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ABSTRACT: From the beginning of life with the information-containing
polymers until the present era of a plethora of water-based materials in health
care industry and biotechnology, polyelectrolytes are ubiquitous with a broad
range of structural and functional properties. The main attribute of polyelectrolyte
solutions is that all molecules are strongly correlated both topologically and
electrostatically in their neutralizing background of charged ions in highly
polarizable solvent. These strong correlations and the necessary use of numerous
variables in experiments on polyelectrolytes have presented immense challenges
toward fundamental understanding of the various behaviors of charged polymeric
systems. This Perspective presents the author’s subjective summary of several
conceptual advances and the remaining persistent challenges in the contexts of
charge and size of polymers, structures in homogeneous solutions, thermodynamic
instability and phase transitions, structural evolution with oppositely charged polymers, dynamics in polyelectrolyte solutions,
kinetics of phase separation, mobility of charged macromolecules between compartments, and implications to biological systems.

I. INTRODUCTION
We do not know how life began on our planet. But we do know
that polyelectrolytes must have existed before life began, since
the life as we know it requires replicating charged polymers that
contain information. Even beyond the information-containing
polymers, many other varieties of polyelectrolytes constitute
the makeup of various organisms and their behaviors.
Beginning from the time of primordial origins some billions
of years ago, we and other organisms have been living up with
these polymers. Although modest in comparison with what
these strings of life have managed to perform, our civilizations
have made polyelectrolyte-based materials with amazing
technologically relevant properties. Indeed, newer and newer
polyelectrolytes are emerging from our laboratories, which
continue to sculpt the way our civilization is being propelled
with a natural responsibility to enhance human health care and
our planet’s sustainability.
Yet, we do not understand most of the aspects of how

polyelectrolyte molecules behave. The description of poly-
electrolytes is perhaps the most challenging subject today
among all biological and chemical systems in their liquid and
solid states. Why? From an experimental point of view, there
are too many variables controlling the polyelectrolyte
phenomena. These variables are nonlinearly coupled, and the
end result can be synergistic or antagonistic, or even reversed
depending on the time elapsed. From a conceptual point of
view, the challenge for understanding arises from the fact that
the whole system is strongly correlated, and every molecule
knows every other one in the system.
These challenges are not anew. They were present even

before the birth of life billions of years ago. As an example,
consider an isolated molecule of an information-containing
polyelectrolyte, say RNA in salty water. A small portion of

ssRNA molecule is sketched in Figure 1. For a synthetic
analogue, say a solution of sodium poly(styrenesulfonate) in

water containing low molar mass electrolytes, the cartoon is the
same as in Figure 1, where every monomer is now replaced by a
styrenesulfonate group.
The primary confounding forces operative in polyelectrolyte

systems are evident even in such a single molecule situation.
The system is endowed with long-ranged electrostatic forces
due to charges (phosphate groups, counterions, and salt ions),
hydrogen-bonding and dipolar interactions (water), van der
Waals interactions resulting in excluded volume effects, and
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Figure 1. Sketch of a natural polyelectrolyte, RNA, that must have
existed when life began billions of years ago. Chain connectivity,
charges on the polymer, counterions, salt ions, excluded volume
effects, hydrogen bonding, and structure of water contribute to the
structures and functions of such polyelectrolytes.
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chain connectivity. This cocktail, pregnant with potential of
huge functionalities, is obviously inhomogeneous in terms of
how a beam of light is going to be bounced around inside the
system.
The collective behavior of the above-mentioned interactions

is not yet fully understood. When multiple chains of different
kinds are present in the system, the challenge increases
exponentially.
The various interactions mentioned in Figure 1 have

somehow sculpted the evolution of life on our planet. In a
modest way, the field of polyelectrolytes offers an opportunity
to systematically understand the components and their effective
forces and put these results together. Hopefully, some day
soon, we will be able to fabricate a molecular engine which
might look like the first polymer of life with capacity to
reproduce itself.
We focus on size, structure, and dynamics of a collection of

identical polyelectrolyte chains in an electrolyte solution and on
the behavior of solutions containing two populations of
identical polyelectrolyte chains, but with opposite charge.
Other subjects such as polyelectrolyte brushes, block
copolymers, gels, sequence effects, etc., are not addressed
here. In terms of theoretical approaches, a difficult subject such
as the present one naturally had attracted many attempts with
varying answers for the same questions. We do not review this
colorful literature here either. This Perspective, admittedly
subjective, is leaning toward conceptual issues instead of a
catalogue of all missteps taken and how we learnt from them.
The rest of the Perspective is organized as follows. After

introducing the relevant scales of energy, length, and time, and
a brief overview of the literature on this subject, the size of an
isolated polyelectrolyte chain is discussed in section IV. Next is
the structure that emerges from multiple chains. Section VI
addresses thermodynamic instability of polyelectrolyte solu-
tions, followed by transport properties in section VII.

II. SCALES OF ENERGY, LENGTH, AND TIME
Energy. Consider the electrostatic interaction energy Uij

between a pair of ions with charges zie and zje separated by a
distance rij in a medium with uniform dielectric constant ϵ (in
the absence of any other charges) given by the Coulomb law

π
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z z
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where kBT is the Boltzmann constant times the absolute
temperature, zi is the valency of the ith ion, e is the electronic
charge, and ϵ0 is the permittivity of a vacuum. The middle
factor in the above equation has the dimension of length and is
called the Bjerrum length, lB.
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If the separation distance rij is comparable to lB, then the
electrostatic interaction energy of two monovalent ions is
comparable to the thermal energy kBT, as evident from eq 1.
For oppositely charged ions, if the distance between them is
shorter than lB, the attraction is stronger than kBT and the ions
are more likely to be ion pairs instead of completely dissociated
ions. The Bjerrum length sets the scale for energy. It is inversely
proportional to ϵT, where ϵ itself is temperature dependent.
For aqueous solutions at 25 °C, the Bjerrum length (with ϵ =
80) is

≃l 0.7 nmB (3)

Length. The pairwise interaction energy between two ions
of charges zie and zje in an electrolyte solution is the screened
Coulomb energy as given by
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where ni0 is the average number concentration of the ith ion.
While the strength of the electrostatic interaction between ions
is given by the Bjerrum length, its range is given by κ−1, known
as the Debye length ξD ≡ κ−1.
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The range decreases if ϵT is reduced or/and the electrolyte
concentration is increased. For monovalent salts in water (ϵ =
78.54 at 25 °C), the Debye length is

ξ ≃
c

0.3
nm

s
D

(7)

where cs is the salt concentration in units of moles per liter. The
screened potential (Debye−Hückel potential) given by eq 4 is
only approximate, derived within the framework of linearized
Poisson−Boltzmann equation. Nevertheless, the Debye length
is a fundamental scale of length in the treatment of
polyelectrolyte solutions.
The above two fundamental parameters (lB and ξD) have

very important consequences in the physics of polyelectrolyte
solutions. Consider a polyelectrolyte solution at a finite
concentration. Although the polyelectrolyte molecule is fully
ionizable, the chance that a counterion would be near a
monomer and be bound is finite, if the distance between the
monomer and the counterion is less than lB. In particular, the
effective dielectric constant in the neighborhood of the chain
backbone can be quite low, and hence the binding energy is
very high as can be seen from eq 1.
As a result, a certain number of counterions are bound to the

polymer as cartooned in Figure 2, and the naked charge of the
molecule is never realizable in equilibrium at finite polyelec-
trolyte concentrations. Furthermore, when a counterion is

Figure 2. Counterions can adsorb on chain backbone forming
temporary dipoles. The area shaded in green denotes the local
environment around the oil-like chain backbone where the local
dielectric constant can be substantially lower than the bulk value away
from the chain.
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bound to the monomer of the polymer, a dipole is formed.
Such dipoles are only temporary but can be sufficiently long-
lived to interact with other dipoles formed along the chain
contour. These dipole−dipole interactions can be quite strong
compared to kBT. For example, for two freely rotating dipoles
p1 and p2 of unit charge separated by the distance r in an
electrolyte solution, the interaction energy is attractive.
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Analogous to the two-body excluded volume parameter for
uncharged polymers, the two-body dipole−dipole interaction
parameter, υdipole, can be dened using eq 8. At room
temperature in water, υdipole ≃ −10kBT if the separation
distance between the dipoles and the dipole length are 0.25 nm.
Therefore, we readily anticipate that some segments of the
chains would cling together due to the formation of
quadrupoles and the rest of the chains repelling each other.
Naturally, such a scenario can result in nonuniform structures
and even attraction between similarly charged polymers.
Time. Another message conveyed by Figure 2 is that there is

a hierarchy of time scales: diffusion time for a free counterion,
lifetime of an adsorbed counterion, segmental relaxation time,
characteristic relaxation time for the whole polymer, character-
istic time for the relaxation of the collection of dipole pairs,
entanglement time, etc. As a result, the dynamics of
polyelectrolyte chains and the transport properties of
polyelectrolyte solutions exhibit very rich phenomenology. In
qualitative terms, sometimes the large macromolecules follow
the motion of small free counterions, and some other times the
small ions hover over the large macromolecules, both by
maintaining electroneutrality over a reasonably small volume.

III. A BIRD’S-EYE VIEW OF LITERATURE ON
POLYELECTROLYTE SOLUTIONS

The literature on polyelectrolyte solutions is vast,1−159

encompassing a large body of publications over the past
seven decades, based on experiments,1−61 theory,62−132 and
simulations.133−159 Because of the difficult nature of the subject,
where every molecule essentially knows every other one in the
system, the particular aspects of the various publications have
been quite diverse. In terms of experiments, the most notable
issues are charge and size of isolated molecules, titration curves,
colligative properties, structural organization in solutions,
complexation, phase diagrams, and dynamical properties such
as diffusion, viscosity, and ionic conductivity. These central
issues have been addressed by a variety of theoretical,
computational, and simulation works, which were designed to
better understand the collective nature of electrostatic
interactions among all charged macromolecules, their counter-
ions, and additional electrolyte ions in the solution. A critical
review of these publications or a comparative study of the
various often incomplete theoretical attempts is certainly
beyond the scope of the present paper. However, a modest
attempt is made to outline some of the subjectively chosen
conceptual cornerstones as given below. Specific references to
the literature are mentioned in sections IV−VII. The symbols
in the original publications are converted to their equivalents in
the symbols used in the present article.

Early Elegant Arguments for Polyelectrolyte Size. One
of the earliest publications dealing with polyelectrolytes in
solution is by Katchalsky, Künzle, and Kuhn in 1950.62

Consider a flexible polyelectrolyte chain of N Kuhn segments,
each of length l and charge αzpe (α is the degree of ionization
and zp is the number of ionizable groups per Kuhn segment),
where there are no counterions or small electrolyte ions. With
the end-to-end distance of the chain as R, Katchalsky et al.62

wrote the free energy of the chain as
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where the first term on the right-hand side is due to the
conformational entropy of a Gaussian chain and the second
term represents the electric repulsion. The second term follows
from eqs 1 and 2 as the authors imagined that the total charge
of the chain is evenly at the two ends separated by R. By
minimizing F(R) with respect to R, the authors obtained
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The proportionality between the end-to-end distance R and N
suggested that flexible polyelectrolyte chains in salt-free
conditions would adopt rod-like conformations.
On the other hand, if adequate amount of salt is added to the

polyelectrolyte solution in order to screen the electrostatic
interaction, Flory argued in 195365 that the effect of
intersegment electrostatic repulsion is simply to add the term
4πα2zp

2lB/κ
2l3 to the usual two-body excluded volume

parameter w (related to the Flory−Huggins χ parameter, as w
= (1/2 − χ)). In this limit of high salt concentration, the ratio
of the radius of gyration Rg of the polyelectrolyte chain to its
Gaussian chain value Rg0 is given by30

π

πα

κ
− = +⎜ ⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝

⎞
⎠

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

R

R

R

R
w

z l

l
N

134
105

3
2

4g

g

g

g

p

0

5

0

3 3/2 2 2
B

2 3

(11)

When the excluded volume interaction (from both the
hydrophobic part and the electrostatic part) is strong, this
equation gives
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An interpolation formula connecting the limits of eqs 10 and 12
was later derived in ref 77.

