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Abstract 
Precision oncology matches tumors to targeted therapies based on the presence of actionable 
molecular alterations. However, most tumors lack actionable alterations, restricting treatment 
options to cytotoxic chemotherapies for which few data-driven prioritization strategies currently 
exist. Here, we report an integrated computational/experimental treatment selection approach 
applicable for both chemotherapies and targeted agents irrespective of actionable alterations. 
We generated functional drug response data on a large collection of patient-derived tumor 
models and used it to train ScreenDL, a novel deep learning-based cancer drug response 
prediction model. ScreenDL leverages the combination of tumor omic and functional drug 
screening data to predict the most efficacious treatments. We show that ScreenDL accurately 
predicts response to drugs with diverse mechanisms, outperforming existing methods and 
approved biomarkers. In our preclinical study, this approach achieved superior clinical benefit 
and objective response rates in breast cancer patient-derived xenografts, suggesting that 
testing ScreenDL in clinical trials may be warranted. 
Main 
Widespread adoption of clinical genetic testing, married with an expanding repertoire of 
anticancer therapies, has significantly expanded the reach of precision cancer treatments.1 
However, despite several successful applications of genome-guided therapy, such as the 
approval of EGFR inhibitors in EGFR-mutant non-small cell lung cancer and PARP inhibitors in 
specific tumor types harboring BRCA1/2 mutations, a lack of rational guidance for treatment 
selection remains a critical barrier to precision oncology practice. Most drugs lack approved 
pretreatment biomarkers,1 and most tumors lack clinically actionable molecular alterations, 
limiting biomarker-informed treatment selection to a minority of patients.1–4 Indeed, the 
pioneering NCI-MATCH trial of >5,900 patients with diverse malignancies identified actionable 
alterations in just 38% of individuals, with <18% ultimately assigned to treatment arms based on 
genomic indicators.5 Further, response to single-gene biomarker-informed treatments is highly 
variable, even among patients harboring theoretically targetable alterations.6–8 These challenges 
are particularly acute in metastatic tumors with their vast inter-tumoral heterogeneity and 
diverse resistance mechanisms.9 While recent metastatic cancer trials identified actionable 
alterations in 40-46% of patients, no clinical benefit was observed when matching patients to 
genome-guided therapies.10,11 Given these limitations, chemotherapy remains a mainstay of 
cancer treatment.3,4 However, no data-driven approaches exist to guide selection across the full 
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spectrum of relevant chemotherapeutic agents.12 Taken together, these considerations suggest 
that expanding the currently limited scope of precision oncology practice requires: (1) extending 
precision treatment selection to drugs, including chemotherapies, lacking validated predictive 
biomarkers1,13 and (2) refining the prediction of targeted agent sensitivity beyond the presence 
or absence of single-gene molecular alterations. 
To this end, recent advances in deep learning (DL)-based cancer drug response prediction 
(CDRP) offer an alternative to today’s biomarker-based treatment selection strategies.14 These 
approaches leverage large-scale pharmaco-omic screens in cancer cell lines to train data-driven 
models that can be applied to predict treatment response in patient tumors. Critically, DL 
approaches incorporate high-dimensional omic features (e.g., uncurated lists of somatic 
mutations or gene expression values) without the explicit specification of known prognostic 
biomarkers, facilitating response prediction for drugs lacking validated biomarkers and for 
tumors lacking actionable alterations.14,15 However, while existing models perform well in 
standard cell line benchmarks, performance declines significantly under precision oncology-
relevant testing conditions. Indeed, a recent study found that existing DL models suffer from an 
overreliance on drug-level features, ultimately preventing the generation of personalized 
predictions based on a tumor’s omic characteristics.16 Further, compared to human tumors, cell 
lines exhibit differences in key biological variables associated with drug response, including 
differentiation, proliferation, and drug metabolism.17,18 As a consequence, pharmaco-omic 
associations learned in cell lines do not necessarily translate to patients in a straightforward 
manner, limiting the clinical utility of models trained in cell lines alone. 
To better model human tumors, we and others have advanced a series of patient-derived 
models of cancer (PDMCs) maintaining strong biological fidelity and concordant drug responses 
with the originating patient’s tumor.19–21  In particular, patient-derived organoids (PDOs)22 and 
other short-term ex vivo culture systems23,24 have received significant attention, serving as 
intermediate models between in vitro cell lines and in vivo xenografts while enabling functional 
drug screening within a clinically relevant timeframe21,25. Beyond providing a more clinically 
relevant source of pharmaco-omic data for CDRP models, functional testing in PDMCs has 
proven a powerful standalone tool for treatment selection in multiple cancer types.22,26 Further, 
PDMC-based functional testing has identified targeted agent sensitivities in tumors lacking the 
associated therapeutic biomarkers27,28 and revealed distinct drug response profiles in tumors 
harboring similar driver mutations.25 The ability of functional testing to augment tumor omic 
information has motivated recent trials pairing tumor omic characterization with PDMC-based 
functional testing to provide complementary views of drug sensitivity that can be integrated to 
inform treatment decisions.29 However, existing integration strategies rely on post hoc 
correlative analyses, necessitating agreement between omic and functional findings. While 
concordant results can increase confidence when selecting treatments, a lack of established 
practices to resolve contradictory findings limits the synergy between omic and functional 
modalities. 
To address these gaps, here we report a unified computational/experimental approach to 
treatment selection, combining a clinically oriented functional precision oncology (FPO) pipeline 
with ScreenDL, a novel DL-based CDRP framework engineered to exploit the patient-relevant 
data generated by this experimental protocol. During training, ScreenDL progressively 
incorporates data of increasing patient relevance to generalize pharmaco-omic associations 
previously learned in cell lines for response prediction in patients. As new patients enter our 
FPO pipeline, parallel tumor omic profiling and functional drug screening in matched organoids 
enables patient-specific fine-tuning with our ScreenAhead module, integrating a tumor’s omic 
and functional characteristics with prior knowledge learned from training examples to generate 
personalized response predictions. ScreenDL outperforms existing DL models across a panel of 
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clinically relevant benchmarks in cell lines and PDMCs. Further, personalization with 
ScreenAhead dramatically improves response prediction, highlighting the power of our 
combined computational/experimental strategy. Mirroring clinical application in patients and 
matched PDOs, we applied our end-to-end computational/experimental treatment selection 
framework to high-risk/metastatic patient-derived xenograft (PDX) models with functional 
profiling in matched PDX-derived organoids (PDXOs). Our promising results in this preclinical 
validation justify further evaluation in future clinical trials to aid precision treatment selection in 
the clinic. 

 
Fig. 1: Deep learning-based integration of tumor omic and functional data for precision treatment selection 
with ScreenDL. a. Model Architecture: ScreenDL takes a tumor’s transcriptomic profile and a drug’s chemical 
structure as input and predicts z-score ln(IC50) values. b. Data Sources and Training Schema: During initial general-
purpose pretraining, ScreenDL extracts generalizable associations between tumor omics and drug response from 
large-scale cell line pharmaco-omic databases (blue). During subsequent domain-specific fine-tuning, ScreenDL 
leverages pharmaco-omic data from breast cancer PDXOs to adapt to a more clinically relevant response prediction 
context (purple). Finally, patient-specific fine-tuning with ScreenAhead generates a personalized response prediction 
model optimized for the N-of-1 precision oncology context (green). c. Clinical Workflow: When a new patient enters 
the functional precision oncology pipeline, a biopsy is taken, and RNA sequencing is performed. In parallel, a patient-
derived organoid model is established, and functional drug screening is performed. The resulting multimodal data is 
integrated with prior knowledge through patient-specific fine-tuning with ScreenAhead. Predicted drug responses are 
then used to select an optimal treatment. 

Results 
Design and training of a deep learning model optimized for precision oncology 
applications 
Cancer drug response involves the interplay of complex biological and chemical factors.30 To 
model these interactions, ScreenDL learns a function R = f(D, T), mapping a drug’s chemical 
structure D and a tumor’s transcriptomic profile T to a predicted response R (Fig. 1a). In this 
schema, drugs are encoded as Morgan fingerprints,31 a canonical vector representation of 
chemical structure, and tumors are represented as vectors encoding the z-score normalized 
expression of 4,364 genes from the Molecular Signatures Database (MSigDB) hallmark gene 
set collection32 (Fig. 1a). Here, the use of hallmark genes corresponding to well-defined 
biological processes32 allows ScreenDL to link cancer-relevant cellular phenotypes with drug 
response characteristics while minimizing reliance on individual genomic biomarkers for 
prediction. These tumor and drug encodings are passed to parallel feature extraction 
subnetworks dedicated to learning rich embeddings of a tumor’s transcriptomic profile and a 
drug’s chemical structure, respectively. The resulting embeddings are then concatenated and 
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fed to a shared response prediction subnetwork which models interactions between biological 
and chemical features to predict therapy response. Drug response is quantified as z-score 
ln(IC50), termed ZD, corresponding to the z-score normalized, log transformed half-maximal 
inhibitory concentration of a given tumor-drug pair. Z-score normalization was performed 
independently for each drug across tumor samples, removing drug-specific biases in standard 
dose-response metrics16,33 and promoting transcriptomic signals associated with differential 
response - that is, the response of a given tumor to a given drug relative to other tumors. This 
formulation allows ScreenDL to identify therapies that elicit exceptional responses in the tumor 
of interest. 
The training of ScreenDL proceeds in three phases, each designed to maximize available 
pharmaco-omic data and provide accurate response predictions for never-before-seen tumor 
samples (Fig. 1b). During an initial pretraining phase, ScreenDL leverages large-scale 
pharmaco-omic screens performed in cell lines to extract generalizable associations between 
tumor omics and drug response. To establish a comprehensive pharmaco-omic dataset for 
pretraining, we harmonized drug screening data from the Genomics of Drug Sensitivity in 
Cancer database34 with matched transcriptomic profiles from Cell Model Passports35. In total, 
this harmonized dataset consists of 278,033 cell line-drug pairs spanning 799 pan-cancer cell 
lines and 409 anticancer therapies. Following general-purpose pretraining in cell lines, context-
specific pharmaco-omic data derived from more clinically relevant PDXOs was integrated 
through domain-specific fine-tuning, adapting the pretrained ScreenDL model to a more 
clinically relevant response prediction context. This fine-tuning schema allows ScreenDL to 
capitalize on less-abundant, but highly patient-relevant pharmaco-omic data from PDMCs while 
retaining the generalizable knowledge learned during pretraining. In the last phase, 
personalization was achieved through patient-specific fine-tuning with our ScreenAhead 
module. This step integrates patient-level transcriptomic features with limited functional drug 
screening in PDMCs derived from the patient to generate a personalized response prediction 
model (Fig. 1c). While existing CDRP frameworks rely solely on tumor omic features for 
inference14, our ScreenAhead strategy incorporates dual omic and functional characteristics 
(Fig. 1c), allowing ScreenDL to exploit partial functional drug screening to augment tumor omic 
inputs and enhance predictions for a greater number of drugs. 
ScreenDL provides accurate response predictions in never-before-seen cancer cell lines 
As an initial assessment, we measured the prediction accuracy of our pre-trained ScreenDL 
model (ScreenDL-PT) in never-before-seen cell lines using the Pearson correlation coefficient 
(PCC) between observed and predicted ZD values (see Methods). To mitigate the propensity of 
global metrics to overstate the accuracy of CDRP models16, performance was assessed 
independently for each drug. Across all tested drugs, ScreenDL-PT achieved a median PCC of 
0.47, a significant improvement compared to 0.43 for DeepCDR36 (p = 2.84 x 10-63, Wilcoxon 
signed-rank test), the best of three existing DL models: DeepCDR, DualGCN37, and HiDRA38 
(Fig. 2a). Further, ScreenDL-PT outperformed all tested models regardless of treatment type, 
achieving median PCCs of 0.56 and 0.52 across chemotherapies and targeted agents, 
respectively (Fig. 2a). To glean additional insight, we further stratified performance, grouping 
drugs by biological mechanism and cell lines by parent tissue type. ScreenDL-PT outperformed 
all tested models across the breadth of drug mechanisms, with median PCCs ranging from 0.41 
for drugs targeting receptor tyrosine kinase signaling to 0.59 for drugs targeting the ERK/MAPK 
axis (Fig. 2b). Further, ScreenDL-PT outperformed the next-best model for 63% of tissue types 
compared to just 19% for HiDRA, the next-best model (Fig. 2c). 
To quantify ScreenDL’s ability to stratify sensitive and resistant tumors, we binarized observed 
ZD values and computed area under the receiver operating characteristic curve (auROC) 
independently for each drug. ScreenDL-PT achieved a median auROC of 0.74 compared to 
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0.71 for DeepCDR, the next best model (Fig. 2d). We next applied ScreenDL-PT to select 
optimal precision treatments for each cell line and quantified response rate (RR). Here, RR was 
defined as the fraction of cell lines for which response fell below the 30th percentile of observed 
ZD values for the selected therapy, a threshold predictive of partial or complete response in 
patients23. ScreenDL-PT achieved a RR of 64% amongst selected therapies, a slight 
improvement compared to HiDRA (RR = 63%) and the highest of all tested models (Fig. 2e). 
Closer inspection of the therapies selected by ScreenDL-PT revealed 171 anticancer agents 
targeting over 20 distinct cancer-associated biological pathways, illustrating ScreenDL’s ability 
to match cell lines with treatments tailored to their individual transcriptomic characteristics. 

