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Introduction
Cells can secrete extracellular vesicles (EVs) to communicate 
with neighboring or distant cells. Extracellular vesicles are com-
posed of a lipid bilayer containing transmembrane proteins and 
enclosing cytosolic proteins and RNA. Based on their cellular 
origins, EVs can be classified into 2 groups. The first group of 
EVs is formed and released by budding from the cells’ plasma 
membranes, generally known as microvesicles, ectosomes, or 
microparticles. These sizes of the EVs range from 100 to 
1000 nm in diameter. The second type of EVs, referred to the 
exosomes, is generated inside multivesicular endosomes or mul-
tivesicular bodies and released when these compartments fuse 
with the plasma membrane. Exosomes are usually smaller than 
150 nm in diameter. Surface molecules of EVs can be recognized 
by recipient cells and trigger EVs’ internalization. Thus, recipient 
cells’ physiological state can be modified by cytosolic proteins 
and RNAs carried by EVs to achieve cell-cell communication.

In this review, we will discuss recent progresses in our 
understanding toward the roles and mechanisms of cancer-
derived EVs, with a special attention on metastatic breast can-
cers. Because most current purification protocols (differential 
ultracentrifugation, 220 nm filtration, commercial kits) cannot 
distinguish the subtypes of EVs, we will provide a broad view 
of all types of EVs in general.

EVs and the Primary Tumor Microenvironment
Tumors are composed of malignant cancer cells embedded in 
vasculature and surrounded by tumor stroma consisting of various 
nonmalignant cells, such as fibroblasts and myeloid cells. The 

tumor microenvironment plays a critical role in tumorigenesis. 
Communications between tumor-tumor cells and tumor stromal 
cells are involved in primary tumor formation and progression.

In the primary tumor, exosomes can be exploited to share 
oncogenic molecules among tumor cells and thus can directly 
modify tumor cells’ signaling and metabolic state. Proteins and 
microRNAs (miRNAs) regulating apoptosis, cytoskeleton 
remodeling, cell mobility, cell cycle, tumor invasion, and metas-
tasis are identified in EVs isolated from breast cancer cell lines 
(MCF-7, MDA-MB-231).1,2 Exosomes expressing CD63-
GFP have been directly observed transferring between tumor 
cells both in vitro and in xenograft murine models.3 Aggressive 
subclone cell line Hs578Ts(i)8–derived EVs can promote cell 
proliferation, migration, and invasion of recipient cancer cells.4 
Uptake of EVs of 4T1 cells can notably stimulate proliferation 
and suppress apoptosis of CD133+ breast cancer cells in vitro.5 
Cell adhesion has been shown to have indispensable effects on 
tumor growth and metastasis through the interaction of tumor 
endothelial cells.6 BT-549–released exosomes can promote 
focal adhesion, attachment, and spreading through the associa-
tion of fetuin-A with histone H2A.7 In addition to proteins and 
messenger RNAs, miRNA and other noncoding RNAs are also 
possible active EV cargos. Recent report has shown that 
MDA-MB-231 EV–mediated secretion of miR-10b and miR-
21 in tumor microenvironment is responsible for elevated can-
cer cell viability, proliferation, and colony-forming capacity.8 
Overall, breast cancer cell–derived EVs can transport plenty of 
miRNAs and proteins to facilitate neoplastic formation and 
development.9,10
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In addition, breast cancer cell–derived EVs can alter the cel-
lular signaling and metabolic state of surrounding nontumor 
cells. Exosomes derived from tumor cells tagged with CD63-
GFP can be incorporated into tumor stromal cells as well as 
circulate in the blood with metastases.3 Mesenchymal stem 
cells (MSCs) have potential to regenerate and differentiate into 
multiple types of cells, which can further contribute to tumor 
stroma and provide an applicable microenvironment for tumor 
progression. Breast cancer cell–derived EVs can induce a 
tumor-associated myofibroblastic phenotype of adipose tissue-
derived MSCs, with increased expression of α-SMA, promot-
ing expression of stromal cell-derived factor 1 (SDF1), 
transforming growth factor β (TGF-β), vascular endothelial 
growth factor (VEGF), and C-C motif chemokine ligand 5 
(CCL5) via the SMAD-mediated signaling pathway.11 In 
addition to tumor-derived EVs, EVs from cancer-associated 
stromal cells can stimulate invasiveness of recipient breast can-
cer cells, in this case, by activating Wnt-planar cell polarity–
dependent signaling process.12 Collectively, EVs function as 
critical mediators of tumor-tumor cells and tumor stromal cells’ 
interaction and their adaptive responses.