Counterion Distribution around Rod-like Polyelectro-
lytes. Early experiments, reviewed in refs 2, 5, 7, and 9, showed
that the osmotic pressure of polyelectrolyte solutions is
significantly nonideal. The osmotic coefficient (defined as the
ratio of the measured osmotic pressure to the value expected
from the ideal van’t Hoff law) depends strongly on the degree
of ionization of the polymer. Such observations on the
colligative properties, in combination with unexpected large
scattering intensity in turbidimetry, launched an avalanche of
theoretical works in 1950s to understand the role of
counterions on polyelectrolytes.5,9

Since rod-like conformations are suggested by eq 10, and due
to theoretical difficulty in treating highly flexible fractal-like
conformations, a polyelectrolyte solution was imagined to be an

Macromolecules Perspective

DOI: 10.1021/acs.macromol.7b01929
Macromolecules 2017, 50, 9528−9560

9530

http://dx.doi.org/10.1021/acs.macromol.7b01929


array of parallel charged rods of a certain small diameter and a
long length.63,64 The distribution of counterions around each of
these cylindrical rods was calculated exactly as a function of
degree of ionization and the rod concentration. The exact
results showed that there is a substantial accumulation of
counterions near the polymer and that the total fraction of
counterions around the polymer increases monotonically and
continuously as the distance from the rod axis increases. These
results are further augmented by more recent theoretical
considerations.99,109,142

The exact results of Alfrey et al.63 and Fuoss et al.,64

presented in 1951, are to be contrasted with the Manning
argument (1969) of counterion condensation on an infinitely
thin and infinitely long line charge.70,74 For this model, the
number of counterions inside a cylinder of radius r0 around the
line charge diverges if the space available for counterions starts
at the line charge for zpzclB/l > 1 (with zpe as the charge of each
of the point-like monomers on the line charge separated by l
and zce as the charge of the counterion). This apparent
divergence can be mathematically avoided by arguing that
zpzclB/l is never allowed to be greater than unity. In other
words, one can imagine that enough counterions condense on
the line charge and reduce the initial charge density to a new
value zpe/leff so as to make zpzclB/l = 1. Hence, the effective
charge separation leff is now taken to be larger than l. Therefore,
accounting for the counterion condensation in the Manning
model, the charge fraction α on the line charge, defined as the
ratio of l to lB (α = l/lB), is

α =

<
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The Manning criterion for binding of counterions around a line
charge is zpzclB/l ≥ 1. While the Manning argument is exact for
the particular model of an infinitely thin and infinitely long
perfectly one-dimensional line charge, it cannot be applied to
experimental systems involving flexible and semiflexible
polyelectrolyte chains and even for rods with finite diame-
ter.30,63,64 Considerable effort has been made to understand
counterion condensation by using computer simulations133−159

in terms of the valency of counterions, salt concentration, chain
length, and polymer concentration. The Manning transition as
given by eq 13 is not observed in the simulations. In general,
the degree of adsorbed counterions near the chain backbone
increases with polymer concentration and salt concentration. In
the presence of multivalent ions, charge reversal can readily
emerge if the electrostatic interaction is strong.
Electrostatic Blob and Scaling Laws. In 1976, de Gennes

et al.71 generalized the scaling concepts of polymer physics160

to polyelectrolyte solutions. The style of scaling arguments in
ref 71 was subsequently used by several other authors even to
more complex experimental conditions.86,90,108

As an illustration of the scaling approach, let us consider a
salt-free polyelectrolyte solution, where R ∼ N as given by eq
10. This result can be equivalently couched in terms of a
graphical representation. The dimensionless variable for the
strength of the electrostatic repulsion in eq 9 is α2zp

2lBN
3/2/l

(by taking R ∼ √N for the unperturbed Gaussian chain).
Therefore, the electrostatic repulsion is weak if
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l
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2 2
B
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In other words, the electrostatic interaction is weak if the
number of Kuhn segments in the chain is smaller than the
threshold value N*.
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Let us imagine a chain with N segments to be made up by
several contiguous sections within which the electrostatic
interaction is weak and beyond which the electrostatic
interaction is significant. Calling these sections as electrostatic
blobs of linear size ξe, let each blob contain g segments. We
choose g and ξe by assuming that the electrostatic energy of
each blob is comparable to the thermal energy kBT. From the
second term on the right-hand side of eq 9, we get

α
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e
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Noting that the Gaussian statistics is applicable within each
blob, ξe

2 ∼ gl2, and combining with eq 16
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Since the electrostatic interaction between the blobs is strong,
we expect the chain to be stretched into a rod-like
conformation with N/g blobs so that the end-to-end distance is

ξ
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⎛
⎝⎜

⎞
⎠⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟R

N
g

l
z l

l
Ne

p
2 2

B
1/3

(18)

which is the same result as eq 10. These scaling arguments have
been generalized to solutions with excluded volume interaction
(both good and poor solvents).75 It must be emphasized that
there are no counterions or salt ions in deriving these scaling
laws.
Given that R ∼ N in the salt-free dilute limit (i.e., the size

exponent (R ∼ Nν)ν = 1), the overlap concentration C* ∼
N1−3ν ∼ N−2. For semidilute salt-free polyelectrolyte solutions,
where the polyelectrolyte concentration C is above the overlap
concentration, the scaling laws160 for the osmotic pressure (Π
∼ C3ν/(3ν−1)), the correlation length (ξ ∼ C−ν/(3ν−1)), and the
radius of gyration of a labeled chain (Rg ∼ √NC−(2ν−1)/2(3ν−1))
follow as

ξΠ ∼ ∼ ∼− −C C R C; ; g
3/2 1/2 1/4

(19)

As we mention below, the scaling laws of ξ and Rg are in good
agreement with experiments.

Electrostatic Persistence Length. Another important
concept emerged in 1977 related to the role of electrostatic
interactions in semiflexible polyelectrolyte chains. Considering
a rod-like chain, Odijk as well as Skolnik and Fixman
independently calculated the electrostatic contribution to the
bending energy when the chain is slightly bent.72,73 They
showed that the stiff chain acquires an additional persistence
length, called the electrostatic persistence length lpe, in addition
to its intrinsic persistence length lp. The effective persistence
length lp,eff is

Macromolecules Perspective

DOI: 10.1021/acs.macromol.7b01929
Macromolecules 2017, 50, 9528−9560

9531

http://dx.doi.org/10.1021/acs.macromol.7b01929


κ
= + =l l l l

l
l

;
4p p pe pe,eff

B
2 2 (20)

Thus, for salt-free conditions (κ → 0), the electrostatic
persistence length can be significant. The concept of the
electrostatic persistence has been implemented for flexible
polyelectrolytes as well.25 For flexible polyelectrolytes, the
relative magnitude of electrostatic stiffening with respect to
electrostatic swelling (eq 11) has been debated in the literature
without firm conclusions.25,30

Experiments, Theory, and Simulations. Starting from
around 1980 onward, the subject of polyelectrolytes attracted
renewed interest from the polymer community. The availability
of powerful scattering techniques resulted in a wealth of
information regarding polyelectrolyte conformations and
structure formation in dilute, semidilute, and concentrated
solutions.13,14,17−19,24−27,31,34−38 The effects from counterions
and salt ions can be quite dramatic, in particular with
multivalent ions.28,32,34 Phase diagrams were composed in
multicomponent polyelectrolyte solutions, but usually at room
temperatures. More carefully measured data on diffusion,
viscosity, conductivity, and dielectric properties also became
available. Some of these experimental data will be discussed in
sections VI and VII. There still remain several unresolved
puzzles especially related to conductivity and dielectric
relaxation.40

The theoretical efforts on polyelectrolyte solutions since
1980 may be classified into three groups: (a) scaling theories,
(b) field-theory-based analytical theories, and (c) liquid-state
theories. These will be commented upon in the following
sections at appropriate places. In the field-theory-based
analytical theories, one starts with the Edwards Hamiltonian
appropriate for the particular polyelectrolyte system (as
expanded in section V), and the free energy is calculated by
introducing collective variables such as the local polymer
concentration, the correlations of which are measured
experimentally. From the calculated free energy, various
quantities of experimental interest, such as degree of ionization,
radius of gyration of labeled molecules, osmotic pressure,
structure factors, dynamical properties, and phase diagrams, are
calculated. This methodology is the one followed in almost all
theoretical works. The approach of the liquid-state theory115 is
complementary to the field-theoretic approach and starts with
the correlation function of monomer density g(r). Using a
closure protocol in the self-consistent integral equation for g(r),
the structure factor and conformational properties of
polyelectrolyte solutions are calculated.
The simulation efforts may be classified into two groups: (a)

united-atom-based molecular dynamics, Brownian dynamics,
Langevin dynamics, and Monte Carlo simulations and (b) field-
theoretic simulations. In the first category, the main focus has
been on counterion condensation, osmotic pressure, electro-
static correlations, and complexation between oppositely
charged polymers. The second category of simulations has
provided insight into formation of large-scale structures. The
main results from these simulations will be commented upon in
the following sections.

IV. CHARGE AND SIZE IN DILUTE SOLUTIONS
Charge Regularization. The key fundamental quantity

that dictates all properties of polyelectrolyte molecules in
solutions is the net effective charge per molecule. The effective
charge of even strongly dissociating polyelectrolytes, where

every ionizable repeat unit can fully ionize, is significantly lower
than the full chemical charge. The reason lies in the physics
portrayed in Figure 2. As a specific example, consider the
binding equilibrium of a counterion (say Na+) to a sulfonate
group of a monomer, as in sodium poly(styrenesulfonate), in
water of dielectric constant ϵ (Figure 3).

The free energy associated with charging a sodium ion of
radius a1 to its full charge in a medium of dielectric constant ϵ is
given by the Born energy,161 e2/(8πϵ0ϵa1). Similarly, the Born
energy for the sulfonate group of radius a2 is e2/(8πϵ0ϵla2).
Here the dielectric constant ϵl in the neighborhood of the
sulfonate group must be significantly lower than that of the
bulk polar solvent as the group is permanently attached to oil-
like nonpolar backbone. No one yet knows how to theorize or
measure the local polarizability effect in polyelectrolyte
solutions. The early literature shows that the dielectric constant
changes from a very low value of about 5 near the chain to the
bulk value of about 80 at a distance of 2 nm from the chain
backbone.85 Here, we shall be content with treating ϵl as a
parameter. The ion-pair energy for a bound Na+ ion to the
sulfonate group at a distance r is the Coulomb energy −e2/
(4πϵ0ϵlr). Therefore, the free energy of formation of the ion
pair is

π π π
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where 1/d = (1/r + 1/(2a2) + ϵl/(2ϵa1)). Here ϵl and d are
unknown and their values depend on the specifics of the
polylelectrolyte backbone and chemical identities of the various
ions in the solution. In one approach,103 all of these unknowns
are parametrized into one parameter δ defined as ϵl/(ϵld) so
that

δΔ = −G
k T

l
lB

B

(22)

where l is the charge separation distance along the chain
contour. The parameter δ is related to the ionization
equilibrium constant Ki through

δ= − =K K
l
l

p log
1

2.303i i
B

(23)

The ionization equilibrium of a repeat unit as a part of the
polyelectrolyte chain is clearly different from that of the unit if
it were to be dispersed into the polar medium as simply a
monomer. This fact has been recognized since the early
investigations.2,7,9 The most recent experiments51 using
fluorescence techniques are opening an opportunity to measure
polarizability effects on ionic equilibria in polyelectrolyte
solutions. Theoretical formulations of this effect in crowded
environments are hard and remain as one of the major
challenges in polyelectrolyte physics.

Figure 3. Ionization equilibrium of a monomer of sodium poly-
(styrenesulfonate).
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Despite this challenge, it is clear that the degree of ionization
of each charged repeat unit is less than unity.25 For the whole
chain, made of the ionization equilibria of all ionizable repeat
units, an average degree of ionization α may be ascribed to the
whole chain. Although, in reality, the chain should be treated as
a heteropolymer made of un-ionized groups and ionized
groups, with the sequences changing dynamically, it is a good
approximation to take the sequences as “annealed” and assume
that the chain is uniformly charged with each repeat unit of
degree of ionization α. The value of α depends on all
nonuniversal chemical specifics of the polymer, counterion, salt
ions, and solvent and the physical conditions such as the
temperature, polyelectrolyte concentration, and salt concen-
tration. As the chain conformations change, so would the value
of α, which is not a fixed number for any polyelectrolyte
solution as the experimental conditions change. The resulting
charge regularization is uniquely specific to a particular set of
experimental variables (temperature, polymer concentration,
salt concentration, solvent, etc.).
Polymer Size. The expectation that an isolated flexible

polyelectrolyte chain in salt-free dilute solutions would adopt a
rod-like conformation due to intrachain electrostatic repulsion
is reasonable from a theoretical point of view, if the solution
volume is so large that the enormous translational entropy
associated with dissociated counterions prohibits any counter-
ion adsorption on the chain. But, rod-like conformation has not
been observed in experiments with flexible polyelectrolytes.30

An effective size exponent, νeff may be defined relating the
radius of gyration Rg and the degree of polymerization.