 
Fig. 2: ScreenDL enables accurate response prediction in never-before-seen cell lines. a. Comparison of the 
drug level-prediction accuracies achieved by ScreenDL-PT and ScreenDL-SA with those of three existing DL-based 
CDRP models. Box plots represent the distribution of Pearson correlations between observed and predicted 
response per drug. Median values for each model are denoted in the upper margin. Drug-level performance is 
stratified by drug type for a subset of drugs (n = 213) which were manually annotated as either: chemotherapies (C), 
n = 34; or targeted agents (T), n = 179. b. Performance stratified according to drug biological mechanisms. Points 
represent the median Pearson correlation coefficient per drug. Bars indicate the number of training drugs per 
biological mechanism. Only mechanisms with at least 10 drugs are shown. c. Drug-level performance stratified 
according to cell line tissue types. Points represent the median Pearson correlation per drug amongst cell lines from 
the corresponding tissue. Bars indicate the number of training cell lines per tissue. Only tissues with at least 10 cell 
lines are shown. d. Median area under the receiver operating characteristic curve (auROC) across drugs for 
ScreenDL-PT, ScreenDL-SA, and three existing DL models. For each drug, sensitive tumors were defined as cell 
lines with an observed response falling below the 30th percentile of observed ZD values. Error bars denote 
interquartile ranges. e. Cell line response rates to drugs selected by different DL models. 