Roles of EVs in Tumor Progression
During tumor progression, cells within them develop the abil-
ity to invade into surrounding normal tissues and through tis-
sue boundaries to form new growths (metastases) at sites 
distinct from the primary tumor. Cell-cell and cell-matrix 
adhesion, degradation of extracellular matrix (ECM), initia-
tion, and maintenance of early growth at the new site are gen-
erally accepted to be critical in tumor invasion. Tumor-derived 
EVs are believed to influence tumor invasion by increasing 
tumor cell motility and ECM degradation. Extracellular vesi-
cles can directly contribute to ECM degradation by spreading 
matrix metalloproteinases present on EVs. Intravital imaging 
demonstrates persistent and efficient in vivo movement of can-
cer cells which relies on secretion of exosomes bearing ECM.13 
In the work by Hendrix et  al,14 rab27b-mediated exocytic 
release of HSP90-positive exosomes from metastatic breast 
cancer cells can promote directional cancer cell invasion ability 
through degradation of ECM components and release of 
growth factors by MMP2 activation. Another view by Wang 
group also demonstrates that EVs shed by hypoxic breast can-
cer cells promote focal adhesion formation and invasion.15 In 
addition, recipient cells treated with exosomes from CXCR4-
breast cancer cells showed increased proliferation, migration, 
and invasion capacities.16 Furthermore, MSC-derived 
exosomes accelerate migration of the breast cancer cell line 
MCF7.17 However, more intensive studies in vivo are required 
to clarify definitive roles of EVs in tumor invasion.

Epithelial-mesenchymal transition (EMT) is a biological 
process by which epithelial cells are transdifferentiated to a 
mesenchymal state and has been implicated in the progression 
toward an advanced cancer phenotype.18,19 Extracellular vesi-
cles have been shown to participate in EMT, and some groups 

have described how tumor-derived EVs are involved in this 
process. Release of MDA-MB-231 EVs, stimulated with lin-
oleic acid, induces a transient decrease in E-cadherin expres-
sion, accompanied by increase in Snail 1/2, Twist 1/2, Sip1, 
Vimentin, and N-cadherin expression. Extracellular vesicles 
also promote MMP-2 and MMP-9 secretion, nuclear factor 
κB (NF-κB)-DNA binding activity, migration, and invasion of 
MCF10A cells.18

Recent report showed that tumor-derived exosomes influ-
ence the survival and proliferation of metastatic tumor cells at 
distant sites.20–22 MDA-MB-231-, T47DA18-, and MCF-7-
derived exosomes can be taken up by human primary mam-
mary epithelial cells (HMECs), resulting in an increase in 
reactive oxygen species, autophagy, and secretion of tumor fac-
tors from human primary mammary epithelial cells (HMECs). 
This permissive microenvironment supports survival and pro-
liferation of incoming metastatic tumor cells.23 A novel mecha-
nism employed by breast cancers to induce pro-inflammatory 
activity has been highlighted that circulating tumor-derived 
EVs can promote NF-κB activation and secretion of pro-
inflammatory cytokines such as IL-6 (interleukin 6), TNF-α 
(tumor necrosis factor α), GCSF (granulocyte-colony stimu-
lating factor), and CCL2 of distant macrophages.24

Glucose-enriched niche is generated by transfer of miR-
122–bearing tumor EVs to stromal cells, which prevents glu-
cose uptake of stromal cells via miR-122–mediated inhibition 
of pyruvate kinase.25 Overall, the data above indicate the func-
tional implications proposed for EVs of supporting metastatic 
tumor cells’ survival and proliferation at distant site. However, 
this working model of circulating tumor EVs has not been 
demonstrated in a fully physiological in vivo context.

A frequent observation in patients with cancer is thrombo-
cytosis. One possible explanation is coagulation and platelet 
accumulation at cancer sites can evade immune surveillance 
and promote cell migration.26 Extracellular vesicles are reported 
to be involved in coagulation by carrying tissue factor (TF) and 
other coagulation-promoting factors.27,28 In addition to tumor-
derived EVs, EVs from platelets and cancer-associated inflam-
matory cells participate in coagulation.29 The EVs bearing TF 
derived from breast cancer cells can exchange between tumor 
cells with different aggressiveness potentials, which may con-
tribute to the propagation of a TF-related aggressive pheno-
type among heterogeneous subsets of breast cancer cells.30 
However, more in vivo data are required to elucidate the roles 
of TF-bearing EVs in promoting coagulation in breast cancer.