∼ νR Ng
eff

(24)

For salt-free solutions, typical values of νeff is in the range 0.7−
0.8. Even when a value of νeff close to 1 is reported in the
literature, the prefactor is much less than what is expected for
rod-like conformations. As soon as the salt concentration is
about 10−3 M or higher, the value30 of νeff is close to 0.6.
The experimental observation of νeff being much less than

unity is indeed a direct consequence of the adsorption of
counterions. As emphasized above, the extent of degree of
ionization is not a fixed number, and it varies as the
experimental conditions change. As a straightforward example,
consider the coil-to-globule transition of a flexible polyelec-
trolyte chain as the temperature is lowered or the dielectric
constant is lowered or salt concentration is increased.44 The
coil-to-globule transition of an uncharged polymer is addressed
in terms of attractive two-body interaction (with the Flory−
Huggins χ parameter being larger than 0.5) and a stabilizing
(repulsive) three-body interaction parameter w3. When w3 is
higher, lower temperature is required to induce the coil-to-
globule transition.
In the case of polyelectrolytes, there is the additional variable

α. As the chain begins to collapse due to a change in
temperature or solvent quality, α will decrease due to
counterion adsorption, which in turn would facilitate more
chain collapse (due to further reduced electrostatic repulsion
from lowered value of α), resulting in a cascade.92,97 Thus, all
counterions are expected to be collected by the collapsing
polymer at the coil-to-globule transition. It is therefore
necessary to perform a self-consistent calculation of α and Rg
as the experimental conditions change. An example of such a
calculation is given in Figure 4, where α and the square of the
size expansion factor (l1̃ ≡ Rg

2/Rgθ
2, where Rgθ is the radius of

gyration at the Flory ideal temperature) are plotted against the

reduced temperature t ≡ l/(4πlB) for several values of the w3
parameter.117 The main result of this figure is that the chain
collapse and the precipitous collection of counterions by the
coil occur at the same time. There cannot be a coexistence of
swollen and collapsed states for the same effective charge of the
polymer. Experimental investigations44 on coil-to-globule
transition of quarternized poly(2-vinylpyridine) in the mixed
solvent of 1-propanaol and 2-pentanone clearly demonstrated
this mutually cooperative coupling between α and Rg. In fact,
the measured ionic conductivity of the solution dropped to zero
when the chain formed the globule, clearly establishing that the
counterions were progressively collected by the collapsing coil
during the coil-to-globule transition.44

At this point, a cautionary note must be made. There is a
preponderance of theories108 in polyelectrolyte literature based
on scaling arguments, blobs, pearl-like structures, etc., all based
on a f ixed value of α over the entire ranges of the various
experimental variables where the phenomena are addressed.
While these theories are exciting on their own merit based on
the definition of their corresponding models, they do not have
any relevance to practical systems with wide variations in
temperature, solvent quality, and salt concentrations. Ex-
ceptions might arise under conditions when α does not vary
too much as perhaps in the situation of homogeneous single
phases of polyelectrolyte solutions in a narrow temperature
range.
It is not experimentally relevant to formulate theories and

computations of polyelectrolyte sizes or phase diagrams by
fixing α and changing T, ϵ, polymer concentration, and salt
concentration. The charge regularization associated with self-
consistently varying α with varying experimental conditions

Figure 4. Plots of degree of ionization and the square of the size
expansion factor versus reduced temperature for different values of the
three-body repulsion term w3. The precipitous drop in the degree of
ionization accompanies the coil−globule transition. Reproduced with
permission from ref 117.
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must be treated in any quantitative comparison between
theoretical predictions and experimental results. Such self-
consistent treatment of charge regularization for polyelectrolyte
solutions is largely lacking at this point in the literature. Only
recently, a modest progress is made in treating charge
regularization for radius of gyration, second viral coefficient,
and static structure factor of a polyelectrolyte at infinitely dilute
solutions containing added salt.50,119 Nevertheless, theoretical
treatments without charge regularization have enabled explora-
tion of the leading effects of electrostatics in the behavior of
polyelectrolyte systems, with an implicit hope that the charge
regularization is either weak or to be relegated to future work.

V. ELECTROSTATICALLY DRIVEN STRUCTURE IN
POLYELECTROLYTE SOLUTIONS

One of the main attributes of polyelectrolyte solutions is that all
chains are strongly correlated both topologically and electro-
statically. Even in very dilute solutions such that the chains are
not interpenetrating, the chains are still strongly correlated.71 In
very dilute solutions, the molecules appear to position
themselves at some preferred interchain distance to minimize
the electrostatic repulsion between them. At higher polyelec-
trolyte concentrations, chains intermingle into each other by
gaining entropy and modifying the nature of the Coulomb
repulsion between them. These correlations are manifest in the
scattering properties of polyelectrolyte solutions using light, X-
ray, and neutrons.11,13,14,17−19,21,24,26,31,35−38 For salt-free
polyelectrolyte solutions, the most characteristic feature of
the dependence of scattering intensity on the scattering wave
vector k is the presence of a scattering peak, known as the
“polyelectrolyte peak”, at km (Figure 5a). The peak position
depends on the polyelectrolyte concentration C and this
dependence has been cast empirically as

∼ βk Cm (25)

The value of β changes from 1/3 for extremely dilute solutions
to 1/2 for for dilute and semidilute solutions. For extremely
high polymer concentrations, β ∼ 1/4 over a very narrow range
of polymer concentration, close to the hydrated limit of the
polyelectrolyte salt.
If low molar mass salt is present in sufficient amounts, the

polyelectrolyte peak goes away and the scattering behavior is

analogous to that of a solution of uncharged polymers. Another
noteworthy feature of static structure factor of salt-free
polyelectrolyte solutions is that the intensity at near zero
scattering angles is enormous and this always accompanies the
polyelectrolyte peak (Figure 5b). This zero-angle enhanced
intensity goes away upon addition of salt. It has been surprising
that similarly charged polymers would tend to clump together
(presumably responsible for zero-angle intensity) under
conditions where electrostatic repulsion is maximal and that
such clumps become unstable when the repulsion is reduced by
screening the electrostatics with added salt.
An understanding of the above facts has been a challenge to

theory community, and there have been numerous attempts on
theories of polyelectrolyte solutions. The simplest and the most
systematic among these approaches is based on the self-
consistent treatment of chain topology and electrostatics, called
double screening. We shall call this theory as the double
screening theory.81 In view of placing the experimental results
and the predictions of the double screening theory in
perspective, the key assumptions and approximations behind
the analytically derived double screening theory will be
presented first. Next, the inadequacies of the random phase
approximation (RPA) which is being heavily used in many
current theoretical approaches78,79,93,123,124 for polyelectrolyte
solutions will be discussed. Predictions from the double
screening theory, such as attraction at intermediate distances,
polyelectrolyte peak, and size of a labeled polyelectrolyte chain,
will be discussed in the context of experimental data. The
situation of how two oppositely charged polyelectrolytes form
complexes in dilute solutions will be briefly mentioned in terms
of novel structure formation in dilute polyelectrolyte solutions.

Essentials of Double Screening Theory. Consider a
system of n flexible polyelectrolyte chains each containing N
segments, nc counterions, nγ ions of species γ from dissolved
salt, and ns solvent molecules in volume V. Let α be the fixed
degree of ionization per chain so that each of the Nα segments
of the chain carries a charge of ezp where e is the electronic
charge. The total number of counterions is nc = αNzpn/zc where
zc is the valency of the counterion. Let ezi be the charge of the
ith charged species. Following Edwards,68,69 we represent the
polymer chain as a continuous curve of length L = Nl, where l is
the Kuhn step length. The Helmholtz free energy F of the
system is given by

Figure 5. (a) Concentration dependence of the polyelectrolyte peak. Reproduced with permission from ref 35. Copyright 2001 American Institute of
Physics. (b) Occurrence of enhanced zero-angle scattering intensity along with the polyelectrolyte peak. Reproduced with permission from ref 21.
Copyright 1990 Elsevier.
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Here Rα(sα) is the position vector of the arc length variable sα
(0 ≤ sα ≤ N) of the αth chain. Upp(r) is the interaction energy
between two segments of the chain separated by a distance r

δ
α

= +U w
z l

r
r r( ) ( )pp

p
2 2

B

(27)

where w is the Edwards excluded volume pseudopotential,
which is related to the Flory−Huggins parameter χ according to

χ= −( )w l1
2

3. δ(r) is the Dirac delta function and r = |r|. The

second term on the right-hand side of eq 27 represents the
Coulomb interaction energy between the segments, where lB is
the Bjerrum length (eq 2). In writing this second term, we have
assumed that the total charge Nαzpe of the chain is uniformly
distributed along the chain skeleton. The short-ranged
interactions between the polymer segments and solvent
molecules and between solvent molecules are given by

δ δ= =U w U wr r r r( ) ( ) and ( ) ( )ps ps ss ss (28)

where wps and wss are the corresponding pseudopotential
excluded volume parameters. The electrostatic interactions
between charged segments and various ions are given by

α
= =U

z z l

r
U

z z l

r
r r( ) and ( )pi

p i
ij

i jB B

(29)

The above set of equations defines the model and the theory
has two major steps.81 In the first step, all degrees of freedom
associated with mobile (dissociated) counterions, electrolyte
ions, and solvent molecules are integrated out, as cartooned as
step 1 in Figure 6. This step is carried out with the Debye−
Hückel theory of a charged plasma (here corresponding to the
charged solution background which neutralizes the polyelec-
trolyte charges). As a result, the intersegment interaction
between polymer segments is given by the screened Coulomb
potential (in addition to the hydrophobic part) as

δ
π

= +
κ−

v w w
r

r r( ) ( )
e
4c

r

(30)

where

πα=w z l4c p
2 2

B (31)

and

∑κ
π

= +
γ

γ γ

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

l
V

z n z n
4

c c
2 B 2 2

(32)

After the first step, the system consists of only n polymer chains
which are coupled through both intrachain and interchain
interaction potential v(r) given by eq 30. The Helmholtz free
energy F of the whole system is now given by the free energy Fp
of these n chains and the free energy of the background Fb as

= +F F Fp b (33)

The free energy of the background fluid consists of the entropy
of mixing terms and the charge fluctuations in the neutralizing
background

= +F F Fb b fl i0 , (34)

where

∑

= − + −

+ − + +
γ

γ γ γ

F
k TV

C C C C C C

C C C w C w CC

ln ln

[ ln ]
1
2

b
s s s c c c
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0

B

2

(35)

and

κ
π

= −
F

k TV 12
fl i,

B

3

(36)

It should be noted that the expression for Ffl,i given by eq 36 is
strictly valid only in the region of validity of the Debye−Hückel
theory, namely, the local electric potential being less than kBT.
Extensions can be made to go beyond the linearized Poisson−
Boltzmann formalism.122,126 Extension to include the finite size
of the ions generalizes eq 36 to

π
κ κ κ= − + − +

⎡
⎣⎢

⎤
⎦⎥

F

k T
V

l
l l l

4
ln(1 )

1
2

fl i,

B
3

2 2

(37)

The free energy Fp of n chains in the background where the
interaction energy between any two segments separated by
distance r is given by eq 30 follows from eq 26 as

Figure 6. Computational scheme behind the double screening
theory.81
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This situation of n coupled chains through the interaction v(r)
can be exactly mapped into a collection of n uncoupled chains
by introducing a potential field variable Φ. Now, the effective
interaction between any two segments of a labeled chain is
given by Δ(r)

→ Δv r r( ) ( ) (39)

where the arrow denotes the chain uncoupling with the
introduction of the field Φ. Basically, the total pairwise
potential interaction energy among all segments is replaced
by the net energy of all segments with each segment interacting
with the field generated by all other segments in the system.
Δ(r) is also the correlation function of the field variable
separated by the distance r as Δ(r) = ⟨Φ(r)Φ(0)⟩ , with the
angular brackets denoting the average over the field variable.
The topological correlations of the chain connectivity and long-
ranged electrostatic correlations are strongly coupled, and these
must be determined self-consistently in obtaining Δ(r) from
v(r) by the introduction of the field variable Φ. This is labeled
as step 2 in Figure 6. These two steps constitute the technical
aspects of the double screening theory.81 The evaluation of Δ,
field energy, and the consequent changes on the conforma-
tional fluctuations of the chain eventually lead to an expression
for Fp as

= + ΔF F F ( )p p fl p0 , (40)

where Fp0 is the contribution from the mean-field part without
concentration fluctuations (equivalent to the Flory−Huggins
form for the polymer contribution) and Ffl,p is the free energy
contribution from fluctuations in the local polyelectrolyte
concentration. In general, the polyelectrolyte fluctuation
contribution to the free energy can be derived in the form

π ξ
=

F

k T
V

24
1fl p,

B
3

(41)

where ξ is the correlation length for concentration fluctuations.
Because of the inherent nature of the coupled double screening
(electrostatic and topological), ξ is a crossover function
assuming asymptotic values for the limits of polyelectrolyte
concentration and added salt concentration.81