Generation of an expansive high-risk/metastatic breast cancer PDMC pharmaco-omic 
resource. 
Despite these promising results in cell lines, ScreenDL-PT achieved only a modest median PCC 
of 0.27 across drugs when applied to our previously reported breast cancer PDXO collection21 
(n = 16 PDXOs with pharmaco-omic data; Extended Data Fig. 1). While ScreenDL still 
outperformed DeepCDR (median PCC = 0.17) and HiDRA (median PCC = 0.15) in this PDXO 
cohort, the observed performance loss across all tested models underscores the limitations of 
cell lines when training DL models for response prediction in patient tumors. To provide a more 
extensive pharmaco-omic dataset to fine-tune our models, we generated an expanded living 
biobank of stable organoid lines (n = 99 PDXO + 1 PDO) from high-risk/metastatic breast  
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Fig. 3: ScreenDL achieves accurate response prediction in high-risk/metastatic breast cancer PDXO models. 
a. Unsupervised clustering of 29 drugs carried forward for screening in at least 70% of PDXO lines. Only the 48 
PDXO lines in which all 29 drugs were screened are included. Color indicates z-score normalized ln(IC50) values 
(darker red indicates cytotoxicity and darker blue indicates growth). Row and column annotations denote the 
biological mechanism of screened compounds and the hormone receptor status of each PDXO line, respectively. b. 
Performance of each ScreenDL variant in our expanded breast cancer PDXO cohort for the subset of 61 drugs 
included in cell line pretraining compared with that of two existing DL-based CDRP models. Box plots represent the 
distribution of Pearson correlations between observed and predicted response per drug. Median values for each 
model are denoted in the upper margin. Drug-level performance is stratified by drug type for a subset of drugs which 
were manually annotated as either: chemotherapies (C), n = 10; or targeted agents (T), n = 51. c. High-confidence 
drugs (PCC > 0.5) for ScreenDL-SA (ALL) colored by drug biological mechanisms. d. Drug-level performance 
stratified according to the biological mechanism of the corresponding therapy. Points represent the median Pearson 
correlation per drug. Bars indicate the number of training drugs per target pathway. Only biological mechanisms with 
at least two drugs are shown. e. Median area under the receiver operating characteristic curve (auROC) across drugs 
for ScreenDL-PT, ScreenDL-SA, and two existing DL models. For each drug, sensitive tumors were defined as 
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PDXOs with an observed response falling below the 30th percentile of observed ZD values for a given drug. Error 
bars denote interquartile ranges. f. PDXO response rates for drugs selected by different DL models. 
tumors following our published protocols.21,39 Comprehensive descriptions of these PDXO lines 
and clinical annotations for the originating tumor samples are provided in Supplementary Table 
S1, and omic profiles of the originating patient tumor (when available), the PDX, and the 
matching PDXO lines were imported into cBioPortal.40–42 Each of the organoid lines was 
functionally characterized for response to a subset of >100 anticancer therapies centering on 
treatments approved for breast cancer and drugs available through the National Cancer 
Institute’s Cancer Therapy Evaluation Program. A summary of drugs tested in each PDXO line 
is provided in Supplementary Table S2. This effort yielded an extensive pharmaco-omic dataset 
including nearly 5,000 drug response observations spanning 100 PDXO/PDO lines and >100 
anticancer therapies (Fig. 3a; Supplementary Fig. 1a-d); Supplementary Table S2). 
Unsupervised clustering of PDXO response profiles for the 29 drugs that showed promising 
activity and were therefore screened in at least 70% of PDXO lines revealed similar patterns of 
response to groups of drugs sharing common biological mechanisms, including microtubule 
inhibitors and drugs targeting PI3K/MTOR signaling (Fig. 3a). Similarly, response profiles for 
agents with the same protein targets were highly correlated, including responses to the PARP 
inhibitors olaparib and talazoparib (PCC = 0.72, p = 2.14 x 10-15) and the SMAC mimetics 
birinapant and tolinapant (PCC = 0.86, p = 1.06 x 10-14). PDXO responses also recapitulated 
established clinical biomarkers, with drugs targeting PI3K/MTOR signaling showing increased 
activity in estrogen receptor-positive (ER+) lines (p = 0.0014, Mann-Whitney U test) and 
enhanced sensitivity to platinum-based chemotherapies in triple-negative breast cancer lines (p 
= 0.009, Mann-Whitney U test).43 Finally, validation of 98 PDXO responses in the originating 
PDX samples revealed that PDXO screening was strongly predictive of in vivo treatment 
response (Extended Data Fig. 2), corroborating our earlier conclusions21 and illustrating the 
ability of this organoid platform to faithfully recapitulate in vivo drug response dynamics. 
Domain-specific fine-tuning improves response prediction in breast cancer PDMCs. 
We next investigated whether fine-tuning ScreenDL using this expanded PDXO pharmaco-omic 
dataset would improve model performance. To establish a baseline, we first assessed the 
prediction accuracy of ScreenDL-PT in these 100 PDXOs using the subset of 61 drugs also 
screened in cell lines. ScreenDL-PT achieved a median PCC across drugs of 0.31, 
outperforming both DeepCDR (median PCC = 0.19) and HiDRA (median PCC = 0.19) (Fig. 3b). 
Notably, while performance on drugs not included in cell line pretraining was comparatively poor 
(median PCC = 0.18; Extended Data Fig. 3), ScreenDL-PT still provides reliable predictions for 
a subset of such drugs, including the BRAF inhibitor vemurafenib (PCC = 0.65) and the 
microtubule inhibitor eribulin (PCC = 0.33). We then fine-tuned ScreenDL-PT using our full 
breast cancer PDXO dataset and assessed performance under leave-one-out cross-validation 
(see Methods). The fine-tuned model (ScreenDL-FT) displayed a significant increase in 
accuracy (PCC = 0.36; p = 0.003, Wilcoxon signed-rank test; Fig. 3b), with a mean improvement 
per drug of 0.06. Marked improvement was also observed for drugs not included in cell line 
pretraining (mean improvement per drug = 0.05; Extended Data Fig. 3). Further, fine-tuning 
improved performance for both targeted agents and chemotherapies (Fig. 3b) and for the vast 
majority of drug biological mechanisms (75%; Fig. 3f). 
Personalization with ScreenAhead significantly increases predictive power and improves 
treatment selection 
To capitalize on our ability to generate matched omic and functional data for new patients 
through our FPO pipeline21,44, we tested whether tumor-specific fine-tuning (ScreenAhead) 
using a tumor’s transcriptomic profile and partial drug screening data could further improve 
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performance. Here, we reasoned that personalization using a small, pre-screened drug panel 
would improve predictions across the broader space of unscreened therapies. As an initial test, 
we performed ScreenAhead tumor-specific fine-tuning for each cell line in our pharmaco-omic 
dataset and quantified prediction accuracy in unseen cell line-drug pairs. Specifically, for each 
cell line, a subset of 20 drugs was selected for ScreenAhead (see Methods). We then fine-tuned 
ScreenDL-PT using the cell line’s transcriptomic profile and its responses to these 20 drugs. 
ScreenAhead dramatically improved performance regardless of drug mechanism or tissue type 
(Fig. 2b,c), with ScreenDL-SA achieving a median PCC per drug of 0.66 compared to 0.47 for 
ScreenDL-PT (p = 1.15 x 10-68, Wilcoxon signed-rank test; Fig. 2a). Given potential biological 
and technical restrictions on the scope of pre-treatment drug screening, we explored the 
efficacy of our ScreenAhead approach while incrementally expanding the number of pre-
screened drugs for each cell line. We observed significant improvements in drug-level 
performance with as few as 5 pre-screened drugs, highlighting ScreenAhead’s ability to exploit 
a minimal screening panel to improve predictions for unscreened agents (Extended Data Fig. 
4a, Supplementary Text 1). 
We next assessed ScreenAhead in our breast cancer PDXO cohort. Specifically, following 
domain-specific fine-tuning, ScreenAhead tumor-specific fine-tuning was performed for each 
PDXO using 12 drug responses (a feasible number to screen on PDOs in a trial setting) and the 
PDXO’s transcriptomic profile. ScreenDL-SA showcased superior prediction accuracy compared 
to ScreenDL-FT, achieving a median PCC per drug of 0.62 when considering all drug responses 
(ScreenDL-SA ALL; Fig. 3b) and 0.59 when considering only never-before-seen (NBS) PDXO-
drug pairs, i.e., those PDXO-drug pairs not included in ScreenAhead (ScreenDL-SA NBS; Fig. 
3b). Interrogation of drug-level performance revealed a subpopulation of drugs with 
exceptionally high prediction accuracy (57% of drugs with PCC > 0.50), including both 
chemotherapies and targeted agents with diverse mechanisms of action (Fig. 3c). Further, when 
restricted to PDXO-drug pairs not included in ScreenAhead, ScreenDL-SA still provides high-
confidence predictions for 43% of drugs. Finally, ScreenDL-SA achieved a median auROC 
across drugs of 0.77 (Fig. 3e) and a 68% response rate (Fig. 3f), outperforming all competing 
models in both metrics. Together with ScreenDL-SA’s superior performance regardless of drug 
biological mechanism (Fig. 3d), these findings demonstrate the broad applicability of ScreenDL 
for response prediction in breast cancer patients. 
ScreenAhead harnesses two distinct types of information encoded in partial screening 
data 
Motivated by the superior performance of ScreenDL-SA, we sought to understand how 
specifically ScreenAhead exploits partial pre-screening data to improve predictions. Given 
reports citing strong correlations between a tumor’s global drug sensitivity (GDS), defined as the 
tumor’s average response across drugs, and response to individual agents,45,46 we explored 
whether ScreenAhead leverages knowledge of GDS extracted from partial screening data to 
calibrate predictions for a given tumor. In both cell lines and PDXOs, GDS was strongly 
correlated with response to individual treatments (Extended Data Fig. 5a,b). However, tumor-
specific fine-tuning using a cell line’s mean-filled ZD responses revealed that, while incorporating 
knowledge of GDS improved performance, GDS alone did not account for the full performance 
gain seen when using a cell line’s true ZD values in ScreenAhead (Extended Data Fig. 5c). 
Further, we found that ScreenAhead improved predictions for tumor-drug pairs for which GDS 
was not highly predictive, suggesting the ScreenAhead exploits additional information encoded 
in partial pre-screening data beyond a tumor’s GDS (Extended Data Fig. 5d,e; Supplementary 
Text 2). 
An inspection of ScreenDL’s drug subnetwork embeddings revealed stratification according to 
common biological mechanisms (Extended Data Fig. 6d,e). Moreover, ScreenDL-SA’s 
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performance gains were strongly correlated with the functional similarity of a given drug to drugs 
in a cell line’s pre-screening drug set (Extended Data Fig. 6a,b; Supplementary Text 3). These 
findings suggested that ScreenAhead might improve predictions for unscreened drugs by 
exploiting learned drug-drug functional similarities to borrow information from functionally related 
therapies included in pre-screening. To test this hypothesis, we performed a focused evaluation 
of ScreenDL-SA on 20 drugs when including an increasing number of functionally related 
therapies in ScreenAhead (see Methods). We observed a significant increase in drug-level 
performance when at least one functionally related therapy was included (p = 1.91 x 10-6, 
Wilcoxon signed-rank test; Extended Data Fig. 6c). Further improvement was observed with the 
addition of each subsequent functionally related therapy. These insights motivated a 
comparative analysis of ScreenAhead drug selection methods, revealing that informed drug 
selection using principal feature analysis (PFA)47 significantly outperformed both random drug 
selection and several alternative drug selection strategies (Extended Data Fig. 4b-d; 
Supplementary Text 1). Relative to random selection, the superior performance of PFA in this 
analysis supports the positive transfer of information across functionality-related therapies 
during ScreenAhead. 
ScreenDL outperforms single-gene biomarkers for targeted agent selection in cell lines 
and PDXOs 
To date, precision oncology has focused on the development of genome-guided therapies 
targeting genetic alterations seen repeatedly in tumors.48 However, the presence of these 
genetic markers does not guarantee sensitivity to the corresponding targeted agents.11 To 
determine whether ScreenDL could improve patient stratification relative to single- or multi-gene 
biomarkers alone, we compared the performance of ScreenDL to biomarker-only predictive 
models. In cell lines, BRAF mutation status was strongly predictive of response to dabrafenib, a 
targeted BRAF inhibitor approved for specific cancers harboring oncogenic BRAF mutations 
(Fig 4a,b). However, a number of dabrafenib-sensitive cell lines lacked BRAF mutations and 
would not be selected for dabrafenib treatment based on mutational status alone. In 
comparison, ScreenDL-PT enables stratification of cell lines within genomically defined 
subgroups (Fig 4c). Further, ScreenAhead with just 20 drugs (excluding dabrafenib) 
dramatically improved performance, both overall (PCC = 0.72) and within genomic subgroups 
(PCC = 0.74, BRAF mutant cell lines; PCC = 0.63, BRAF wild-type cell lines; Fig 4d). We next 
considered capivasertib, an AKT inhibitor approved in combination with fulvestrant for hormone 
receptor positive, HER2 negative metastatic breast tumors harboring PIK3CA, AKT1, or PTEN 
mutations. While driver mutations in PIK3CA, AKT1 or PTEN were associated with increased 
capivasertib sensitivity in cell lines (Fig. 4e), this association translated to comparatively poor 
performance in a biomarker-only model (PCC = 0.25; Fig. 4f). In comparison, ScreenDL-PT 
achieved a PCC of 0.50 while again enabling stratification within genomic subgroups, 
particularly for cell lines lacking the qualifying driver mutations where ScreenDL-PT recovered a 
subset (n = 31) of exceptionally capivasertib-sensitive lines (observed ZD below the 10th 
percentile) that lacked PIK3CA, AKT1, or PTEN driver mutations (Fig. 4g). 
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Fig. 4: ScreenDL outperforms single- and multi-gene biomarker-only models in cell lines. a-d. Sensitivity to the 
BRAF inhibitor dabrafenib in cell lines with and without BRAF mutations compared by a two-sided Mann-Whitney U 
test (a). Performance of a biomarker only-model (b) compared with ScreenDL-FT (c) and ScreenDL-SA (d). b-d. 
Lines indicate linear regressions fit to the data. c-d. Performance of ScreenDL-FT and ScreenDL-SA is stratified by 
genomic subgroups e-h. Sensitivity to the AKT inhibitor capivasertib in PDXOs with and without mutations in PI3KCA, 
AKT1, and/or PTEN compared by a two-sided Mann-Whitney U test (e). Performance of a biomarker only-model (f) 
compared with ScreenDL-FT (g) and ScreenDL-SA (h). f-h. Lines indicate linear regressions fit to the data. g-h. 
Performance of ScreenDL-FT and ScreenDL-SA is stratified by genomic subgroups 