After dissemination, cancer cells intravasate to the circula-
tion. Tumor-derived EVs can alter the cellular signaling and 
metastatic state of recipient endothelial cells and trigger vascu-
lar permeability and recruitment of bone marrow progenitor 
cells.31 Some groups have described how EVs are involved in 
this process. Recent report has shown that vascular leakiness in 
lung is triggered by breast cancer–derived EVs, which upregu-
late a subset of S100 proteins and activate Src kinase signal-
ing.32 Another report by Zhou et  al33 also shows that breast 
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cancer cell–derived EVs bearing miR-105 can induce tight 
junction protein ZO1 destruction in recipient endothelial cells, 
resulting in increasing vascular permeability.

Tumor growth and progression depend on exploitation of 
preexisting vessels and development of new vessels to obtain 
necessary nutrient and oxygen especially under hypoxic condi-
tions called vascularization. Recent reports have shown that 
breast cancer cell–derived EVs have potential roles in promot-
ing angiogenesis. One group discovered that EVs bearing bio-
active form of VEGF are released from tumor cells under 
acidic condition.34 Treatment of adipose stem cells (ASCs) 
enriched in mammary microenvironment with breast cancer 
cell–derived EVs leads to VEGF secretion from ASCs and 
angiogenic sprouting of human umbilical vein endothelial 
cells (HUVECs).35 Moreover, another group displayed that 
breast cancer cell–derived EVs contain a unique oligomeric 
species of VEGF called VEGF90k. After cross-linking with 
VEGF165, VEGF90K will be catalyzed by the enzyme tissue 
transglutaminase and associated with EVs through the inter-
action with Hsp90. Both in vitro and in vivo studies indicate 
that VEGF90K-EVs can activate endothelial cells to migrate 
toward angioreactors and stimulate HUVECs to undergo 
tubulogenesis.36 These observations indicate that EVs isolated 
from tumor cells may exert important effects on tumor angio-
genesis. However, more experiments should be performed to 
draw a solid conclusion.

Whether tumor cells can evade immune surveillance 
becomes a crucial step in tumor metastasis and several ways are 
employed by tumor cells: deleting immune cells via death 
ligands, suppressing immune reaction by regulatory T cells, and 
inducing tolerization by cytokines or cross-presentation related 
to dendritic cells (DCs) and macrophages.37 NKG2D, a 
homodimeric C-type lectin receptor, is widely expressed in 
various immune cells. On binding of ligands, NKG2D can 
directly trigger NK cytotoxic capacity and activate costimula-
tory signaling pathway in T cells in addition to T cell receptor–
dependent process. Breast cancer cell–derived exosomes can 
inhibit immunologic functions by repressing expression of the 
NKG2D receptors on lymphocytes, resulting in decreased 
CD8+ T-cell cytotoxicity.38 Dendritic cells, originating from 
hematopoietic stem cells, act as antigen-presenting cells to 
stimulate T-cell activation and induce the host antitumor 
immune response. Previous report showed that bone marrow–
derived CD11b+ myeloid precursor cells can take up tumor 
exosomes in vivo, which further blocks DC differentiation and 
maturation via the induced IL-6 production in vitro. Consistent 
with the observation in murine model, coculture of exosomes 
isolated from MDA-MB-231 breast tumor cells with CD14+ 
monocytes results in decreased DC differentiation.39 Tumor-
associated macrophages (TAMs) play vital roles in the tumor 
microenvironment and are associated with poor diagnosis due 
to the tumor-promoting inflammatory M2 phenotype, which 
is the main existing form of TAM. Breast cancer cell–derived 

exosomes can stimulate NF-κB activation in TAMs, resulting 
in secretion of pro-inflammatory cytokines such as IL-6, TNF-
α, GCSF, and CCL2 both in vitro and in vivo.24 Collectively, 
breast cancer cell–derived EVs can function as critical media-
tors of tumor cells to evade immune surveillance.