Free Energy. By collecting all contributions to the free
energy, including the fluctuations of mobile ions and chain
conformational fluctuations, the Helmholtz free energy density
f, defined as f ≡ Fl3/(VkBT), is given by

= = + + +f
Fl

Vk T
f f f fS H fl i fl p

3

B
, , (42)

To be more specific, the system consists of n polyelectrolyte
chains, each with N Kuhn segments dispersed in a solvent with
n0 molecules. Let α be the effective degree of ionization and zp
be the effective valency of each segment so that each segment
has an effective charge zpα. To maintain the electroneutrality of

the solution, the total number of unadsorbed counterions in the
solution is αzpnN/zc, with zc being the valency of the
counterion. In addition, let n+ and n− ions, with z+ and z−
valencies, respectively, be present in the solution from the
added salt. Also, for simplicity, we assume that all ions, polymer
segments, and solvent molecules have identical volume l3

(where l is the Kuhn length). f S in eq 42 represents the
mixing entropy of ions, solvent molecules, and polymer chains

ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ= + + + ++ + − −f
N

ln ln ln ln lnS c c 0 0

(43)

where ϕ = nNl3/V is the volume fraction of the polymer, ϕc =
α1ϕ is the volume fraction of counterions from dissociated
polyelectrolyte chains (α1 = αzp/zc), ϕ+ = n+l

3/V and ϕ− =
n−l

3/V are volume fractions of salt cations and anions,
respectively, and ϕ0 is the volume fraction of solvent.
The enthalpy part f H in eq 42 is given by
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with

κ π ϕ ϕ ϕ= + ++ + − −l
l
l

z z z4 [ ]c c
2 2 B 2 2 2

(45)

The enthalpy part of the free energy density represents the
mean-field energy that includes the short-range interactions
among solvent and neutral polyelectrolyte segments as well as
the electrostatic interactions among polyelectrolyte segments.
The short-range interactions can be represented via the Flory−
Huggins parameter χ. The effective electrostatic energy
between two charged polyelectrolyte segments has the Yukawa
form v(r) = Zp

2lB exp(−κr)/r with the inverse screening length
κ defined by eq 45. The second term of eq 44 is valid when
there are enough counterions and salt ions in the system. For
polyelectrolyte concentrations relevant to investigations of
phase behaviors of solutions, this approximation is adequate
even for the “salt-free” solutions.
The free energy density due to ion fluctuations f f l,i is given by

π
κ κ κ= − + − +

⎡
⎣⎢

⎤
⎦⎥f l l l

1
4

ln(1 )
1
2

( )fl i,
2

(46)

As in the Debye−Hückel theory, this is derived by solving a
linearized Poisson−Boltzmann equation100 for a non-neutral
charged plasma. Note that the Debye−Hückel limiting law is
recovered in the limit l → 0, f f l,i → −(κl)3/(12π), as was
derived in ref 81.
Finally, the free energy density due to polymer fluctuations

f f l,p, as derived in ref 81 for both cases of high salt and low salt
limits, can be written down via a simple interpolation. It is given
by

π α ϕ

κ π α ϕ
=

+

π

π
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( )

f
Z l l
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(47)

In eq 47 one can find that f f l,p ∼ ϕ3/2 in the low-salt limit and
f f l,p ∼ ϕ9/4 in the high-salt limit.81 As it turns out, the
contribution from polymer fluctuations is minor in comparison
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with the other terms so that elaborate crossover descriptions for
Ffl,p is unnecessary.
The set of eqs 42−47 form the basis for the calculation of

theoretical phase diagrams discussed in section VI.
Pitfall of RPA for Polyelectrolyte Solutions. The

spectacular success of the random phase approximation
(RPA) in describing the morphology of uncharged diblock
copolymers and the initial discovery of the Edwards screening
of excluded volume interaction in dense solutions of uncharged
polymers have inspired the polyelectrolyte community to
implement the RPA for polyelectrolyte systems as well.
However, the use of RPA, originally designed for weakly
correlated systems of uncharged polymers, in treating semi-
dilute polyelectrolyte solutions with very strong correlations has
led to unphysical consequences.93

In the methodology of RPA for polymer chains, the one-loop
diagram (Figure 7a) and its multiples as a part of a geometric

series are used in the calculation of ξ and hence Fp. In this one-
loop diagram, the segments s and s′ interact with each other,
mediated by the potential fields (denoted by the green arrows)
generated by all other chains in the system. The result is

ξ ∼ −CRPA
1/4

(48)

where C is the monomer concentration of the polyelectrolyte.
Substitution of eq 48 in eq 41 gives

∼F VCfl p, ,RPA
3/4

(49)

Π = −
∂

∂
∼ −

F

V
Cfl p

fl p
, ,RPA

, ,RPA 3/4
(50)

∂Π
∂

∼ −
C C

1fl p, ,RPA
1/4 (51)

Thus, according to the RPA for polyelectrolyte solutions, the
osmotic pressure contribution is negative and the osmotic
compressibility is negative and divergent as the polyelectrolyte
concentration is reduced. These unphysical results have their
ramifications in the computed phase diagrams for polyelec-
trolyte solutions using RPA and necessitated artificial cutoff
procedures in the infrared limit.93 Also, the predicted
concentration dependence of the polyelectrolyte peak position
(km ∼ C1/4) for semidilute conditions is in disagreement with
the vast experimental literature.
The RPA is technically valid only at very high polymer

concentrations where concentration fluctuations are weak, as
was originally pointed out by Edwards68,69 for uncharged
polymers and by Borue and Erikhimovich78 for charged
polymers. The divergence in the compressibility can be
artificially removed by putting an infrared cutoff, but this

does not have a physical basis. In a recent theoretical work,130 a
Gaussian fluctuation theory is presented, where the divergence
in the osmotic compressibility at low concentrations is avoided.
Although the use of RPA has become a routine protocol, even
in the most recent “field-theoretic” works on polyelectrolytes,
this approximation should not be pursued, except for extremely
high polymer concentrations where fluctuations are weak.
Predictions of the double screening theory for correlation

length, size of a labeled chain, attraction at intermediate
distances, and polyelectrolyte peak are summarized in the
following four subsections.

Correlation Length. When correlations are strong as in
semidilute polyelectrolyte solutions, it is necessary to go
beyond RPA and consider higher order diagrams depicted in
Figure 7b. The net result of such a calculation,81 with suitable
mathematical approximations to enable analytical tractability, is
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where ξ2 crosses from ξ2 ∼ C−1/2 in semidilute conditions to ξ2
∼ C−1/4 in concentrated conditions for salt-free solutions. For
the concentrated solutions, the negative contribution from
fluctuations to the osmotic pressure is overwhelmed by the
mean-field contribution. In salty solutions, ξ1 crosses from ξ1 ∼
C−3/4 in semidilute conditions to ξ2 ∼ C−1/2 in concentrated
conditions, as known for solutions of uncharged polymers.

Size of a Label Chain. The probability distribution
function for the end-to-end distance vector R of a labeled
chain in a polyelectrolyte solution is given generally as
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where Δ(r) is the effective interaction (eq 39) between two
segments derived self-consistently by accounting for electro-
static and topological correlations. Clearly, the labeled chain is
not a Gaussian chain. There are several theoretical procedures
to compute the probability distribution function in terms of Δ
and the physical variables (such as C and κ) which determine
Δ. Following a variational method,76,81 an effective renormal-
ized step length l1 can be defined as a functional of Δ, resulting
in a coupled set of equations where all Rouse modes are
coupled. Simplifications arise if we assume that the lowest
Rouse modes dominate over the higher modes, which is
equivalent to the uniform swelling approximation for the chain.
According to the double screening theory, the radius of

gyration Rg in the large N limit is given as

κ∼
+ −⎜ ⎟
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for salty solutions, and

Figure 7. Polymer diagrams. (a) One-loop diagram used in RPA. The
segments s and s′ interact with each other, mediated by the potential
fields (denoted by green arrows) generated by all other chains. (b)
Higher order correlations involve vertex diagrams involving additional
segments s1 and s2.
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for salt-free solutions. The numerical prefactors and the extent
of the non-Gaussian corrections are worked out in the original
publication.81

These predictions, which are fully consistent with scaling
predictions71 (where screening is assumed a priori), have been
validated experimentally. It is remarkable that even when all
chains are charged similarly and uniformly, they obey the Flory
theorem162 of Gaussian statistics in the melt due to the
screening of both excluded volume and electrostatic effects.
Attraction at Intermediate Distances. One of the

remarkable features of the effective interaction Δ, calculated
self-consistently by accounting for the simultaneous screening
of topological and electrostatic correlations, is that Δ(r) is
attractive at intermediate distances comparable to the
correlation length ξ in low salt concentration solutions. This
attraction emerges despite the fact that all interacting segments
bear the same sign for the charge. In the limit of low added salt
concentration, Δ(r) is given by the double screening theory
as81
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with
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valid for semidilute conditions. Instead, for highly concentrated
polyelectrolyte solutions, ξ2 ∼ C−1/4. An illustrative result for
the emergence of attraction at intermediate distances is given in
Figure 8, where 4πΔ(r)/wc is plotted against the distance r. For

infinitely dilute limit (C → 0; ξ2 → ∞), the interaction is
purely repulsive. As the polyelectrolyte concentration is
increased, an attraction emerges due to topological correlations
as shown by the bottom curve (for ξ2 = 1) in Figure 8. Here κ is
0.1, and r, ξ2, and κ−1 are in units of the Kuhn length l.
The attraction between similarly charged polyelectrolytes at

intermediate distances is present only if the polyelectrolyte
concentration is sufficiently large and the salt concentration is
sufficiently low. As the salt concentration is increased, the long-
ranged electrostatics is screened, and we are left with only the

topological correlation, namely, the Edwards screening. Under
these conditions, the double screening theory gives

π
κ
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(58)

where ξ ∼ C−3/4 for semidilute conditions and ξ ∼ C−1/2 for
concentrated conditions. This topologically induced attraction
is dierent from the van der Waals-type attraction in dense
liquids.
Does the emergence of intersegment attraction at

intermediate length scales (between the Kuhn length and
radius of gyration of a labeled chain in semidilute solutions),
due to topological correlations, lead to clumping of similarly
charged polyelectrolyte chains? No one knows the answer yet.
But we can be sure that spontaneous formation of dipoles along
chains, arising from counterion adsorption, and their mutual
attraction to form quadrupoles can definitely lead to
aggregation of multiple chains as manifest in the zero-angle
scattering intensity in static light scattering and the slow mode
in dynamic light scattering.

Polyelectrolyte Peak from Double Screening Theory.
The theoretical predictions of the double screening theory on
the polyelectrolyte peak and a comparison with the known
experimental results on polyelectrolyte solutions using light, X-
ray, and neutrons can be summarized as follows. There are five
regimes of structure in salt-free polyelectrolyte solutions as
depicted in Figure 9.127

Regime I: Electrostatically Uncorrelated Dilute “Gas-like”
Regime (0 < C < Cκ).When the polyelectrolyte concentration is
extremely low, the average separation distance Λ between any
two chains is so large that the strength of electrostatic
interaction between them is vanishingly small. Under these
conditions

= ∼
Λ

C
nN
V

nN
n 3 (59)

so that

∼
Λ

∼k C
1

m
1/3

(60)

Defining the polyelectrolyte concentration Cκ as the concen-
tration at which the average distance between any two chains is
the Debye length

κ
κ∼ ∼κ −C

nN
n

N3
3

(61)

the “gas-like” regime corresponds to 0 < C < Cκ.
Regime II: Electrostatically Correlated Dilute “Liquid-like”

Regime (Cκ < C < C*). In this regime, Cκ < C < C*, the average

Figure 8. Normalized effective potential interaction Δ(r) is attractive
at intermediate distances r for finite polyelectrolyte concentrations in
salt-free conditions.81

Figure 9. Five regimes of electrostatically driven structures in salt-free
polyelectrolyte solutions.
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distance Λ between two chains is shorter than the Debye
length, and yet the chains have not overlapped, such that 2Rg <
Λ < κ−1. The overlap concentration C* is defined as C* = 3M/
4πRg

3, where M is the molecular weight and Rg is for a rod-like
conformation with the span on the most extended direction as
half of the contour length, as justified in ref 127. Under these
conditions, the structure factor S(k), which is proportional to
the scattering intensity I(k), is approximately the product of the
form factor P(k) and the intermolecular structure factor given
by

= −
⎡
⎣⎢

⎤
⎦⎥S k P k

C
N

Q k( ) ( ) 1 ( )
(62)

where Q(k) depends on the pair-potential U(r) between two
chains, with center-of-mass separation distance r, according to

∫= − − ·Q k r( ) d [1 e ]eU k T ir k r( )/ B

(63)

Using the pair-potential for a pair of flexible polyelectrolyte
chains (with the Debye−Hückel potential between the
segments) and a generalized form factor for a fractal, S(k) of
eq 62 exhibits a peak at127

ν= +⎜ ⎟
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⎠k CNw

1
2m ceff

1/2

(64)

where νeff is the effective size exponent for the polyelectrolyte
chain in dilute solutions. The general result for the
polyelectrolyte peak in dilute solutions with electrostatic
correlations is

∼k C dilutem (65)

although the polyelectrolyte concentration is below the overlap
concentration C*.

