of tumor
capsule. This slightly differs from previous studies [14,
27, 28], potentially due to the limited sample size in our
study. Nonetheless, we observed that certain clinical
features not included in the combined model, such as
the number of tumors and the presence of extrahepatic
metastasis, could significantly impact prognosis.

This study had some limitations. First, it was a single-
center retrospective study with a small sample size,
potentially reducing the reliability of the model. There-
fore, to develop a more accurate predictive model, a
prospective, multicenter study with a larger sample size
is necessary. Second, due to the short follow-up period,
obtaining final survival-related data for most patients was
not feasible, preventing the construction of OS-related
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prediction models; therefore, constructing OS-related
prediction models was not possible. Further follow-up
could address this limitation. Third, in this study, the
frequency of receiving TACE-HAIC combination ther-
apy was inconsistent, which may affect the treatment
response and survival time of patients. Future research
will aim to analyze the correlation between various fre-
quencies of combination therapy and their efficacy.

Conclusion

The study developed and validated a joint model of
imaging omics and clinical data based on deep learn-
ing, designed to serve as a tool for predicting treatment
response and PFS in patients receiving TACE-HAIC
combined with TKIs and PD-1 inhibitor combination
therapy. It offers potential to provide critical evidence for
clinical doctors in identifying patients who may benefit
from combination therapy.

Abbreviations

cT Computed tomography
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