Replicating our cell line analysis, we also observed enhanced capivasertib sensitivity in breast 
cancer PDXOs harboring PIK3CA, AKT1, and/or PTEN mutations (p = 0.02, Mann-Whitney U 
test; Fig. 5a). Again, ScreenDL-SA outperformed a biomarker-only model of capivasertib 
sensitivity, achieving a PCC of 0.50 compared to 0.46 (Fig. 5b-d). ScreenDL-SA also 
successfully identified the capivasertib-sensitive line, BCM-2665, representing a patient lacking 
the qualifying driver mutations who might benefit from capivasertib treatment. Similarly, 
ScreenDL-SA successfully identified BCM-5998 as capavisertib-resistant despite harboring a 
deleterious mutation in PTEN. We next focused on BRCA1/2 mutations given their approval as 
a biomarker for response to PARP inhibition and their association with sensitivity to platinum-
based chemotherapy.49 As expected, deleterious BRCA1/2 mutations were associated with 
heightened sensitivity to the PARP1/2 inhibitor talazoparib (p = 0.03, Mann-Whitney U test; Fig. 
5e) and the platinum-based chemotherapy carboplatin in PDXOs (p = 0.01, Mann-Whitney U 
test; Fig. 5i). ScreenDL-SA outperformed BRCA1/2 biomarker-only predictive models for both 
talazoparib and carboplatin while gaining power to stratify sensitive and resistant PDXOs within 
genomic subgroups. Further, both ScreenDL-FT and ScreenDL-SA uncovered a subpopulation 
of PDXOs with poor talazoparib response despite harboring deleterious BRCA1/2 mutations 
(Fig. 5f-h). Similarly, ScreenDL-SA correctly identified several PDXO lines displaying above-
average carboplatin sensitivity despite lacking detectable BRCA1/2 alterations (Fig. 5l). 
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Fig. 5: ScreenDL outperforms single- and multi-gene biomarker-only models in advanced/metastatic breast 
cancer PDXOs. a-d. Sensitivity to the AKT inhibitor capivasertib in breast cancer PDXOs with and without mutations 
in PI3KCA, AKT1, and/or PTEN compared by a two-sided Mann-Whitney U test (a). Performance of a biomarker only-
model (b) compared with ScreenDL-FT (c) and ScreenDL-SA (d). c-d. Performance of ScreenDL-FT and ScreenDL-
SA is stratified by genomic subgroups. e-h. Sensitivity to the PARP inhibitor talazoparib in PDXOs with and without 
mutations in BRCA1/2 compared by a two-sided Mann-Whitney U test (e). Performance of a biomarker only-model (f) 
compared with ScreenDL-FT (g) and ScreenDL-SA (h). g-h. Performance of ScreenDL-FT and ScreenDL-SA is 
stratified by genomic subgroups. i-l. Carboplatin sensitivity in PDXOs with and without mutations in BRCA1/2 
compared by a two-sided Mann-Whitney U test (e). Performance of a biomarker only-model (j) compared with 
ScreenDL-FT (k) and ScreenDL-SA (l). k-l. Performance of ScreenDL-FT and ScreenDL-SA is stratified by genomic 
subgroups. b-d,f-h,j-l. Lines indicate linear regressions fit to the data. c-d,g-h,k-l. PDXOs without whole exome 
sequencing (WES) data are indicated in light gray. 
ScreenDL consistently selects efficacious therapies for breast cancer PDX models 
The relationship between PDX and PDXO mirrors that of patient and PDO, affording an 
opportunity for end-to-end validation of our treatment selection strategy in a preclinical system 
that parallels clinical application (Fig. 6a). To this end, we applied our combined 
computational/experimental approach retrospectively to 20 breast cancer PDX models for which 
sufficient in vivo response data was available. For each PDX, bulk RNA-seq of the PDX’s tumor 
(or the PDXO when PDX sequencing was not available) and partial drug screening (n=12) from 
matched PDXOs were integrated into ScreenDL through ScreenAhead, and the drug with the 
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lowest predicted ZD response from a panel of candidate therapies was selected as the optimal 
precision treatment (Methods; Fig. 6a). In total, this panel contained between two and nine 
drugs for each PDX line. Following the recommendations of Meric-Bernstam and colleagues50, 
we quantified performance in terms of: (1) clinical benefit rate (CBR), defined as the fraction of 
PDX lines displaying stable disease (SD) or better by mRECIST criteria20; and (2) objective 
response rate (ORR), defined as the fraction of PDX lines achieving at least a partial response 
(PR). ScreenDL-SA achieved an 85% CBR and a 55% ORR (Fig. 6d,g), with 8 of 20 PDX lines 
achieving a complete response (CR) (Fig. 6h). In comparison, drug selection using the raw 
PDXO screening data achieved a 75% CBR and a 35% ORR (Fig. 6b,e). Notably, 4 of 5 HCI-
019 mice achieved an over 99% reduction in tumor volume after talazoparib therapy despite 
receiving an mRECIST designation of stable disease (SD) due to a weak initial response. When 
reclassifying the response of HCI-019 to talazoparib as a CR, ScreenDL-SA achieved an 
improved ORR of 60%. Further, while drug selection with ScreenDL-SA significantly improved 
ORR (p = 0.006, Fisher exact test; Fig. 6h,i), we did not observe significant improvement when 
selecting drugs using the raw PDXO screening data (p = 0.33, Fisher exact test). As a whole, 
these results are highly encouraging, particularly given evidence that a strong response in PDX 
models is more predictive of clinical benefit in patients.50 

 
Fig. 6: Retrospective validation of our end-to-end precision treatment selection strategy in matched 
PDX/PDXO models. a. Retrospective Validation Schema. A PDX’s transcriptomic profile and functional drug 
screening from matched PDXO lines are integrated into ScreenDL through tumor-specific fine-tuning with 
ScreenAhead. For each PDX, the drug with the lowest predicted ZD is selected as the optimal treatment and both 
clinical benefit rate (CBR) and objective response rate (ORR) are quantified using in vivo response in the originating 
PDX lines. Only the 20 PDX models for which in vivo testing for at least two therapies was carried out in unrelated 
studies were considered. b. CBR amongst the drugs selected with raw PDXO screening data for 20 PDX lines. 
Response values were z-score normalized independently for each drug across tumor samples and the drug with the 
lowest z-score response in the corresponding PDXO line was selected as the optimal precision treatment. Clinical 
benefit was defined as stable disease (SD) or better by mRECIST criteria. c. CBR amongst drugs selected by 
DeepCDR for the subset of 15 PDX lines with WES data. d. CBR for drugs selected by each ScreenDL variant for 20 
PDX lines compared with those selected by HiDRA. e. ORR amongst the drugs selected with raw PDXO screening 
data for 20 PDX lines. Objective response was defined as partial or complete response (PR or CR) by mRECIST 
criteria. f. ORR amongst drugs selected by DeepCDR for the subset of 15 PDX lines with WES data. g. ORR 
amongst the drugs selected by each ScreenDL variant for 20 PDX lines compared with those selected by HiDRA. b-
g. Solid lines correspond to the CBR (b-d) or ORR (e-g) achieved by random drug selection. Dashed lines 
correspond to the maximum and minimum achievable CBR (b-d) or ORR (e-g) based on the observed PDX 
screening data. PDXO screening was not performed for a subset of drugs evaluated in PDX lines, resulting in 
changes in the CBR/ORR achieved by random drug selection, as well as the minimum/maximum achievable 
CBR/ORR when using either DL models or raw PDXO screening data. h. Waterfall plot showing changes in tumor 
volume quantified as the mean BestAvgResponse across mice (see Methods) for PDX lines treated with optimal 
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precision therapies selected by ScreenDL-SA. i. Waterfall plot showing changes in tumor volume quantified as the 
mean BestAvgResponse across mice for PDX lines treated with drugs that were not selected as optimal precision 
therapies by ScreenDL-SA. h,i. Color indicates mRECIST classifications for each PDX-drug pair. Positive changes in 
tumor volume are capped at 100%. 
Discussion 
We have developed a unified computational/experimental approach to precision treatment 
selection, coupling a comprehensive patient-derived tumor model characterization and 
functional testing pipeline with ScreenDL, a DL-based CDRP framework engineered to exploit 
the highly valuable data generated by this experimental workflow. In particular, ScreenDL 
leverages data generated by this experimental arm, first for domain-specific fine-tuning with our 
expanded PDXO pharmaco-omic dataset and second, for personalization through tumor-
specific fine-tuning with ScreenAhead. At baseline, our pretrained model displays enhanced 
capabilities of extrapolating to unseen tumor samples and outperforms existing DL methods on 
a series of precision oncology-relevant benchmarks. While current precision oncology practice 
is limited to targeted agents, ScreenDL provides accurate predictions for both chemotherapies 
and targeted agents with diverse biological mechanisms, facilitating selection from the full 
spectrum of anticancer therapies. This work establishes a unified framework for the integration 
of tumor omic and functional data from the same originating tumor sample through DL, powering 
ScreenDL for therapy selection and bringing AI-guided precision oncology into the realm of 
clinical application. 
The superior performance of ScreenDL in PDMCs is driven by the wealth of domain-specific 
pharmaco-omic data generated by our experimental tumor characterization pipeline. This rich 
dataset links tumor omic features with drug response phenotypes in 100 breast cancer 
PDXO/PDO models derived primarily from high-risk, endocrine resistant, treatment-refractory, 
and/or metastatic tumors representing the greatest unmet clinical and research needs in breast 
cancer care. Characterization of this pharmaco-omic resource revealed strong concordance of 
functional drug sensitivities with known genomic anchors. Further, in vivo validation of selected 
responses revealed that PDXO screening was strongly predictive of in vivo response in the 
originating PDX model, highlighting the ability of our PDXO system to recapitulate many of the 
complexities of drug response in human tumors. Along with the computational methods 
described herein, we make this dataset available through cBioPortal as a public resource for 
use by the research community. 
We have introduced ScreenAhead, a patient-specific fine-tuning strategy capable of exploiting 
paired omic and functional data from the same originating tumor sample to generate 
personalized response predictions. While a number of DL-based CDRP methods have been 
developed in recent years14, the ScreenAhead approach described here represents, to our 
knowledge, the first method enabling the direct incorporation of tumor omic and functional data 
from the patient-of-interest into a DL-based CDRP algorithm. We have shown that ScreenAhead 
effectively exploits functional patterns in partial screening data to circumvent the limitations of 
omics alone for drug response inference. In particular, ScreenAhead derives knowledge of 
global drug sensitivity (GDS) from partial screening data and exploits learned drug-drug 
functional similarities to improve predictions for unscreened drugs. As a result, ScreenDL-SA 
provides high-confidence predictions for chemotherapies and targeted agents with diverse 
biological mechanisms. Further, by requiring only a limited pre-screening panel, our 
ScreenAhead strategy has the potential to significantly reduce the overhead of patient-specific 
functional testing while still exploiting the ability of functional data to augment omic information 
and enhance treatment selection. Paired with our experimental protocol capable of returning 
tumor omic and functional drug screening results within a clinically relevant timeframe, the 
superior performance afforded by ScreenAhead represents a significant advance in DL-based 
CDRP.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 16, 2024. ; https://doi.org/10.1101/2024.12.12.628190doi: bioRxiv preprint 

https://doi.org/10.1101/2024.12.12.628190
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

Here, the superior predictive power of ScreenDL-SA warrants discussion of the broader clinical 
feasibility of patient-specific functional testing. Recent years have seen the development of 
organoid screening platforms and other short-term ex vivo culture systems maintaining strong 
biological fidelity and concordant drug responses with tumors from diverse cancer types.23,29,51–