Regime III: Semidilute Regime (C* < C < C**). In this
regime, the polyelectrolyte concentration is above the overlap
concentration C* but below C** at which concentration
fluctuations become weak. For polyelectrolyte concentrations
above C*, the double screening theory gives the scattering
intensity I(k) in terms of the effective interaction Δ(k) (k is the
scattering wave vector and Δk is the Fourier transform of Δ(r)
derived by the scheme of Figure 6) as

= − Δ
I k

k
v

( ) 1
( )

k (66)

where vk = w + wc/(k
2 + κ2). For semidilute salt-free

polyelectrolyte solutions, where concentration fluctuations are
strong, Δ(k) from the double screening theory gives
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The scattering intensity as given by eq 67 is presented in Figure
10a for the choice of wc = 8.8 nm and ξ2 = 10 nm, exhibiting the
polyelectrolyte peak. The peak position is at ξ2

−1:

∼k C semidilutem (69)

It must be noted that the peak position is directly related to the
position of the attractive minimum in the effective interaction
Δ(r). Although the exponent β for the concentration

Figure 10. Dependence of scattering intensity I(k) on the angularly averaged scattering wave vector k: (a) salt-free; (b) salty; (c) enhanced intensity
at near zero angles and the polyelectrolyte peak in salt-free solutions. Reproduced with permission from ref 127. Copyright 2016 Springer.
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dependence of km is the same for both the dilute correlated
regime and the semidilute regime, the numerical prefactor is
slightly different, as pointed out in ref 25.
Regime IV: Concentrated Regime (C** < C < C***). As the

polyelectrolyte concentration becomes higher than a certain
value C**, the concentration fluctuations become weak and
RPA becomes applicable. According to the double screening
theory, I(k) is given by eq 67, but with ξ2 given as

ξ = − − −w l C6 c2
1/4 1/4 1/2 1/4

(70)

so that the position of the polyelectrolyte peak, km ∼ ξ−1, at
very high polyelectrolyte concentrations, is

∼k C concentratedm
1/4

(71)

Regime V: Hydrated Melt (C*** < C). In this regime, the
polymer concentration is higher than C*** beyond which only
hydrated melt exists.
These five regimes for the concentration dependence of the

polyelectrolyte peak are sketched in Figure 11. The extensive

literature on the concentration dependence of km in salt-free
aqueous solutions of sodium poly(styrenesulfonate) of different
molecular weights, using light, X-ray, and neutron scattering, is
summarized in Figure 12. The presence of different
concentration regimes and crossover behaviors between these
regimes are fully in conformity with the above summary based
on the double screening theory, as evident from Figure 12.
As already pointed out, the polyelectrolyte peak goes away

upon addition of low molecular weight salt. According to the
double screening theory, the scattering intensity for salty
conditions is given by

ξ
=

+
I k

v k
( )

1 1
(1 )0

2
1

2
(72)

where v0 = w + wc/κ
2 and ξ1 is proportional to v0

−1/4C−3/4 and
v0

−1/2C−1/2, respectively, in semidilute and concentrated
solutions. Now, the scattering intensity is of the Ornstein−
Zernike form as illustrated in Figure 10b (where v0 = 1 nm3).
As an example of a comparison between the double screening

theory and the liquid-state theory, only two regimes, km ∼ C1/3

for dilute solutions and km ∼ C1/2 for semidilute solutions, were
found in the liquid-state theory.87

Aggregation of Similarly Charged Polymers. Extensive
experimental results on the scattering intensity extrapolated

near zero scattering angles for salt-free polyelectrolyte solutions
(Figure 5b) undoubtedly indicate that there are large clusters
consisting of many chains, although these chains bear the same
sign of charge. We have already argued that when counterions
adsorb on the charged monomer along the chain backbone,
dipoles form and the interaction energy u0 between two
randomly oriented dipoles is attractive and can be easily
∼10kBT (eq 8) at low salt concentrations. If several such
quadrupoles can form between several intermingling chains, the
resultant net attractive forces can effectively compete against
the electrostatic repulsion between the chains. In addition, if
the time required for the dissociation of the whole collection of
quadrupoles is sufficiently long, an equilibrium description of
such aggregates can be implemented to assess the relative
stability of such aggregates.
As a concrete example, consider the formation of an

aggregate of m polyelectrolyte chains (Figure 13), where each

quadrupole junction has an energy of −u0. Using the classical

theory of Flory162 for ionic gels, the free energy Fm of an m-

aggregate is given by128

Figure 11. Concentration dependence of the polyelectrolyte peak in
the five regimes. Reproduced with permission from ref 127. Copyright
2016 Springer.

Figure 12. Dependence of km on polyelectrolyte concentration C in
salt-free aqueous solutions of sodium poly(styrenesulfonate) at various
molecular weights and using different radiation: (▽) light, M = 780
kDa, Drifford (780k);14 (○) light, M = 1132 kDa, Johner (1132k);24

(▷) X-ray, M = 8 kDa, Kaji (8k);18 (+) X-ray, M = 18 kDa, Kaji
(18k);18 (◁) X-ray, M = 100 kDa, Kaji (100k);18 (△) X-ray, M = 220
kDa, Kaji (220k);18 (◇) X-ray, M = 252 kDa, Nishida (252k);35 (□)
X-ray, M = 1200 kDa, Kaji (1200k);18 (∗) neutrons, M = 72 kDa,
Nierlich (72k).11 The slopes of 1/3, 1/2, 1/2, and 1/4 expected
respectively for infinitely dilute “gas-like”, dilute “liquid-like”, semi-
dilute, and concentrated are included as guides. Reproduced with
permission from ref 127. Copyright 2016 Springer.

Figure 13. Cartoon of aggregation of m polyelectrolyte chains into a
charged microgel with quadrupole energy of −u0 and spacer length of
N.
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where the first three terms on the right-hand side arise from
free energy of mixing, rubber elasticity, and the excess osmotic
pressure inside the gel to maintain the Donnan equilibrium for
ionic gels. Here N is the number of Kuhn segments between
cross-links, α is the degree of ionization, 2ns is the number of
dissociated salt ions outside the aggregate, and m/2 is the
number of quadrupole cross-links. The last term in eq 73
denotes the quadrupole energy from all cross-links inside the
aggregate. After determining the equilibrium value of Fm (by
minimizing with respect to ϕ), the standard theory of
micellization163 can be used to calculate the mole fraction of
m-aggregate Xm according to

= −X m X[ e ]m
k T F F m m

1
(1/ )( / )mB 1 (74)

where the subscript 1 denotes the unaggregated chain. F1 is the
free energy of a polyelectrolyte chain. The calculated
distribution function of the mole fraction of m-mers for the
polymer concentration of 1 g/L (using values of the various
parameters appropriate for sodium poly(styrenesulfonate)) is
given in Figure 14.128 About 30 chains on average aggregate

together with a radius of gyration of the aggregate Rg,agg in the
range of hundreds of nanometers. In general, the average
number of chains in the aggregate is proportional to √C and
Rg,agg ∼ NC1/6. As commented in section VII, this mean field
argument is in qualitative agreement with the observed slow
mode in dynamic light scattering studies.
As the salt concentration is increased, quadrupoles are

unstable due to electrostatic screening and the aggregates
cannot be sustained. As a result, aggregates are present only at
low salt concentrations.
Complexation between Oppositely Charged Poly-

electrolytes. When a solution of a polycation is mixed with
a solution of a polyanion under salt-free conditions at room
temperature, large polyelectrolyte complexes (PEC) form
spontaneously.61 These complexes become unstable upon
addition of salt to the solution. What is the driving force for

two oppositely charged polymers to form a polymeric pair? It is
natural to think that the driving force must arise from
electrostatic attraction between the opposite charges. In fact,
simulations of complexation in aqueous media at room
temperature have shown that the dominant driving force for
complexation is not the enthalpic changes associated with
electrostatic attraction, but it is the favorable entropic changes
arising from the release of counterions from the participating
polyelectrolyte chains.147 The entropic forces also arise from
reorganization of water molecules around the polymer chains
during the complexation process as evidenced in recent
experiments.55

A typical example of simulation results is given in Figure 15
portraying the time evolution of complexation between a

flexible polycation and a flexible polyanion each of N beads,
under salt-free conditions. The Coulomb strength parameter
defined as Γ = lB/l is taken as 2. To begin with, the size of each
chain is expanded due to electrostatic repulsion, and there is a
finite number of adsorbed counterions on each chain. Once the
two chains touch each other, there is a progressive release of
adsorbed counterions during complexation. In the final state,
the complex is essentially neutral without any counterions left.
In this state, the complex is much smaller in size, in comparison
with the size of an individual chain before complexation. The
final state is equivalent to a double chain where the two chains
are paired by many dipoles arising from the oppositely charged
monomers (Figure 16). Because of dipole−dipole attraction,
the double chain is collapsed. Therefore, upon complexation,
two polyelectrolyte chains (each carrying a net charge) become
one dipolar chain with essentially no net charge.
Computation147 of free energy of complexation showed that

the entropic contribution dominates over the enthalpies
contribution for Γ > Γ* ≃ 1.5 for the parameters used in the
simulations, as given in Figure 17. As already mentioned, the
entropic contribution arises from the release of counterions
during complexation. Thus, complexation of two oppositely
charged polymers is driven by a combination of electrostatic
attraction and counterion release, with the final state becoming

Figure 14. Distribution of the mole fraction of m-mers. Reproduced
with permission from ref 128. Copyright 2016 United States National
Academy of Sciences.

Figure 15. Counterion release during complexation of two oppositely
charged polymers. Reproduced with permission from ref 147.
Copyright 2006 American Institute of Physics.
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an electrically neutral dipolar assembly, as sketched in Figure
16.
The same principle behind complexation of two flexible

synthetic polyelectrolyte chains has been shown to be adequate
to understand several seemingly more complex biological
assemblies. Consider an ssRNA virus, such as the common cold
virus or hepatitis B virus. These viruses are assemblies of a finite
number of capsid proteins (each carrying a net positive charge)
and one or more ssRNA molecules (negatively charged) into
icosahedral shapes.164−176 Using a self-consistent field theory
for the electrostatic interaction between the negatively charged
ssRNA and the positively charged protein tails protruding into
the inside from the capsid surface, the genome (ssRNA) length
that is optimally packaged inside the capsid is simply dictated
by the electroneutrality between the net charge of packaged
ssRNA and the net charge of capsid proteins inside. This simple
universal prediction164 obtained without any regard to RNA
sequence or invocation of the central dogma of biology is
remarkably able to describe genome packing in all ssRNA
viruses as demonstrated in Figure 18. The slope of the line in
Figure 18 is 1.6, representing an overcharging of the genome in
RNA viruses. This issue of overcharging has attracted attention
from several researchers166,169,171 with detailed analysis of
charge distribution on the protein tails. Siber and Podgornik166

have proposed an upper bound of 2.0 for the slope. Using
considerations of excluded volume effect and Donnan
equilibrium, Ting et al.169 have proposed nonuniversal values
for the slope, but in the range of order unity. The result of
sequence-independent genome packing based only on electro-
statics has been observed in experiments as well.165,172,173

Simulation studies167,168,170 of the kinetics of virus assembly
showed that the process is dominated by electrostatics and

ideas from polymer crystallization can be substantively used to
understand the simulation and experimental results.174−176 As
one would expect, there are several additional avenues to
expand the theoretical approach to address finer details of virus
assemblies.

VI. THERMODYNAMIC INSTABILITY AND PHASE
BEHAVIOR

A two-component solution of an uncharged polymer in a
nonpolar solvent is well-known to exhibit the critical
phenomenon of liquid−liquid phase separation. The phase
behavior of such uncharged systems is fairly well understood. It
is well recognized that the critical phenomenon of two-
component polymer solutions belongs to the same universality
class as the 3-d Ising model, sharing the same values of the
various critical exponents. When the composition fluctuations
are weak, namely when the system is sufficiently away from the
critical point and the spinodal curve, the mean-field Flory−
Huggins theory captures all of the essential features, at least
qualitatively. Consider an incompressible two-component
system of nA molecules of component A, each of NA segments,
and nB molecules of component B, each of NB segments. The
chemical mismatch between the two components is para-
metrized by the Flory−Huggins χ parameter

χ = ϵ − ϵ + ϵ
⎡
⎣⎢

⎤
⎦⎥

z
k T

1
2

( )AB AA BB
B (75)

where z is an effective coordination number for neighboring
interactions and ϵij are the van der Waals energies for contacts
between segments i and j. In general, the temperature
dependence of χ can be quite complex. However, in simple
polymer solutions, χ is written as

χ = Θ
T2 (76)

where Θ is the Flory temperature arising from all ϵij. The
tremendous success of the Flory−Huggins theory is that it
predicts liquid−liquid phase separation for χ above a certain
critical value χc. The phase diagram is composed by plotting χ
against the volume fraction of a component, say A, ϕ. The
critical point is given by

Figure 16. A dipole chain is formed when two oppositely charged
polyelectrolytes complex together fully.