EVs and Therapeutic Responses
On the way to successful treatment of breast cancer, drug 
resistance remains an intractable impediment. Tumor-derived 
EVs can participate in cancer cell resistance to chemotherapy. 
P-glycoprotein (P-gp), a membrane transporter, can reduce the 
accumulation of antitumor drugs in cytoplasm due to its active 
drug efflux capacity.40–43

Drug resistance can be transferred to sensitive recipient cells 
by EVs derived from docetaxel-resistant MCF-7 cells, which 
can promote P-gp expression in dose-dependent pattern.44 
Different consequences of EV-associated RNA transfer in the 
breast cancer microenvironment have been recently described. 
Extracellular vesicles bearing miR-200c can reduce P-gp 
expression to enhance chemosensitivity to epirubicin,45 whereas 
miR-298 and miR-451 bearing EVs can induce chemoresist-
ance to doxorubicin via the increased P-gp expression.46,47 
Besides P-gp modulation, suppression of Raf-1 and Bcl2 by 
miR-195-EVs promotes the chemosensitivity to Adriamycin 
and radiosensitivity.48 In addition, exosomes bearing miRNA 
cargo derived from stromal cells transfer to breast cancer cells 
and activate the pattern recognition receptor RIG-1 and stim-
ulate the STAT-1–dependent pathway and NOTCH3, which 
further collaboratively induce the stroma-mediated resistance 
process.49 Several kinds of miRNAs (miR-17, miR-29, miR-
30a, miR-100, miR-221, miR-222, etc) are upregulated in 
drug-resistant MCF-7 cells and enriched in exosomes. These 
miRNAs bearing exosomes further transfer to sensitive MCF-7 
cells and induce drug resistance.50,51 In addition to miRNAs, 
multifarious proteins in tumor EVs can also regulate P-gp 
expression. MCF-7 Adriamycin-resistant cell–derived EVs 
transfer a Ca2+-permeable channel TrpC5 to human microves-
sel endothelial cells, resulting in the elevated expression of 
P-gp by activation of the transcription factor nuclear factor of 
activated T cells’ isoform c3 (NFATc3).52 Recently, a member 
of ATP (adenosine triphosphate)–binding cassette transporter 
family called ABCG2 has been reported to play a vital role in 
multidrug resistance (MDR) induction. Chemotherapeutic 
drugs have been concentrated in EVs relying on ABCG2, thus 
reducing drug concentration in cytoplasm.53 It has been 
reported that PI3K-Akt signaling pathway and Ko143 partici-
pate in ABCG2 targeting and biogenesis of EVs.54 This mech-
anism can be employed to overcome MDR. Taking advantages 
of EVs that can actively concentrate various drugs from cyto-
plasm, treatment of cells with photosensitive cytotoxic chemi-
cals produces drug-bearing EVs. Reactive oxygen species will 
be induced in recipient cells, leading to tumor cell lysis to over-
come MDR.54
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Clinical Applications of EVs
Many groups have described that more EVs are secreted from 
cancer cell lines compared with noncancerous cells, with remark-
able highly expressed molecules. This will make circulating 
tumor-derived EVs as promising biomarkers to evaluate tumor 
progression and prognosis.55–58 In addition, more exosomes can 
be separated from serum of patients with breast cancer than 
healthy donors.59 Breast cancer–released EVs, regarded as poten-
tial indicators at early stage of illness, are worth further investi-
gation. Several proteins, including the oncogenic cancer marker 
CD24, focal adhesion kinase (FAK), epidermal growth factor 
receptor (EGFR), apoptosis inhibitor surviving, and its splice 
variants, cell surface proteoglycan glypican-1 (GPC-1), have 
been reported to be dramatically overexpressed in EVs derived 
from serum of patients with breast cancer compared with healthy 
donors.60–64 In addition, researchers found that the exosomes 
derived from MCF cell line express higher level of 27-hydroxy-
cholesterol compared with exosomes derived from 
MDA-MB-231 and healthy control group.65,66 These molecules 
differentially expressed according to the stage of tumor progres-
sion. For example, developmental endothelial locus-1 protein 
(Del-1) is highly expressed in circulating EVs derived from 
patients with breast cancer compared with healthy donors. After 
tumor resection, Del-1 level will decrease to normal level.67 
Besides, EVs isolated from pleural effusions of patients with 
breast cancer are enriched in disintegrin and metalloprotease 
ADAM10, CD9 tetraspanin, and epithelial cell adhesion mole-
cule (EpCAM) compared with healthy donors.68–70 Thus, spe-
cific proteins can make EVs as candidates to be breast cancer 
biomarkers. In addition to proteins, circulating exosomal miR-
NAs can also be employed as a diagnostic marker for cancer pro-
gression and prognosis. A tendency in field shows that detection 
of exosome-bearing miRNAs is more sensitive and reliable than 
miRNAs directly purified from plasma or serum.51 MiR-101 
and miR-372 are found enriched in exosomes, but not in serum 
samples. Conversely, significantly higher level of miR-372 is 
detected in serum other than in exosomes from cancer sam-
ples.71 Compared with healthy control group, miR-21 and miR-
1246 are elevated in exosomes derived from plasma of patients 
with breast cancer and tumor-bearing mice.72 In addition, miR-
105, a potent regulator of migration via direct interaction with 
the tight junction protein ZO1, is uniquely expressed and 
released by metastatic breast cancer cells. Thus, in patients with 
early-stage breast cancer, high expression level of circulating 
miR-105 suggests the possibility of tumor metastasis.33 Overall, 
these studies suggest that EVs have potential to be employed as 
biomarkers for diagnosis and prognosis at early stage of disease 
in patients with breast cancer.