54 Collectively, these and other advancements have motivated numerous ongoing clinical trials 
seeking to exploit ex vivo functional testing for personalized therapy selection, including 
evaluation of the hybrid computational/experimental treatment selection protocol described here 
in our Functional Precision Oncology for Metastatic Breast Cancer study (FORESEE; 
ClinicalTrials.gov: NCT04450706).29 Grounded by these ongoing efforts to incorporate 
functional testing into clinical decision-making, ScreenAhead represents a powerful tool for the 
integration of patient-specific omic and functional data to enhance precision treatment selection. 
We have demonstrated the clinical potential of our end-to-end treatment selection framework 
with a preclinical pilot in breast cancer PDX models. Here, the dichotomy between PDX and 
PDXO parallels clinical application in patient tumors with functional testing in matched PDOs, 
providing a surrogate assessment of clinical utility. Therapies selected by ScreenDL-SA 
achieved an 85% CBR and a 55% ORR, outperforming those selected by existing DL models or 
raw PDXO screening. Here, ScreenDL’s superior treatment selection capabilities relative to raw 
PDXO screening alone demonstrate the benefit of incorporating pharmaco-omic data from cell 
lines and PDXOs in a pretraining/fine-tuning schema. We note that a subset of PDX-drug pairs 
in this validation was selected for in vivo testing, at least in part, due to treatment efficacy in the 
corresponding PDXO lines. As such, this retrospective validation may overstate the CBR and 
ORR in unselected populations. Despite this limitation, we anticipate improved treatment 
selection in future prospective validations, as the retrospective study described here limits 
candidate treatments to those already tested in the corresponding PDX for unrelated studies. 
Thus, the selected treatments may represent suboptimal therapies when considering a larger 
panel of candidate agents. Future prospective validations wherein the best predicted treatment 
is chosen from a panel of high-confidence drugs for which ScreenDL provides accurate 
predictions in PDXOs will likely yield further improvements in ScreenDL’s treatment selection 
capabilities. 
Despite promising results in this preclinical validation, our treatment selection framework is not 
without limitations. Beyond the need for patient-specific functional testing for ScreenAhead, a 
large resource of cancer type-specific PDMC pharmaco-omic data for domain-specific fine-
tuning is necessary for optimal performance (Extended Data Fig. 7). Nonetheless, our breast 
cancer application demonstrates the power of such tumor type-specific PDMC resources for 
fine-tuning ScreenDL. While costly, we anticipate that the future generation of comparable 
PDMC resources will power ScreenDL for application in diverse cancer types. In addition, as 
with most PDMCs, our organoid platform lacks key elements of the tumor microenvironment, 
namely immune and stromal cells, preventing application of our approach for immunotherapy 
selection21. 
This work establishes a unified computational/experimental approach to precision treatment 
selection in high-risk/metastatic breast tumors, pairing advances in ex vivo functional testing 
with a computational pipeline designed to integrate patient-specific omic and functional drug 
screening data to provide accurate response predictions tailored to individual tumors. This 
approach consistently selects efficacious therapies in preclinical validations which closely 
approximate clinical application, justifying further prospective preclinical studies and laying the 
groundwork for evaluation in future clinical trials. 
Methods 
Pharmaco-omic data harmonization and feature extraction 
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To establish an extensive pharmaco-omic dataset for pretraining, drug response data was 
retrieved from the Genomics of Drug Sensitivity in Cancer (GDSC) database34 and integrated 
with omics data from Cell Model Passports35. To facilitate comparison with existing DL models 
requiring multi-omic inputs, only cell lines with complete multi-omic profiles including mutations, 
transcriptomics, and copy number profiles were considered, ultimately yielding a harmonized 
pretraining dataset consisting of 278,033 tumor-drug pairs spanning 799 pan-cancer cell lines 
and 409 anticancer therapies. Drug response was quantified using GDSC-provided IC50 values, 
the most common dose-response metric used in DL-based CDRP models14. To standardize 
dose-response metrics across GDSC releases (i.e., GDSC1 and GDSC2), raw IC50 values 
were natural log (ln) transformed and z-score normalized independently for each drug. For 
drugs included in both GDSC1 and GDSC2, only drug responses from GDSC2 were retained to 
remove technical artifacts arising from the particular dose-response assay used in each release. 
For each compound in the resulting dataset, canonical SMILES strings were queried from 
PubCHEM using GDSC-provided PubCHEM55 compound identifiers (CIDs). CIDs were 
manually curated for drugs lacking GDSC-provided CIDs. Morgan fingerprints (512 bits, radius = 
3) were generated from the canonical SMILES notion of each drug using RDKit 
(https://www.rdkit.org). To generate computational representations of each tumor, raw TPM 
gene expression values for 4,364 genes in the Molecular Signatures Database hallmark gene 
set collection32 were log2 transformed (with a pseudocount of 1). The resulting values were z-
score normalized across tumor samples, providing vectors of transcriptomic features 
representing well-defined biological states and cellular processes for response prediction. 
Omic data generation for PDX/PDXO samples is detailed below. In what follows, we focus on 
the harmonization of PDX/PDXO data with that of our cell line pharmaco-omic dataset. Raw 
TPM values from PDX/PDXO samples were log2 transformed and technical biases between cell 
line and PDX/PDXO expression were corrected using pyComBat56 prior to z-score 
normalization. IC50 response values for each PDXO-drug pair were generated using the 
GRmetrics R package57 and natural log (ln) transformed. Further detail regarding the calculation 
of dose-response curve metrics is provided in Supplementary Text 4. To maximize the PDXO 
response data available for fine-tuning, undefined ln(IC50) values were imputed using 
alternative dose-response metrics computed by the GRmetrics package. The resulting ln(IC50) 
values were z-score normalized independently for each drug across PDXO samples. We note 
that z-score normalization was performed separately for cell lines and PDXO samples to 
account for technical variations in dose-response measurements across domains. Ultimately, 
this yielded a PDXO dataset consisting of 4,278 drug responses spanning 98 PDXO lines and 
107 anti-cancer agents. 
Model architecture & pretraining 
ScreenDL consists of three full-connected subnetworks: (1) a tumor omic subnetwork which 
maps an input vector encoding 4,366 gene expression values to a reduced dimensionality 
representation (embedding) of a tumor’s transcriptomic profile; (2) a drug subnetwork which 
maps a drug’s 512 bit Morgan fingerprint to a reduced dimensionality embedding of chemical 
structure; and (3) a shared response prediction subnetwork which takes the concatenated 
tumor and drug embeddings as input and produces a predicted ZD value, corresponding to the 
z-score normalized, natural log transformed half-maximal inhibitory concentration or z-score 
ln(IC50) of a given tumor-drug pair. This multi-input framework in which independent tumor and 
drug subnetworks are dedicated to learning rich embeddings of transcriptomic and chemical 
features which are later integrated by a shared response prediction subnetwork represents the 
field-standard for DL-based CDRP models and was shown to outperform alternative 
configurations in a recent analysis.14,58 Each of ScreenDL’s subnetworks consisted of a series of 
fully connected layers configured as follows: (1) ScreenDL’s tumor-omic subnetwork was 
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configured with four fully connected layers with 512, 256, 128, and 64 neurons; (2) ScreenDL’s 
drug subnetwork was configured with three fully connected layers with 256, 128, and 64 
neurons; and (3) ScreenDL’s shared response prediction subnetwork was configured with two 
hidden layers with 128 and 64 neurons. Each fully connected layer was followed by Leaky ReLU 
activation with two exceptions: (1) the final output layer which was followed by a linear 
activation; and (2) the output layers of ScreenDL’s tumor omic and drug subnetworks which 
were followed by hyperbolic tangent activation. To help mitigate overfitting and enhance 
generalizability to never-before-seen tumor samples, a gaussian noise layer was added before 
the first fully connected layer of ScreenDL’s omics subnetwork. ScreenDL was implemented in 
Python using the Tensorflow/Keras framework and trained on GPU nodes provided by the Utah 
Center for High Performance Computing equipped with either NVIDIA GTX 1080 Ti GPUs with 
3584 CUDA cores and 11 GB GDDR5X memory or NVIDIA A40 GPUs with 10,752 CUDA cores 
and 48 GB GDDR6 memory. 
Evaluation of ScreenDL in cancer cell lines 
Evaluation in cell lines followed a 10-fold tumor-blind cross-validation schema with performance 
evaluated on never-before-seen cell lines, mirroring clinical application in never-before-seen 
patients. Specifically, each fold consisted of three disjoint sets of cell lines (and their 
corresponding drug response observations) used for training (T), validation (V), and 
testing/evaluation (E), respectively. Sample proportions were held constant across folds with 
each fold’s T, V, and E sets consisting of all drug response observations for 80%, 10%, and 
10% of cell lines, respectively. Cell lines derived from different cancer types were evenly 
distributed across folds to ensure adequate representation of individual disease types in each 
training set. For each fold, the validation set V was used for early termination to prevent 
overfitting. ScreenDL-PT’s parameters were optimized to minimize the mean squared error 
between observed and predicted ZD response values using the Adam optimizer with a mini-
batch size of 256, a learning rate of 0.0001, and weight decay set to 0.0001. 
To provide a comprehensive assessment of precision oncology-relevant performance, we 
adopted a set of three performance metrics providing distinct yet complementary views of 
predictive power. As a primary assessment, we quantified prediction accuracy independently for 
each drug in terms of the Pearson correlation coefficient (PCC) between observed and 
predicted ZD values. In addition, we binarized observed ZD values and quantified area under the 
receiver operating characteristic curve (auROC) for each drug, providing a measure of 
ScreenDL’s power to stratify sensitive and resistant tumor samples. Finally, we applied 
ScreenDL to select the precision treatment that minimized the predicted ZD for each tumor 
sample and quantified response rate (RR) as the fraction of tumor samples for which observed 
response fell below the 30th percentile of ZD values for the selected therapy. While both PCC 
and auROC quantify drug-level performance, RR provides a binary measure of success for 
individual tumor samples and thus provides a direct assessment of treatment selection 
capabilities. Stratified analysis of drug level performance was performed using manually curated 
annotations of drug type (i.e., chemotherapy vs. targeted agent) for a subset of 213 therapies 
(34 chemotherapies and 179 targeted agents). For pathway-level analysis, we used GDSC-
provided target pathway annotations augmented with manually curated annotations for drugs 
not included in the GDSC database.  
ScreenAhead tumor-specific fine-tuning was performed independently for each cell line. 
Specifically, for each cell line, a subset of 20 drugs was selected for pre-screening using 
principal feature analysis (PFA). Here, we frame drug selection for ScreenAhead as a feature 
selection task on an MxN drug response matrix where each row corresponds to one of M cell 
lines in the training dataset and each column (feature) corresponds to one of N candidate drugs. 
We applied PFA to select the subset of these N drugs that described most of the variation in 
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observed drug responses across cell lines in the training dataset. For each cell line, we fine-
tuned ScreenDL-PT for 20 epochs using the cell line’s transcriptomic profile and its observed 
responses to the resulting set of 20 pre-screening drugs. During fine-tuning, ScreenDL-PT’s 
tumor omic and drug subnetworks were frozen and parameters in the shared response 
prediction subnetwork were updated using the Adam optimizer with a learning rate of 0.0001. 
The resulting ScreenDL-SA model was applied to predict response for the remaining 
unscreened drugs in a given cell line, and performance was assessed following the procedure 
outlined for ScreenDL-PT. 
Comparison of ScreenAhead drug selection algorithms 
To ensure optimal performance with ScreenAhead, we evaluated three informed drug selection 
algorithms designed to maximize coverage of the drug response space and ensure systematic 
exploration of potential therapeutic responses. Specifically, we compared the performance of 
ScreenDL-SA in cell lines when selecting pre-screening drugs under two scenarios: random 
drug selection, and informed selection using either PFA, agglomerative clustering, or metadata 
annotations of drug biological mechanisms. Each drug selection algorithm was applied to select 
pre-screening sets of 5, 10, 15, 20, and 25 drugs for each cell line, and ScreenAhead tumor-
specific fine-tuning was performed with each set as described above. For a given number of 
pre-screening drugs, pairwise statistical comparisons of each algorithm’s drug-level 
performance were performed with two-sided Wilcoxon signed-rank tests. 
Evaluation of ScreenDL in breast cancer PDXOs 
We assessed the performance of ScreenDL in breast cancer PDXOs by training 10 ScreenDL-
PT models on different subsets of cell lines. Specifically, cell lines were split into 10 disjoint sets, 
and 10 ScreenDL-PT models were trained on cell lines from 9 of these 10 sets (i.e., pharmaco-
omic data from 90% of all cell lines). During pretraining, the remaining 10% of cell lines were 
used for early stopping. This produced an ensemble of ten ScreenDL-PT models which were 
each applied to predict treatment response in our PDXO cohort. For a given PDXO-drug pair, 
the trimmed mean of predicted ZD responses across these ten ensemble members was taken 