Figure 17. Counterion release dominating the free energy of
complexation of two oppositely charged polymers in water at room
temperature. Reproduced with permission from ref 147. Copyright
2006 American Institute of Physics.

Figure 18. Universal law of linear relation between the genome length
and the total positive charge on the capsid protein tails inside the
viruses. Reproduced with permission from ref 164. Copyright 2006
United States National Academy of Sciences.
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Specifically, for a two-component solution of uncharged
polymer of uniform number of segments N in a small
molecular solvent

χ ϕ= + + = +
N N

1
2

1
...;

1
...c c (78)

Thus, the critical point is seen to be significantly affected by
polymer molecular weight.
The situation with polyelectrolyte solutions is drastically

different from the above picture. Consider a two-component
system of a polyelectrolyte salt (such as sodium poly-
(styrenesulfonate)) dissolved in a polar solvent such as water.
Although the polymer backbone does not mix with the solvent,
the charged groups along the chains generally repel each other,
and the chains are distributed in the solution aided further by
the translational entropy of dissociated counterions. No critical
phenomena are observed experimentally for such aqueous two-
component polyelectrolyte systems. In efforts to understand
the role of long-ranged interactions in the phase behavior of
simple polyelectrolyte solutions without added salt, only

computer simulations and theoretical approaches have been
reported.100,102,143

In order to experimentally observe critical phenomena in
polyelectrolyte solutions, a third component such as low
molecular weight electrolyte is added. As soon as the third
component is present, the phase behavior becomes extremely
complex. As an example, Figure 19a is the phase diagram of
aqueous solutions of poly(vinylsulfonic acid) (PVSA) contain-
ing the salt XCl (X = K, Na, and Rb) at a fixed concentration of
PVSA.3 Note the wild variation in the cloud point temperature
although X carries the same monovalent charge. Also, it is
remarkable that there is no phase separation if X = H, Li, Cs, or
NH4! For fixed concentrations of NaCl, the phase diagram in
terms of the phase separation temperature Tp versus Na-PVSA
concentration is given in Figure 19b.3 At a fixed temperature (0
°C), the phase diagram of NaPVSA concentration versus NaCl
concentration is given in Figure 19c.3 None of these results are
understood, although these experimental results are known for
more than five decades!
If the low molar mass third component salt is multivalent, the

phase behavior is even more richer. A notable example is the
universal re-entrant precipitation of polyelectrolytes such as
NaPSS and ssDNA from aqueous solutions containing trivalent

Figure 19. (a−c) Phase diagrams of aqueous solutions of poly(vinylsulfonic acid). (a) Effect of identity of monovalent salt XCl (X = K, Na, and Rb).
(b) Effect of salt concentration. (c) Dependence on polymer concentration and salt concentration at a fixed temperature. (d) Effect of trivalent salts
on flexible polyelectrolytes. (a−c) Reproduced with permission from ref 3. (d) Reproduced with permission from ref 34. Copyright 2000 Springer
Science+Business Media.
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salts (such as LaCl3 or spermidine), as depicted in Figure 19d.34

For a given polyelectrolyte concentration, precipitation is
observed as the salt concentration cs is increased. If cs is
increased further, the precipitate becomes soluble again. The
range of cs for the precipitation of the polyelectrolyte decreases
as the polyelectrolyte concentration is increased. The
boundaries of precipitation do not depend on the identity of
the flexible polyelectrolyte and the trivalent cation. Miscibility
studies on mixtures of polyelectrolytes and other additives such
as other polyelectrolytes, nonionic polymers, surfactants, and
proteins are also known, primarily driven by applications in
industry. In particular, the phenomenon of coacervation61 in
multicomponent systems of two oppositely charged polymers
in salt-containing aqueous solutions has attracted renewed
experimental interest. Almost all of the experimental inves-
tigations on multicomponent polyelectrolyte solutions are
conducted at room temperature. Systematic investigations on
polyelectrolyte phase behavior are only at initial stages.
On the theoretical side, the picture is cloudy due to the

multicomponent nature and the variable extent of electrostatic
correlations as the experimental parameters are varied in
determining phase diagrams. Nevertheless, a few generic and
qualitative concepts may be identified as below.
Concentration Fluctuations and Ginzburg Criterion.

When a solution of uncharged polymers is brought from a
homogeneous phase to the proximity of the critical point or
spinodal curve, composition fluctuations can be large and their
correlation length ξ and the zero-angle scattering intensity I(0)
diverge. Using the definition of χ as in eq 76 and writing the
spinodal χs as ∼1/Ts,

ξ ∼ − ∼ −
ν γ− −⎛

⎝⎜
⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟T T

I
T T

1 1
; (0)

1 1

s s (79)

It is well-known that the critical exponents ν = 0.63 and γ =
1.26. However, for conditions slightly away from the condition
of thermodynamic instability, mean-field theories are adequate
with ν = 1/2 and γ = 1. The Ginzburg criterion177 for validity of
the mean field theory is

≪
−

≪A
T T

T
1s

s (80)

where A is a system-dependent constant.
This general picture of 3-d Ising universality class seems to

be valid for polyelectrolyte solutions as well. With small
amounts of divalent added salt in aqueous solutions of NaPSS,
critical fluctuations have been observed.38 The presence of salt
is designed to induce a liquid−liquid phase separation and it
enters as an effective χ parameter χeff as

χ χ
α

κ
= −

z lp
eff

2 2
B

2 (81)

As a result, a straightforward expectation for polyelectrolyte
solutions is
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(82)

The small-angle neutron scattering experiments have shown
that ν = 0.63 and γ = 1.26 and that the crossover region from
mean field to Ising behaviors is about 4 °C, as shown in Figure
20.38

A quantitative description of the range of composition
fluctuations and the Ginzburg criterion largely remains as an
open topic to be fully explored.

Lifshitz Point. In a ternary mixture of two uncharged
homopolymers and an uncharged diblock copolymer, there is a
competition between a liquid−liquid macrophase separation
and an order−disorder microphase separation. At higher
copolymer concentrations, microphase separation dominates,
whereas at lower copolymer concentrations macrophase
separation dominates. At the special multicritical point (Lifshitz
point), the two phase transitions meet. The onset of
macrophase separation is characterized by the Ornstein−
Zernike-like scattering intensity decreasing monotonically from
zero scattering angle to higher angles. The microphase
separation is characterized by a scattering peak at finite
scattering wave vectors. Around the Lifshitz point, the peak
position of the structure factor continuously approaches zero as
the amount of diblock copolymer is reduced.
The same phenomenon can be expected for a polyelectrolyte

where there is a polyelectrolyte peak at finite nonzero wave
vectors for low salt concentrations and there is the Ornstein−

Figure 20. Concentration fluctuations in polyelectrolyte solutions near critical point obey 3-d Ising behavior. Away from the critical point by about 4
°C, mean-field behavior is observed for the correlation length ξ and scattered intensity extrapolated at zero angle. Reproduced with permission from
ref 38. Copyright 2003 American Instiute of Physics.
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Zernike feature at high salt concentrations. An analysis of the
structure factor discussed in section V gives the criterion for the
Lifshitz point for polyelectrolyte solutions as

κ = cwc
4

(83)

This electrostatically induced Lifshitz point in polyelectrolyte
solutions is insensitive to the χ parameter. As in the ternary
blend of uncharged homopolymers and a block copolymer,
microemulsion-like structures could emerge at the Lifshitz
point. Plausible occurrence of such structures and their relation
to the slow mode (section VII) observed in dynamic light
scattering studies are yet to be explored.
Theoretical Phase Diagrams. The phase behavior of

polyelectrolyte solutions, due to variations in composition and
temperature, is theoretically addressed using the various χ
parameters between the components (which are measures of
hydrophobicity) and the Bjerrum Length lB which is a measure
of the strength of the electrostatic interaction.100,114,118 The χ
parameter and lB cannot be arbitrarily varied for any
polyelectrolyte system because both of these quantities depend
on temperature (see eqs 2 and 76).
Let t be the reduced temperature in units of 1/lB (since lB is

inversely proportional to Tϵ)

π
=t

l
l4 B (84)

where l is the charge separation length along the chain contour.
Choosing the χ parameter between the polymer and solvent as
given by eq 76, χ is written in terms of the reduced temperature
t as

χ
π

≡ χa

t20 (85)

The parameter aχ (= 10πϵ0ϵkBΘ/e2) reflects the magnitude of
the Θ temperature and is taken as a measure of the
hydrophobic interaction between the polyelectrolyte backbone
and the solvent. For the example of NaPSS in water, the charge
separation along the backbone is ∼0.25 nm and lB at room
temperature is ∼0.7 nm, so that t ∼ 1/(12π). Therefore, when
aχ = 1, χ is about 3/5, indicating correctly that the polymer
backbone is immiscible in water. The range of 0 ≤ aχ ≤ 1 is
reasonable for exploring the role of hydrophobic effect on the
phase behavior of aqueous polyelectrolyte solutions.
As anticipated from the generic nature of polyelectrolyte

solutions where the translational entropy of counterions can
dominate the free energy, the molecular weight of the
polyelectrolyte chains might not be a key parameter in
determining the phase diagram. This kind of Coulomb
criticality is in sharp contrast to the hydrophobic criticality of
phase diagrams of uncharged polymers (see eq 78).
Furthermore, these two kinds of criticality can interfere with
each other and lead to multicritical phenomena. As already
noted, the presence of low molecular weight salt can
dramatically complicate the phase behavior. In addition,
different levels of charge regularization of polyelectrolyte chains
accompanying the formation of the new phases during phase
separation can modify the phase diagrams. These issues are
briefly commented on below.
Insignificance of Polymer Molecular Weight in Salt-Free

Polyelectrolyte Phase Behavior. Consider a two-component
system of flexible polyelectrolyte in water. The free energy
density f is given by eqs 42−47 as

= + + +f f f f fS H fl i fl p, , (86)

where
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Here ϕ is the polymer volume fraction ϕ = nNl3/V, with l being
the segment length, and α1 = αzp/zc as already defined. For the
present case of salt-free condition, κ2l2 = 4πlBzc

2α1ϕ/l. The
fluctuation contribution from polymer conformations Ffl,p is
given by eq 47, but it turns out to be negligible in comparison
with the other terms in eq 86. The reduced temperature is t = l/
(4πlB) as defined in eq 84.
The critical point (ϕc, tc) is determined from ∂

2f/∂ϕ2 = 0 =
∂
3f/∂ϕ3 as100

ϕ
π α π

α

α
=

+
=

+( ) ( )
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z z1
64

1
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64c
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c
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N1
1

1
1

(90)

Here, electrostatic contribution is taken to be dominant by
assuming that χ = 0. As α1 (= αzp/zc) is of the order of 3 (by
assuming that there are about 9 monomers per Kuhn segment,
the average degree of ionization is 1/3, and the counterion is
monovalent), 1/N in eq 90 is negligible in comparison with α1.
Therefore, the theory of phase diagrams of salt-free
polyelectrolyte solutions predicts that the molecular weight of
polyelectrolyte chains is an insignificant variable, in sharp
contrast with the situation of uncharged polymers. This
prediction was later validated by simulations.143

Interference Between Coulomb Criticality and Hydro-
phobicity Criticality. If the hydrophobic term involving χ were
to be dominant in eq 86, say in the limit of α → 0, the critical
condition for phase separation is that of the Flory−Huggins
theory (see eq 77).