Breast cancer–derived EVs have been shown to promote 
tumorigenesis, angiogenesis, invasion, and metastasis, suggest-
ing that interfering EV biogenesis can be a potential way in 
cancer therapy. Some studies have attempted to do this by 
inhibiting Ras-related RAB proteins. Rab27a−/− 4T1 cells 

exhibit reduced secretion of EVs and lower tumor growth and 
incidence of pulmonary metastasis.73

All EVs bear surface molecules that allow them to be tar-
geted to recipient cells. Exploiting their cell surface receptors, 
EVs can also be modified and used as target-specific drug 
delivery system. Modified exosomes with EGF or EGFR 
ligand on their surfaces can specifically target EGFR-
expressing breast cancer cells and deliver cargos such as miR-
NAs to them. Loading of tumor suppressor let-7a miRNA in 
these modified exosomes suppresses xenograft breast cancer 
growth in murine model, which provides a tool for miRNA 
replacement therapies in antitumor treatment.74 MicroRNA 
profiling shows miR-134 is the most substantially downregu-
lated miRNA in EVs derived from aggressive breast cancer 
cells. Delivery of miR-134–enriched EVs to tumor cells leads 
to distinct reduction in cellular migration and invasion as well 
as increased apoptosis and drug sensitivity.75 Moreover, 
researchers synthesized a novel structure named exosomes/
SEB (staphylococcal enterotoxin B), which bears cytostatic 
effect on MDA-MB-231 cell. This delicate structure dramati-
cally reduces cell proliferation and induces apoptosis, with 
increased expression of bax, bak, caspase 3, and caspase 9.76 In 
addition, treatment of breast cancer cells with epigallocatechin 
gallate (EGCG), a molecule with known antitumor effects, 
upregulated the expression of tumor suppressor miR-16 in 
tumor EVs. Ex vivo incubation of exosomes isolated from 
EGCG-treated breast cancer cells with TAM leads to repressed 
NF-κB signaling and M2 polarization, which activates antitu-
mor immune response.77 Overall, these discoveries shed light 
on EVs’ capacity as promising candidate vehicles for drug 
delivery in antitumor therapy.

Future Directions
Recent exosome purification protocols used are based on dif-
ferent protein markers, sizes, and density.78 However, few of 
these purification methods can clearly isolate specific type of 
EVs. Most studies published so far analyze mixed EV popula-
tions. There raise multiple questions about these vesicles them-
selves: What are the tissues of origin of EVs of different sizes? 
What is the specific biological function of different types of 
EVs? How are these EVs interacting with each other (func-
tionally)? Addressing these open questions relies on developing 
reliable and novel purification method according to deeper 
understanding of EVs.

In addition, current studies in EVs are limited to in vitro 
system. More in vivo studies need to be performed, such as 
transgenic models of breast cancer system, which helps us 
know the “atlas” of breast cancer cell–derived EVs. By in vivo 
imaging, we can know the origin of EVs, the releasing rates and 
numbers of EVs, the recipient cell types, and the relationship 
between EVs and soluble factors.

As the biology of EVs is continuing to gain more interest, 
more subtypes of EVs involved in specific biological processes 
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are discovered and characterized. For instance, Ma et al79 iden-
tified migrasome, an organelle mediating release of cytoplas-
mic contents during cell migration. The physiological roles of 
these EVs in tumor progression remain to be elucidated. In 
addition, a novel population of EVs named HG-NV was iden-
tified recently. HG-NVs derived from 4T1 and MDA-MB-231 
contain kinds of RNAs and proteins, which can be potential 
biomarkers for diagnosis and prediagnosis.80 We hope that in 
the near future, research can provide advanced technical pro-
gress and understanding of the multiple roles of each type of 
EVs, and more efficient therapeutic strategies will be devel-
oped by applying these delivery packets in cancer and in many 
other diseases.
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