as the final prediction and performance was assessed for each of precision oncology-relevant 
metrics detailed above. To ensure fair comparisons with DeepCDR and HiDRA, the same 
ensembling procedure was used for all models. We note that DualGCN was not carried forward 
for evaluation in PDXOs due to its weak performance in cell lines and its requirement of copy 
number features. 
To fine-tune ScreenDL for response prediction in breast cancer PDXOs, parameters in 
ScreenDL-PT’s drug subnetwork and those in the first hidden layer of ScreenDL-PT’s tumor 
omic subnetwork were frozen. Using our PDXO pharmaco-omic dataset, we fine-tuned 
ScreenDL-PT for 30 epochs using the Adam optimizer with a mini-batch size of 256, an initial 
learning rate of 0.0001, and weight decay set to 0.01. The learning rate was held constant 
during the first 2 epochs and decayed exponentially for each remaining epoch. Performance 
was assessed under a leave-one-out cross-validation schema wherein ScreenDL-PT was fine-
tuned with pharmaco-omic data from all PDXOs except one and predictions were generated for 
the remaining left-out PDXO line. To prevent data leakage, PDXO lines derived from the same 
originating tumor sample as a given left-out PDXO were excluded from fine-tuning. Each of 
ScreenDL-PT’s ensemble members was fine-tuned independently, producing ten ScreenDL-FT 
models. Final predictions for each PDXO-drug pair were generated by taking the trimmed mean 
of predicted ZD values across ensemble members and performance was reported for each of 
the precision oncology-metrics detailed above. 
We benchmarked ScreenAhead in breast cancer PDXOs following the same general procedure 
described for cell lines. In brief, after domain-specific fine-tuning, we performed ScreenAhead 
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tumor-specific fine-tuning using a subset of 12 pre-screened drugs for each PDXO. Here, we 
opt to use 12 drugs for ScreenAhead in PDXOs rather than a 20-drug panel for two reasons: (1) 
12 represents a feasible number of drugs to pre-screen in PDOs within a clinically relevant 
timeframe; and (2) ScreenAhead with just 10 drugs in cell lines provided only slightly weaker 
performance compared to ScreenAhead using a larger 20 drug panel (Extended Data Fig. 4a). 
ScreenAhead tumor-specific fine-tuning was performed independently for each ensemble 
member and final predictions were generated as described for ScreenDL-FT. 
Comparisons with existing DL models 
Relative to other omic modalities, gene expression is known to provide superior predictive 
power in CDRP models59,60. Thus, we compared ScreenDL’s performance to that of three 
existing DL models that also incorporate transcriptomic features – DeepCDR, DualGCN, and 
HiDRA. For each model, the generation of tumor and drug features was performed as described 
in the original publications. Each model was fit using published hyperparameters and evaluated 
under the same 10-fold tumor-blind cross-validation schema described for ScreenDL. We note 
that DeepCDR was only evaluated on a subset (n = 61) PDXO lines for which whole exome 
sequencing (WES) was available for the extraction of mutation-based features. Statistical 
comparisons of each model’s drug-level performance were performed with two-sided Wilcoxon 
signed-rank tests. 
Comparisons with biomarker-only models 
To compare ScreenDL’s performance with that of approved single- and multi-gene biomarkers, 
we generated biomarker-only predictive models in both cell lines and PDXOs. Cell lines were 
designated as either mutant (MUT) or wild-type (WT) based on driver mutation status extracted 
from annotated VCF files provided by Cell Model Passports. In PDXOs, MUT/WT status was 
assigned from WES data using our published variant filtration criteria21. The statistical 
significance of each drug-biomarker combination was assessed with a Mann-Whitney U test 
comparing the observed ZD responses between MUT and WT tumors. Biomarker-only models 
were defined as binary conditional functions returning the mean observed ZD in MUT lines for 
tumors harboring the corresponding biomarker and the mean observed ZD in WT lines 
otherwise. ScreenDL-PT and ScreenDL-SA were trained following the procedure outlined above 
for either cell lines or PDXOs with the exception that, for a given drug-biomarker combination, 
the drug of interest was excluded from ScreenAhead tumor-specific fine-tuning. For both 
ScreenDL-PT and ScreenDL-SA, performance was assessed by computing the PCC between 
observed and predicted ZD across all tumors and within WT and MUT subgroups. 
Validation in matched PDX/PDXO models 
To validate ScreenDL’s treatment selection capabilities, we selected a subset of PDX/PDXO 
pairs for which sufficient in vivo PDX response data had been collected for unrelated studies. 
PDX/PDXO pairs were retained for analysis if at least two drugs were tested in the 
corresponding PDX line, yielding a set of 20 PDX/PDXO pairs for validation. Only drugs that 
showed efficacy in at least one PDX line were considered. Ultimately, each PDX had been 
screened with between two and nine candidate agents. ScreenDL was trained as described 
above, with the exception that performance on the remaining n = 78 PDXO lines was used as 
an early termination condition during cell line pretraining. For each model, the drug with the 
lowest predicted Zd for a given PDX line was selected as the optimal precision treatment. 
Observed changes in PDX tumor volume were classified using the modified RECIST criteria 
(mRECIST) detailed by Gao and colleagues20 and performance was assessed in terms of: (1) 
clinical benefit rate (CBR), defined as the fraction of PDX lines with at least stable disease (SD) 
after treatment with the selected agent; and (2) objective response rate (ORR), defined as the 
fraction of PDX lines displaying either a partial or a complete response after treatment with the 
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selected agent. We note that DeepCDR was assessed on the subset of 15 PDX lines for which 
WES data was available. To compare ScreenDL’s treatment selection capabilities with those of 
raw PDXO screening, we also used the raw Zd values from our PDXO drug screening 
experiments to select precision therapies for each PDX line. Baselines for random treatment 
selection were obtained by performing 1,000 iterations of random drug selection for each PDX 
line and taking the mean CBR/ORR across iterations. Fisher exact tests were used to compare 
CBR and ORR for selected vs unselected PDX-drug pairs. 
PDXO culture and drug treatment 
PDXOs were established and cultured as previously described.21,39 Each PDXO line was 
validated to be composed of human tumor cells matching their source PDX and patient samples 
by STR analysis. Briefly, PDXOs were maintained in 6-well plates (Genesee Scientific, El Cajon, 
CA, USA) and cultured in 200-μl Matrigel (Corning, Corning, NY, USA) domes within Advanced 
DMEM/F12 (Thermo Fisher, Waltham, MA, USA) supplemented with 5% FBS, 10 mM HEPES 
(Thermo Fisher), 1× Glutamax (Thermo Fisher), 1 μg/ml hydrocortisone (Sigma-Aldrich, 
Burlington, MA, USA), 50 μg/ml gentamicin (Genesee Scientific), 10 ng/ml hEGF (Sigma-
Aldrich), and 10 μM Y-27632 (Selleck Chemicals, Houston, TX, USA).  
Mature organoids were collected using 80% dispase (Fisher Scientific, Waltham, MA, USA), 
20% FBS, and 10 μM Y-27632 treatment (40U per well) at 37°C for 20 minutes. Approximately 
40-50 mature organoids were seeded per well in 384-well tissue culture plates (PerkinElmer, 
Waltham, MA, USA), each with a solidified 10-μl Matrigel base layer and 30 μl of PDXO culture 
medium containing 5% Matrigel. A separate 384-well plate was seeded in 2 columns for day 0 
normalization. Plates were incubated at 37°C and 5% CO2 overnight to allow organoids to settle 
onto the Matrigel base. After 24 hours, 30 μl of medium and 15 μl of CellTiterGlo 3D (Promega, 
Madison, WI, USA) were added to the day 0 plates. The plates were then incubated on a plate 
shaker (Benchmark Scientific, Sayreville, NJ, USA) at 500 rpm for 20 minutes and read using 
the EnVision XCite plate reader (PerkinElmer). A separate 1-ml deep 96-well drug plate (USA 
Scientific, Ocala, FL, USA) was prepared starting at 50uM with an eight-point 5x serial dilution, 
and 30 μl of each condition, in technical quadruplicate, was transferred to the seeded 384-well 
plates using the ViaFlo electronic 96-channel handheld pipette (Integra Biosciences, NH, USA). 
The dosed PDXO plates were covered with Breathe-Easy seals (USA Scientific) and incubated 
for 144 hours at 37°C and 5% CO2. After incubation, the seals were removed, and 15 μl of 
CellTiterGlo 3D was added to each well. The plates were incubated on a plate shaker at 500 
rpm for 20 minutes and assayed using the EnVision XCite plate reader. Raw luminescence 
values from each condition were divided by those from the day 0 plate to calculate the fold 
change. 
25 unique PDXO lines were screened in each of four phases (screens A-D; 100 lines total); 40-
50 drugs were screened in each phase. In all four phases, three biological replicates were 
performed for each PDXO-drug pair to ensure data quality. Between phases, drug responses 
over the technical and biological replicates were analyzed and drugs were either carried forward 
to the next phase or dropped from future screening. Reasons for drug dropout included lack of 
availability, lack of any sign of efficacy across 25 models, or overt toxicity across 25 models. 
New drugs were also added at each phase as they became available.  
PDX transplantation and drug treatment 
PDX transplantation procedures were performed as previously described61,62. Briefly, thawed 
PDX tumor fragments were implanted into the cleared mammary fat pad of 6-8-week-old female 
NRG mice (Jackson Laboratory stock 7799). Tumor sizes were measured twice weekly. 
Established tumors (~100 mm³) were treated with eribulin (0.25mg/kg, IV, once per week) 
(Selleckchem, S8912), tolinapant (20mg/kg, oral gavage, seven days on/seven days off) 
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(Selleckchem, S8681), birinapant (20mg/kg, IP, 3 doses/week) (NIH CTEP/CTP #756502), 
talazoparib (0.33mg/kg, oral gavage daily, 5 doses/week) (Selleckchem, S7048), doxorubicin 
(0.5mg/kg, IP,  two cycles of day 1, day 8, day 15) (in house pharmacy), paclitaxel (10mg/kg, IP, 
day 28, once) (Selleckchem, S1150), SN-38/irinotecan (12.5mg/kg, oral gavage, 5 doses/week, 
2 week on following one week off) (Selleckchem, S4908), alpelisib (30mg/kg, oral gavage, daily) 
(Selleckchem, S2814), RO4929097 (10mg/kg, oral gavage, 5 days/week) (Selleckchem, 
S1575), gemcitabine (50 mg/kg, IP, twice a week) (Selleckchem, S1714), olaparib (50mg/kg, 
oral gavage, daily) (Selleckchem, S1060), ponatinib (30mg/kg, oral gavage, daily) 
(Selleckchem, S1490), lapatinib (200mg/kg, oral gavage, daily) (Selleckchem, S2111), 
palbociclib (100mg/kg, oral gavage, 5 doses/week) (Selleckchem, S1579), AZD8186 (30 mg/kg, 
oral gavage for 21 days, using a 4-day-on, 3-day-off schedule) (Selleckchem, S7694), tamoxifen 
(20mg/kg, subQ, 5 doses/week) (Sigma Aldrich, T5648-1G), abemaciclib (75mg/kg, oral 
gavage, daily), (Selleckchem, S7158), vinorelbine (10mg/kg, IP, once per week) (Selleckchem, 
S4269), rapamycin (7.5mg/kg, IP, once per week) (Selleckchem, S1039), and everolimus 
(5mg/kg, oral gavage, 5 days per week), (Selleckchem, S1120). Final results were evaluated 
according to the modified RECIST (Response Evaluation Criteria In Solid Tumors)63 criteria 
(mRECIST) described by Gao and colleagues20. 
Omics for PDX and PDXO models 
PDXO RNA and DNA was extracted as described previously39, and RNA and DNA from patient 
tumor samples were obtained from the Biorepository and Molecular Pathology/Molecular 
Diagnostics core. To extract RNA and DNA from PDX, 10-15 mg of flash frozen PDX tumor 
tissue was placed in a 2 ml safe-lock microtube (Biopur, #05-402-24C) and 450 μl of RLT Plus 
buffer with BME was added. After adding one 5 mm stainless steel bead (Qiagen #69989), the 
microtube was placed in a TissueLyser II (Qiagen) and lysed in three cycles or until lysate 
appeared clear (frequency 20/sec, duration 30 sec). Lysate was incubated for 10 min on ice and 
nucleic acids were isolated using the AllPrep micro kit (Qiagen # 80204) as described in 
Scherer et al.39 RNA and DNA concentrations were determined by Qubit broad range kits 
(Thermo Fisher #Q10211; #Q32850). All established patient-derived models were validated to 
match their original patient tumor using STR as described39.  
Libraries for bulk RNA sequencing and whole exome sequencing (WES) were prepared and 
sequenced at the Huntsman Cancer Institute High-Throughput Genomics and Bioinformatics 
Core. For RNA-seq, lllumina TruSeq RNA Library Preparation kit v2 and the Illumina TruSeq 
Stranded Total RNA kit with Ribo-Zero Gold were used. For WES, Agilent SureSelectXT Human 
All Exon V6+ COSMIC, Agilent Human All Exon 50-Mb library or IDT xGEN Human Exome v2 
with Nextera Flex library preparation protocols were used. WES and RNA-seq data was 
processed through the PDXNet pipelines64,65.  
Data processing for cBioPortal  
For clinical data variables, meta data for samples was integrated with institutional patient data 
extracted from the electronic medical record using custom Python scripts and made both 
relative to the patient date of birth and formatted for cBioPortal (Dockerized version V6.0.16) per 
documentation (https://docs.cbioportal.org/file-formats). Variant Call Files (VCFs) from PDXNet 
pipelines were converted to Mutation Annotation Format (MAF) files using Ensembl Variant 
Effect Predictor VCF2MAF.pl. MAF files were compiled and formatted for cBioPortal using 
scripts available upon request. RNA-seq TPM results from PDXNet pipelines were merged by 
gene identifiers for analysis. Requisite z-score TPM values were calculated for all genes across 
samples using scripts provided by cBioPortal.org. All uploaded data passed cBioPortal integral 
validation scripts for expected formats and sample alignment. 
Data & Code Availability 
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All code used for model development and analysis is available at 
https://github.com/csederman/screendl. All data used for model training is downloadable from 
this repository or through cBioPortal (link to be provided upon acceptance for publication). 
ScreenDL is also available as a Singularity image through the IMPROVE (Innovative 
Methodologies and New Data for Predictive Oncology Model Evaluation) framework at 
https://github.com/JDACS4C-IMPROVE/Singularity. 
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Extended Data Figures 