ϕ χ=
+

= +
⎛
⎝⎜

⎞
⎠⎟N N

1
1

;
1
2

1
1

c c

2

(91)

Defining ϕ̃ = 64πϕ and t ̃ = 64πt, the hydrophobicity critical
point (for N = 1000) is114

ϕ α̃ = ̃ = =t6.16 and 6.01 ( 0)c c (92)

where eq 85 is used in relating tc̃ and χc. On the other hand, the
Coulomb critical point for α = 1 and zp = 1 = zc is

ϕ α̃ = ̃ = =t1 and 1 ( 1)c c (93)

These two limits are sketched in Figure 21a. Therefore, the
Coulomb critical temperature is reduced by a factor of 6 in
comparison with the critical temperature for uncharged
polymer solutions, which are usually around 300 K or above,
but not 1800 K. As a result, it is impossible to observe
macrophase separation in salt-free aqueous polyelectrolyte
solutions.
The calculation114 of phase diagrams using eq 86−89 shows

that the two limits of critical points (corresponding to
hydrophobicity criticality and Coulomb criticality) do not
meet at an intermediate point but stop as critical end points
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with a narrow range of the parameter aχ with triple points as
sketched in Figure 21b,c. The theoretically predicted
emergence of triple points for intermediate values of the χ
parameter is yet to be verified either by simulations or by
experiments using low dielectric constant solvents.
Effect of Low Molecular Salt on Phase Diagrams. The

presence of added salt to polyelectrolyte solutions raises the
critical temperature essentially by promoting the hydro-
phobicity criticality and by screening the electrostatic
interactions. The constraint that the chemical potential of the
salt must be the same in the coexisting phases, in addition to
the same constraint for the polyelectrolyte and solvent, results
in rich phase behavior. As an example, the calculated
coexistence curves114 and critical points from eqs 42−47 with
added monovalent salt are given in Figure 22 for representative
values of the hydrophobicity parameter aχ (1/5, 4/9, and 1) for
α = 1 and N = 100. Here Cp = ϕ + ϕc, cs = ϕ+ + ϕ−, and the
dissociated salt ions and the counterions of the polyelectrolyte
are taken as distinct species. For relatively lower values of aχ =
1/5 (corresponding to χ of about 0.1 at room temperature), the
phase demixing region grows out from the left side of the plot
and leans toward the bottom right side. For each temperature,
the coexistence curve consists of two branches which are linked
by tie lines and a critical point exists at the point where the two
branches meet. For a relatively larger value of the hydro-
phobicity parameter, aχ = 1, the coexistence curves move up
from lower cs, and the region of homogeneity is reduced as the
temperature is lowered. For intermediate values of aχ (=4/9),
two sets of coexistence curves are predicted at higher
temperatures (say t = 0.004 944), each with its own critical
point (Figure 22b). As the temperature is lowered, the two
demixing regions become broader and eventually merge into
one demixing region. As in the salt-free case, triple points are
predicted at lower temperatures.
The above predicted phase behavior is yet to be explored

experimentally with temperature as the key variable. It must be
cautioned that the above theoretical predictions are based on
the assumption that all monovalent salts are equivalent, which
is not the case. In making comparison between experiments and
theory, one can only hope for discovering the generic feature of
multicritical phenomena and not concern with quantitative
numbers until the specificity of ions is fully addressable by the
theory.
When the added salt ion is trivalent, as in the case of LaCl3,

the predicted phase diagrams from eqs 42−47 (with the
mandatory accounting of the Donnan equilibrium between the
coexisting phases) are given in Figures 23a and 23b for t = 0.02

and 0.03, respectively.114 In Figure 23a, each blue dot
represents an initial set of polymer and salt volume fractions
that leads to liquid−liquid phase separation. The outer
envelope of all blue points is the coexistence curve. The
spinodal curve is shown as the boundary of thermodynamic
instability. As the temperature is increased (Figure 23b), the
demixing region becomes narrower to the extent that there is
no region of spinodal decomposition. The predicted liquid−
liquid phase separation is analogous to the experimental
observations at room temperature given in Figure 19d, although
this effect was marked as re-entrant precipitation. It is desirable
to revisit the experiments by varying the temperature to fully
understand the critical phenomena of polyelectrolyte solutions
with multivalent salt.

Coacervates. The phase behavior of a mixture of polycations
and polyanions leading to liquid−liquid phase separation has
recently attracted considerable attention, mainly driven by
potential applications of the polymer-dense phase known as the
coacervate phase. Starting from the initial experimental
observation1 eight decades ago, the phenomenon of coacervate
complexation has a long history.1,4,6,8,10,12,16,20,29,41,45−49,52−61

Figure 21. Interference between Coulomb criticality and hydro-
phobicity criticality resulting in critical end points and lines of triple
points (red). (a) The Coulomb critical temperature is about a factor of
6 lower than the hydrophobic critical point, and the question is how
these two critical points meet at intermediate strengths of hydro-
phobicity. (b) and (c) sketch the variations of these critical points as
solvent quality is made progressively poorer and the emergence of
lines of triple points corresponding to coexistence of three phases.

Figure 22. Calculated phase diagrams for a ternary system of
polyelectrolyte, monovalent salt, and water. The χ parameter increases
from (a) to (c). Reproduced with permission from ref 114. Copyright
2009 American Institute of Physics.
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There are many reviews on this subject providing compendia of
various experimental results, theoretical approaches, and
simulation studies.61,132 The earliest theory of coacervate
complexation is the Voorn−Overbeek (VO) theory,66,67

which is found to be in good agreement with some
experiments, despite its well-known approximations. Consid-
erable efforts have been made to rectify the approximations in
the VO theory and to understand why the VO theory even
works.61,132

In order to bring a perspective on the nature of assumptions
of the VO theory, let us discuss one of the simple examples of
this theory. Consider a salt-free solution of a symmetric mixture
of a polycation and a polyanion, each with the same volume
fraction ϕ/2 (ϕ is the total volume fraction of both polymers)
and the same number of segments N. Let σ be the charge
density on the backbone for both polymers. The VO theory
combines the Flory−Huggins theory (for entropy of mixing
and later appended to include the energy of mixing via the
Flory−Huggins χ parameter) and the Debye−Hückel theory of
electrolytes. The contribution to the free energy density f S,VO
from the entropy of mixing (with each of the whole chains
exploring all space in the volume) follows from the Flory−
Huggins theory as

ϕ ϕ ϕ ϕ= + − −f
N

ln (1 ) ln(1 )S ,VO (94)

where the first term on the right-hand side corresponds to the
translational entropy of polycations and polyanions (with

irrelevant linear terms in ϕ ignored) and the second term
corresponds to the translational entropy of solvent molecules
(assuming the usual incompressibility condition). For the
Debye−Hückel contribution, f DH,VO, the VO theory assumes
that the polymer chains are broken into individual single
charges which are distributed throughout the solution,
independent of chain connectivity. According to the Debye−
Hückel theory, κ2 for this assumed model is

κ
π

ϕ
π

σ ϕ= =l
l

l
z

l
l

4
( )

4
( )p

2 2 B 2 B 2
(95)

where zp is the valency of each polymer segment, which is the
charge density σ of the polymer, namely the total charge
number divided by N. Instead of the above expression, the VO
theory uses

κ
π

σϕ=l
l

l
( )

4
( )2 2

VO
B

(96)

The discrepancy between eqs 95 and 96 goes away if each
segment of the polymer carries a unit charge. Using eq 46 in the
limit of κl → 0

π σϕ
π

= −f
l l(4 / ) ( )

12DH,VO
B

3/2 3/2

(97)

Combining eqs 94 and 97, and further assuming that the
solvent−polymer interactions are negligible compared to
electrostatic interactions (χ = 0), the free energy density of
the VO theory is

ϕ ϕ ϕ ϕ

π σϕ
π

= + − −

−

f
N

l l

ln (1 ) ln(1 )

(4 / ) ( )
12

VO

B
3/2 3/2

(98)

In the presence of monovalent salt of 1:1 type, (κ2l2)VO =
4πlB(σϕ + ϕs)/l, where ϕs is the total volume fraction of both
cations and anions of the added salt and the contribution from
their translational entropy is ϕs ln(ϕs/2). Ignoring terms linear
in ϕ and ϕs, f VO of solutions containing added salt is

ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ

π σϕ ϕ
π

= + + − − − −

−
+

f
N

l l

ln ln (1 ) ln(1 )

(4 / ) ( )
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s s s s

s

VO

B
3/2 3/2

(99)

For the salt-free case, the first term on the right-hand side of eq
98 is insignificant for large values of N, the second term is
negative but nonmonotonic in ϕ, and the third term is
continuously decreasing negatively valued function as ϕ
increases. As a result, the combination of the second and
third terms (solvent entropy and the Debye−Hückel
correlation of ions of fully decomposed polymers) leads to
coexistence of two phases. It is therefore obvious from the
assumptions of the VO theory that all aspects of polymer
connectivity are ignored. Furthermore, what did happen to the
counterions when a polycation electrolyte and a polyanion
electrolyte are dispersed into the solvent?
The free energy density for the present situation where all

chains, their counterions, and ions from the added monovalent
salt are present in a homogeneous solution can be expressed by
generalizing eqs 42−47. Let there be n1 chains of polyanions of
N1 segments of unit charge, n2 polycations of N2 segments of
unit charge, n+ cations and n− anions from the added salt, and

Figure 23. Calculated phase diagram for trivalent salt showing liquid−
liquid phase separation. The reduced temperature increases from (a)
to (b). At higher temperatures, the spinodal region does not occur.
Reproduced with permission from ref 114. Copyright 2009 American
Institute of Physics.
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n0 solvent molecules. If α is the degree of ionization for both
polycations and polyanions, the number of monovalent
counterions n+c from the polyanion is αn1N1 and the number
of monovalent counterions n−c from the polycation is αn2N2.
The total volume of the solution is V = (n1N1 + n2N2 + n+c +
n−c + n+ + n− + n0)l

3 by assuming that the volumes of segments,
solvent, and dissociated ions are the same (l3). The free energy
density from the translational entropy of all species in the
solution follows from a generalization of eq 43 as

ϕ ϕ
ϕ ϕ ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ

= + + + + +

× +

+ + − − + + −

−

f
N N

ln ln ln

ln ln

S c c c c
1

1

2

2

0 0 (100)

where ϕ1 = n1N1l
3/V, ϕ2 = n2N2l

3/V, ϕ+c = αϕ1, ϕ−c = αϕ2, ϕ+
= n+l

3/V, ϕ− = n−l
3/V, and the counterions and salt ions are

distinguishable. If the counterions and salt ions are indis-
tinguishable, (ϕ+c ln ϕ+c + ϕ−c ln ϕ−c + ϕ+ ln ϕ+ + ϕ− ln ϕ−) is
replaced by (ϕ+c + ϕ+) ln (ϕ+c + ϕ+) + (ϕ−c + ϕ−) ln (ϕ−c +
ϕ−). The expression for the inverse Debye length κ for the
present situation is given by
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The total free energy density is given by eq 42

= + + +f f f f fS H fl i fl p, , (102)

where f S and f f l,i are given by eqs 100 and 46 with the use of eq
101. f H and Ffl,p are the usual contributions from enthalpy due
to interactions among the various constituent molecules and
the concentration fluctuations in the solution.
In order to compare with the VO theory, the free energy

density of a solution of symmetric mixture of polycations and
polyanions, each with the same volume fraction (ϕ1 = ϕ2 = ϕ/
2) and the same number of segments (N1 = N2 = N), and 1:1-
type salt (ϕ+ = ϕ− = ϕs/2) follows from eq 102 as (after
ignoring irrelevant linear terms in ϕ and ϕs)
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with
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(104)

Here χ is the interaction strength between polymer segments
and solvent with the assumption that all other polymer−
polymer and solvent−solvent interaction strengths are zero.
For the salt-free case (ϕs = 0)
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with κ2l2 = 4πlBαϕ/l. Corresponding to the example of the VO
theory for ϕs = 0, χ = 0, and κl → 0, and ignoring Ffl,p, eq 103
reduces to
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This expression is to be compared with f VO given by eq 98.
Serendipitously, the Debye−Hückel term is the same for the
present derivation and the VO theory, although the origins are
different. In the present case, it arises from the dissociated
counterions and in the VO theory it arises from broken-up
segments of polymer chains. The key deficiency of the VO
theory is the neglect of the translational entropy of counterions.
The prefactor of ϕ ln ϕ term should be α + 1/N, dominated by
the degree of ionization of order unity in comparison with the
negligible term 1/N. Therefore, the VO theory artificially
suppresses the entropic contribution from the polymer with a
factor of 1/N instead of α + 1/N. Hence, the liquid−liquid
phase separation is artificially promoted in the VO theory due
only to solvent entropy and the Debye−Hückel term.
It is to be noted that eq 106 is identical to eqs 86−89 with

the identification of ϕ as the total polymer volume fraction
(from both polycations and polyanions). The critical point for
the coacervate complexation is given by eq 90 as
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(107)

where the reduced temperature t is l/(4πlB) (eq 84). As in the
case of salt-free polyelectrolyte solutions, the chain length does
not play a significant role in determining the critical point for
coacervate complexation, and the result is approximately close
to that of the restricted primitive model of solutions of simple
electrolytes. Ignoring Ffl,p, the predicted critical temperature for
salt-free symmetric mixture of polyanions and polycations (with
N = 100) is