 
Extended Data Fig. 1: Performance in our previously reported collection of 16 high-risk/metastatic PDXO 
models. Performance comparison of ScreenDL-PT with two existing DL-based CDRP models, DeepCDR and 
HiDRA. Box plots represent the distribution of Pearson correlations between observed and predicted response per 
drug. Median values for each model are denoted in the upper margin. 

 

 
Extended Data Fig. 2: In vitro functional testing in PDXOs predicts in vivo PDX response. a. Boxplots of 
observed Zd response from raw PDXO screening stratified by whether or not the originating PDX line achieved 
clinical benefit after treatment with the corresponding therapy. Clinical benefit was defined as stable disease or better 
by mRECIST criteria. The p-value denotes the significance of a two-sided Mann-Whitney U test comparing observed 
Zd responses across groups. b. Bar graph representing observed Zd responses for the indicated drugs in PDXO lines. 
Color denotes whether or not the originating PDX showed clinical benefit after treatment with the corresponding 
therapy. An observed Zd below the 30th percentile of Zd values for a given therapy (corresponding to the top 30% 
most sensitive PDXOs for a given drug) was predictive of clinical benefit in the originating PDX line (p = 0.005, Fisher 
exact test). 
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Extended Data Fig. 3: ScreenDL provides superior predictive power for drugs included in cell line 
pretraining. Drug-level performance of each ScreenDL variant and two existing DL models in breast cancer PDXOs 
stratified by whether or not drugs were included in cell line pretraining. Box plots represent the distribution of Pearson 
correlations between observed and predicted response per drug. Median values for each model are denoted in the 
upper margin. All models achieved superior performance for drugs included in cell line pretraining. We note that only 
drugs included in cell line pretraining were considered for ScreenAhead in PDXOs. 

 

 
Extended Data Fig. 4: Systematic comparison of informed drug selection algorithms. a. Performance 
comparison of ScreenDL-PT (blue) and ScreenDL-SA (green) when adding an increasing number of randomly 
selected drugs to the ScreenAhead drug set. Box plots represent the distribution of Pearson correlations between 
observed and predicted response per drug. Median values are denoted in the upper margin. b. tSNE embeddings of 
drugs based on observed cell line responses. Colors indicate groups of drugs recovered by k-means clustering. 
Drugs selected for ScreenAhead using principal feature analysis are outlined in black. c. Percentage of drugs for 
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which informed drug selection using either agglomerative clustering (A), metadata-based selection using drug target 
pathway annotations (M), or principal feature analysis (P) outperforms random selection. d. Pairwise comparison of 
informed drug selection algorithms. Per-drug performance was quantified as the Pearson correlation between 
observed and predicted response and drug-level performance was compared with Wilcoxon signed-rank tests. 
Circles are colored according to the negative log10 p-value and significant tests are outlined. The winner of each 
pairwise comparison is labeled within each circle. 

 

 
Extended Data Fig. 5: ScreenAhead leverages knowledge of global drug sensitivity encoded in partial pre-
screening data. a. Correlation between global drug sensitivity (GDS) and response to individual therapies in cancer 
cell lines. For each cell line, GDS was defined as the mean Zd response across all screened drugs. Only a subset of 
30 cell lines and 60 drugs are shown for readability. Colors indicate individual cell lines. The reported Pearson 
correlation represents the correlation between GDS and individual Zd values across the entire cell line dataset. b. 
Correlation between global drug sensitivity (GDS) and response to individual therapies in breast cancer PDXO 
models. For each PDXO, GDS was defined as the mean Zd response across all drugs. Only a subset of 30 PDXO 
lines and 60 drugs are shown for readability. Colors indicate individual PDXO lines. The reported Pearson correlation 
represents the correlation between GDS and individual Zd values across the entire PDXO dataset. c. ScreenDL-SA 
performance in cell lines when performing ScreenAhead tumor-specific fine-tuning using either the original Zd values 
(ScreenDL-SA (Zd)) or mean-filled Zd values for 20 drugs (ScreenDL-SA (GDS)). By replacing Zd values with a cell 
line’s mean Zd across the 20 ScreenAhead drugs, we effectively remove any drug-specific information and only 
provide knowledge of GDS during ScreenAhead tumor-specific fine-tuning. Box plots represent the distribution of 
Pearson correlations between observed and predicted response per drug. Median values for each ScreenDL variant 
are denoted in the upper margin. d. Mean absolute error (MAE) between observed and predicted Zd in cell lines for 
each ScreenDL variant and three existing DL models. The MAE of each model is binned by the expected MAE of a 
GDS-only model (i.e., a model that outputs a tumor’s GDS regardless of drug features; see Supplementary Text 2). 
ScreenAhead improves performance, even for cell line-drug pairs for which GDS is not highly predictive. 
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Extended Data Fig. 6: ScreenAhead leverages learned drug-drug functional relationships to improve 
predictions for unscreened therapies. a. Mean absolute error (MAE) of Zd predictions in cell lines for ScreenDL-PT 
and ScreenDL-SA. Each cell line-drug pair was assigned to a bin according to the maximum functional similarity with 
the 20 drugs used for ScreenAhead tumor-specific fine-tuning in the corresponding cell line (see Supplementary Text 
3). After assigning each response to a bin (x-axis), the MAE of Zd predictions for ScreenDL-PT and ScreenDL-SA 
was computed for each bin (y-axis). ScreenAhead provided outsized performance gains in cell line-drug pairs for 
which the drug had a higher maximum functional similarity with drugs in the ScreenAhead drug set. b. Change in 
MAE after ScreenAhead (ScreenDL-SA vs ScreenDL-PT) for each bin. c. Pearson correlation between observed and 
predicted Zd responses for 20 drugs (5-fluorouracil, leflunomide, epirubicin, piperlongumine, vinblastine, oxaliplatin, 
docetaxel, gemcitabine, cytarabine, cisplatin, alisertib, afatinib, erlotinib, dabrafenib, alpelisib, trametinib, olaparib, 
nilotinib, fulvestrant, and irinotecan) in cell lines when including an increasing number of functionally related therapies 
in ScreenAhead tumor-specific fine-tuning. For each interested drug, we compared the performance of ScreenDL-PT 
at baseline to that achieved by ScreenDL-SA when including an increasing number of functionally related therapies in 
the ScreenAhead drug set. Performance significantly improved with the inclusion of just one functionally related 
therapy. Additional improvement was observed upon inclusion of each additional functionally related agent. d,e. tSNE 
plots of ScreenDL-PT’s drug subnetwork embeddings colored by annotations of drug biological mechanism (d) or 
protein targets (e). 
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Extended Data Fig. 7: The combination of domain-specific fine-tuning and ScreenAhead tumor-specific fine-
tuning is necessary for optimal performance. Drug-level performance of ScreenDL-SA with (+FT) and without (-
FT) prior domain-specific fine-tuning. Box plots represent the distribution of Pearson correlations between observed 
and predicted response per drug. Median values for each model are denoted in the upper margin. Performance is 
shown across all drugs (left) and stratified according to whether or not the tested drugs were screened in cell lines 
and thus included in cell line pretraining (right). The performance of ScreenDL-PT and ScreenDL-FT are shown for 
reference. 

Supplementary Information 
Supplementary Text 1. Evaluation of ScreenAhead under different prediction scenarios 
The ScreenAhead approach relies on input of patient-specific data. However, both biological 
and clinical constraints, including limited biomaterial from tumor sampling and poor organoid 
growth, may limit the number of therapies that can be effectively screened before treatment 
decisions are made. Given these potential restrictions on the scope of pre-treatment drug 
screening, we explored the efficacy of our ScreenAhead approach while incrementally 
expanding the number of drugs in the partial screening set for each cell line. With as few as five 
drugs screened, we observed a significant improvement in performance, with ScreenDL-SA 
achieving a median PCC per drug of 0.59 compared to 0.48 for ScreenDL-PT (p < 0.0005, two-
sided Wilcoxon signed-rank test) (Extended Data Fig. 4a). Furthermore, we observed continued 
improvements in prediction accuracy as an increasing number of drugs were added to the 
partial screening set for each cell line (Extended Data Fig. 4a).  
Given our finding that ScreenAhead enhances model performance in part by utilizing cross-
information from biologically related drugs, we reasoned that an informed approach to drug 
selection would enable ScreenDL-SA to better leverage the limited partial screening data 
available from functional studies in patient-derived tumor models. Accordingly, we evaluated 
three informed drug selection algorithms designed to maximize coverage of the drug response 
space and ensure systematic exploration of potential therapeutic responses: agglomerative 
clustering, metadata-based selection using target pathway annotations, and Principal Feature 
Analysis (PFA)47. We conducted comparative analyses of drug response predictions with 
ScreenDL-SA under two scenarios: random drug selection, and informed selection using each 
of these three algorithms. Our results illustrate that drug selection using PFA consistently 
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outperforms random selection, with PFA achieving superior performance for 68% of drugs when 
including 20 drugs in partial screening (Extended Data Fig. 4c). Furthermore, a pairwise 
analysis of drug-level performance revealed that PFA significantly outperforms drug selection 
using either hierarchical clustering or target pathway annotations, particularly as the size of the 
pre-screening drug set increases (Extended Data Fig. 4d). 
Supplementary Text 2. ScreenAhead leverages knowledge of GDS to calibrate response 
predictions 
To investigate the role of global drug sensitivity (GDS) in ScreenAhead, we stratified the 
performance of ScreenDL-PT and ScreenDL-SA according to the expected performance of a 
GDS-only model. Specifically, for each cell line 𝑐, we defined global drug sensitivity 𝐺𝐷𝑆! as the 
cell line’s mean observed 𝑍" across drugs and generated a GDS-only model 𝑓(𝑐, 𝑑) 	= 	𝐺𝐷𝑆! 
that always returns a given cell line’s GDS as the predicted response regardless of drug 
features. We then grouped cell line-drug pairs by binning the absolute error between observed 
and predicted 𝑍" values for this GDS-only model and computed the mean absolute error (MAE) 
of predictions within each bin for ScreenDL-PT and ScreenDL-SA. Extended Data Fig. 5d 
reveals that ScreenAhead improves performance, even for cell line-drug pairs for which GDS 
was not highly predictive. To further characterize the role of GDS in ScreenAhead, we 
performed tumor-specific fine-tuning for each cell line in our harmonized pharmaco-omic dataset 
under two scenarios: (1) using the cell line’s true 𝑍" responses for 20 drugs; or (2) replacing the 
true 𝑍" responses with the cell line’s mean 𝑍" across these 20 drugs. In the later scenario, the 
use of mean-filled 𝑍" responses removes drug-specific information encoded in a cell line’s 
partial screening data and instead provides only an estimate of GDS during tumor-specific fine-
tuning. This analysis revealed that, while incorporating knowledge of GDS through 
ScreenAhead improved performance, GDS alone did not account for the full performance gain 
seen with ScreenDL-SA (Extended Data Fig. 5c). 
Supplementary Text 3. ScreenAhead exploits cross-information from functionally related 
therapies  
To determine if ScreenAhead tumor-specific fine-tuning enhanced predictions for unscreened 
drugs (i.e., those drugs not included in ScreenAhead for a given tumor) by leveraging learned 
drug-drug functional similarities to borrow information from pre-screened therapies, we stratified 
cell line performance based on the maximum functional similarity of a given unscreened drug 
with the 20 drugs selected for ScreenAhead tumor-specific fine-tuning for the corresponding cell 
line. Concretely, given the sets of cell lines 𝐶, drugs 𝐷, and observed responses 𝑅 = {𝑟(𝑐, 𝑑) ∣
𝑐 ∈ 𝐶, 𝑑 ∈ 𝐷}, each response 𝑟(𝑐, 𝑑) was assigned to a bin according to the maximum functional 
similarity 𝐹#$%(𝑐, 𝑑) = 𝑚𝑎𝑥&!∈("{𝐹(𝑑, 𝑠))} between the drug 𝑑 and another drug 𝑠) belonging to 
the set of ScreenAhead drugs 𝑆! = {𝑠*, 𝑠+, . . . , 𝑠+,} for the cell line 𝑐. Functional similarity 𝐹(𝑑, 𝑠)) 
was defined as the Pearson correlation coefficient (PCC) between the observed cell line 
response profiles for 𝑑 and 𝑠). After assigning each response to a bin, we computed the mean 
absolute error (MAE) of 𝑍" predictions for ScreenDL-PT and ScreenDL-SA separately for each 
bin. Performance gains from ScreenAhead were strongly correlated with 𝐹#$%(𝑐, 𝑑) (PCC = -
0.98 between the observed change in MAE after ScreenAhead and bin rank, p = 9.85 x 10-14; 
Extended Data Fig. 6a,b). 
To further characterize the positive transfer of information between functionally related therapies 
during ScreenAhead, we selected 20 drugs for a focused analysis: 5-fluorouracil, leflunomide, 
epirubicin, piperlongumine, vinblastine, oxaliplatin, docetaxel, gemcitabine, cytarabine, cisplatin, 
alisertib, afatinib, erlotinib, dabrafenib, alpelisib, trametinib, olaparib, nilotinib, fulvestrant, and 
irinotecan. For each interested drug 𝑑, we generated an initial pre-screening set containing the 
20 least functionally similar drugs in our cell line dataset by ranking drugs according to the PCC 
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between their observed cell line responses and those of the interested drug 𝑑. We then 
performed ScreenAhead tumor-specific fine-tuning with this initial drug set and with 10 modified 
pre-screening drug sets generated by replacing an increasing number of drugs with drug 𝑑’s 
most functionally related therapies. Relative to ScreenDL-PT, ScreenAhead tumor-specific fine-
tuning did not improve performance for the interested drugs when no functionally similar 
therapies were included in the ScreenAhead (p = 0.67, Wilcoxon signed-rank test). In 
comparison, we observed significant improvement when just one functionally related therapy 
was included (p = 1.91 x 10-6, Wilcoxon signed-rank test; Extended Data Fig. 6c). Further, we 
observed additional performance gains with the inclusion of each successive functionally related 
therapy (Extended Data Fig. 6c), illustrating ScreenDL’s ability to exploit cross-information from 
functionally related drugs during ScreenAhead tumor-specific fine-tuning. 
Supplementary Text 4. Calculation of PDXO dose-response metrics 
PDXO drug response was quantified by calculating IC50 and growth rate (GR)-adjusted area 
over the curve (GRaoc) values for each PDXO-drug pair21. IC50, GR, and subsequent GRaoc 
values were calculated using the GRmetrics R package57. While natural log transformed IC50 
values were used in the development of ScreenDL to facilitate the harmonization of PDXO and 
cell line drug response data, the calculation of GRaoc values for cBioPortal involved several 
modifications to improve the stability of GR calculations and reduce bias in GRaoc values. 
Specifically, GRaoc was quantified by measuring drug-induced normalized growth rate inhibition 
(GR) for each drug concentration and integrating over the concentration curve to provide a 
GRaoc value for each drug as described by Hafner and colleagues66,67. Normalization values for 
GR calculations were established using dimethyl sulfoxide (DMSO) dosed control wells.  
Due to the mathematics involved, GR values become unstable when control cell count fold 
change is close to 1. To limit this instability, we developed two criteria that must be met for 
inclusion of a plate in the final drug screening dataset. First, the average fold change in control 
wells on a plate must be greater than 1.5. Second, the overlap in kernel density estimates 
between baseline count values and control count values for a plate must be less than 30%. The 
cutoff for these filters was established graphically by looking for the inflection point where GR 
values went from wide variation to clustering closely around 1 for individual DMSO wells using 
average plate DMSO count as the control. 
GR values are expected to be between -1 and 1. GR should be 1 if a drug at a given 
concentration has no effect on the growth rate of cells. If, by random chance, the number of 
cells in a treated well with no effect is greater than the control well, then GR can be greater than 
1. In some cases, GR can be much greater than 1 and has an undue influence on GRaoc. The 
function used to calculate GRaoc in the GRmetrics package has an option to cap GR values at 
1. We found that capping GR values at 1 biases GRaoc values to be high; additionally, PDXO 
models with low control fold change have more bias than PDXO models with higher control fold 
change. The 95th percentile of individual DMSO wells using average plate DMSO count as the 
control was 1.6. We capped GR at 1.6 which results in far less bias in GRaoc values and more 
uniform bias across control fold change values. 
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Supplementary Figures 

 
Supplementary Fig. 1: Raw PDxO screening data. a-d. Unsupervised clustering of the PDXOs and drugs screened 
in each of four screens A-D (a-d; see Methods). Color indicates the z-score normalized ln(IC50) value for a given 
PDXO-drug pair (darker red indicates cytotoxicity and darker blue indicates growth). 
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