= !T 52 Kc (108)

where uniform dielectric constant of 80 and l = 0.25nm are
used. Clearly this result, based on correct mean-field theory, is
unphysical and in contradiction with experimental facts where
the coacervates form rather readily at room temperatures in
many mixtures of polycations and polyanions.
In the presence of added salt, the predicted phase diagram

for coacervate complexation is qualitatively similar to Figure 22,
in view of the same structure of eqs 102−106 (for coacervates)
and eqs 86−89 (for polyelectrolyte solutions). Rich phase
diagrams can merge depending on the interplay between
hydrophobic and electrostatic interactions. In general, the
predicted critical temperature from the mean-field theory (with
f f l,p = 0) is lower than what is observed experimentally.
During the past two decades, there have been numerous

attempts based on theory, computation, and simulations,
further stoked by fresh experimental investigations. The current
status of coacervate complexation is recently summarized in
two excellent reviews, and the interested reader should consult
with these reviews and the exhaustive references therein.61,132

Here, we mention only the styles of the key theoretical,
computational, and simulation results instead of a detailed
critique of this extensive literature.
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A creative idea was presented by Borue and Erukhimovich in
their theoretical work, where the polyelectrolyte complex is
assumed to be a globule of uniform density and the coacervate
complexation is a precipitation of polymer globules.80 Using
density functional arguments, the equilibrium density and
structure of surface layer of polyelectrolyte complexes were
calculated as a function of salt concentration cs. Castelnovo and
Joanny98 addressed the role of charge density by calculating
structure factors within the general framework of RPA. Using
RPA, and accounting for impenetrability of ions, Kudlay and de
la Cruz105 addressed the role of χ parameter on the phase
diagram. In addition, Kudlay et al.104 addressed the role of ion-
pair formation within the framework of RPA. The role of
stoichiometry between the polycation and polyanion was
addressed by Zhang and Shklovskii107 based on electrostatics,
but without consideration of counterions. Building on the
PRISM-type liquid-state theory, Perry and Sing125 focused on
the effects of chain connectivity and excluded volume (which
are ignored in the VO theory) and hypothesized that the
apparent success of the VO theory is due to cancellation of
chain connectivity and excluded volume effects. The role of
molecular compactness in terms of the fractal dimension of the
polymer was addressed by Qin and De Pablo,129 by including
charge connectivity, although counterion entropy is not
included. Combining the VO and Cahn−Hilliard theories, the
interfacial tension between the liquid-like coacervate phase and
the coexisting supernatant phase was calculated by Qin et al.53

and found to be in agreement with experiments,45 despite the
well-known inadequacies of the VO theory.
The primary computational protocol used for coacervate

complexation is the field-theoretic simulation (FTS). Popov et
al.112 used FTS at the one-loop level and showed that charged
diblock polyelectrolytes stabilize disconnected mesoscopic
structures, in contrast to uniformly charged polyelectrolytes
which form macroscopic phases. Going beyond RPA, FTS was
used by Lee and Fredrickson113 to compute structure factor
and phase diagrams without salt or counterion entropy.
Riggleman et al.121 computed the interfacial tension between
a coacervate phase and its supernatant in terms of χ, cs, and
electrostatic interaction strength. More recently, Delany and
Fredrickson131 used FTS to show that coacervation of diblock
polyampholytes occurs at much lower electrostatic strength
compared to blends, without consideration of counterions or
salt. The FTS results are shown to be significantly different
from RPA results.
Computer simulations of polyelectrolyte complexation in

dilute solutions have been carried out by many researchers.
However, simulations of coacervate phase diagrams are rare. In
the recent Monte Carlo simulation, Radhakrishna et al.60 show
that the fortuitous agreement between the VO theory and
experiments is due to a cancellation of errors arising from the
neglect of charge connectivity and excluded volume effects, as
was initially deduced from their liquid-state theory. These
simulations are in good quantitative agreement with experi-
ments reported in their study.
The above-mentioned theoretical and computational works

are obviously diverse and separately address several different
aspects of coacervate complexation. To date, there is no
comprehensive theory of this phenomenon, although it is not
uncommon in the literature of claims such as having produced a
comprehensive theory of coacervate complexation while its
system does not have counterions and salt. There still remains
considerable challenges to properly treat non-RPA and polymer

conformational fluctuations in multicomponent solutions
pertinent to coacervate formation. Yet, even the perfect
theoretical treatments of polycations and polyanions uniformly
distributed in the solution might not capture the phenomenon,
independent of the rigor in the calculations. As recognized over
more than five decades by experimentalists6,16,20 and more
recently by theorists and simulators,104,107 the reality in a
mixture of oppositely charged polymers is their spontaneous
tendency to form chain pairs.
As discussed in section V, a pair of oppositely charged

polyelectrolyte chains form polyelectrolyte complexes sponta-
neously in water at room temperature and above and even in
very dilute solutions.
A complex between two oppositely charged polyelectrolyte

chains is a dipolar chain if the complexation is complete (Figure
16), or it can in general be a multiblock chain with positive
charges, negative charges, and dipoles distributed in random
sequences, as depicted in Figure 24a. When the polymer

concentration is not very low, many chains can aggregate as
cartooned in Figure 24b. Therefore, a solution consisting of
oppositely charged polyelectrolytes is made of a population of
diverse architectures even in the so-called “homogeneous”
phase.
The replacement of charged portions of the polyelectrolyte

chains by dipolar portions due to complexation is expected to
have a dramatic effect on the phase diagram. As an elementary
example, consider a collection of n2 polycations of N2 segments
and n1 polyanions of N1 segments, let N2 ≥ N1 and n2 > n1, and
allow complete two-chain pairwise complexation as shown in
Figure 25. In this model, the solution is made of n1 complexed

chains each with N1 dipoles and N2 − N1 positive charges and
n2 − n1 chains of N2 positive charges. In addition, there are
counterions and solvent in the system. The free energy density f
for this model is

= + + + + + +f f f f f f f fSp Sc Ss el ex fl i fl p, , (109)

where f Sp is from the translational entropy of the entities in
Figure 25

Figure 24. Examples of numerous branched structures that form in a
solution of polycations and polyanions. (a) Only two chains form the
complex. (b) Several chains participate in the complexation.

Figure 25. A simple model for constructing coacervate phase diagram,
emphasizing the role of dipoles.
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where ϕ1 = n1N1l
3/V and ϕ2 = n2N2l

3/V. f Sc is from entropy of
counterions (with α = 1)

ϕ ϕ ϕ ϕ= +f ln lnSc 1 1 2 2 (111)

and f Ss is the corresponding term for the solvent, f Ss = ϕ0 ln ϕ0.
The electrostatic contribution from charges (excluding dipoles)
is

π
κ

ϕ ϕ= −f
l2

( )el
B

2 2 1
2

(112)

where

κ π ϕ ϕ= +l4 ( )2
B 1 2 (113)

The excluded volume contribution is fex
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, 0 1

0 2 1 , 1 2 1 (114)

where vdipole−dipole, vdp,s, and vdp,el are respectively the contact
interaction energies between two dipoles (eq 8), one dipole
and solvent, and one dipole and a charge. f f l,i is given by eq 46.
Ffl,p for a solution containing two different kinds of polymers is
not known yet but expected to be negligible in comparison with
other contributions in eq 109.
Calculations based on eqs 109−114 are expected to yield

phase diagrams more pertinent to experimentally relevant
temperatures and compositions in comparison with previous
theories, as complexation is definitely unavoidable among
oppositely charged polyelectrolytes. The shift from Coulomb
interaction among charged segments (promoting polymer
dispersion) into dipolar parts (promoting phase separation) is
equivalent to an increase in the effective value of the χ
parameter, and hence the phase separation occurs even at
higher temperatures much more than predicted by say the
Voorn−Overbeek theory. Indeed, it is necessary to address all
possible associations among the various oppositely charged
polymers in accurately composing the full phase diagram for
coacervates. Only with a proper accounting of such highly
branched structures with differently decorated with charges and
dipoles, which change with temperature, added salt concen-
tration, and stoichiometry, combined with a self-consistent
computation of phase diagrams, can reasonable comparison
between experiments and theory be made. As in the even
simpler situation of associating polymers, the expected phase
diagram is cartooned in Figure 26. The construction of
coacervate phase diagram mediated by electrostatically driven
polyelectrolyte association is totally an open problem in the
current status of theory of coacervates.
Daughter Phases Have Different Charge Densities. The

omnipresent charge regularization of the effective charge of
polyelectrolyte chains accompanying changes in polyelectrolyte
concentration, temperature, etc., is expected to lead to an
additional order parameter as the effective degree of ionization,
unseen in uncharged systems.118 As an example, consider a salt-
free solution of a flexible polyelectrolyte and let the degree of
ionization change when temperature and polyelectrolyte
concentration are changed in a self-consistent manner. This
charge regularization is accounted for by changing the

temperature through the Bjerrum length lB, the hydrophobicity
parameter aχ, and the dielectric mismatch parameter δ (to
account for the local ionization equilibrium, eq 22).
The significant role played by charge regularization on phase

behavior is illustrated in Figure 27.118 In Figure 27a, the data in

blue correspond to δ = 2 with filled circles and diamonds
denoting the higher concentration ϕb phase and lower
concentration ϕa phase, respectively. The dashed, solid, and
dotted vertical lines denote the polyelectrolyte concentration in
the homogeneous phase. As the temperature is reduced, the
degree of ionization α decreases due to counterion adsorption.
Also, α is higher at lower polyelectrolyte concentrations. As a
result, in the homogeneous phase, the dependencies of α for
the dashed, solid, and dotted lines on temperature are as shown
in Figure 27b. Once the phase separation takes place, α would
increase as the polymer-poor phase becomes more and more

Figure 26. Expected phase diagram for coacervate systems based on
the role of branched polyelectrolyte complexes.

Figure 27. (a) Calculated phase diagram for a salt-free solution, with
charge regularization. (b) Degree of ionization of the daughter phases
are different. Reproduced with permission from ref 118. Copyright
2010 American Institute of Physics.
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diluted when the temperature is reduced. This is shown by the
blue diamond symbol (αa) in Figure 27b. On the other hand, α
would decrease in the polymer-rich phase as the temperature is
decreased as shown by the blue circle symbol (αb) in Figure 2b.
The corresponding results for δ = 1.5 and 1 are given in red

and black colors, respectively, in Figure 27. Clearly, as the
dielectric mismatch parameter δ is decreased, there are
increasingly more unabsorbed counterions stabilizing the
homogeneous phase due to their increased translational
entropy. If charge regularization is absent, then the coexistence
curve for δ = 1 is given in green in Figure 27a. A comparison
between the black and green curves illustrates the significant
modification in phase behavior (substantially higher critical
temperature and wider demixing region) by charge regulariza-
tion.
It therefore appears that there is an additional order

parameter (in addition to the polyelectrolyte concentration)
through α which self-consistently affects the onset of the critical
phenomenon. The difference in α between the daughter phases
(Δα) is plotted in Figure 28 as the critical temperature is
approached from below. The disparity in the charge of the
daughter phases depends on the dielectric mismatch parameter
δ (Figure 28a) and the hydrophobicity parameter aχ (Figure
28b). The corresponding difference in the polymer concen-
tration Δϕ between the polymer-poor and polymer-rich phases
is also given in Figure 28. As expected from mean field theories,
Δϕ vanishes as

ϕΔ ∼ | − |t tc
1/2

(115)

as the critical point is approached. On the other hand, whether
any critical exponent βc exists for Δα

αΔ ∼ | − |βt tc
c (116)

is unclear. A neat value for this exponent βc is difficult to
identify based on calculations performed so far. This novel
feature of additional cooperativity from charge regularization
must be general in all polyelectrolyte phase diagrams and must
be addressed in quantitative comparisons between experiments
and theory.

VII. DYNAMICS AND KINETICS IN POLYELECTROLYTE
SOLUTIONS

The electrostatic coupling between the charged macro-
molecules and their surrounding counterion clouds leads to
various transport properties of these molecules very much
unlike uncharged macromolecules. In fact, the way charged
molecules move around in solutions can be controlled
completely by the counterions, and the structural characteristics
of the macromolecule are made relatively insignificant except
for its electric charge, which in turn results in the counterion
cloud. As a result, large macromolecules can move around fast
in salt-free solutions as if they are tiny. When electrostatic
correlations between the macromolecule and its counterion
cloud is broken by adding sufficient amounts of low molecular
weight salt, the behavior of polyelectrolyte chains becomes
analogous to that of uncharged macromolecules, and their
transport properties depend significantly on their molar mass.
Here, we illustrate the dramatic properties of polyelectrolyte
dynamics only in the context of diffusion and electrophoretic
mobility of polyelectrolyte chains.

Polyelectrolytes of All Sizes Move with the Same
Speed. The electrophoretic mobility μ of a polyelectrolyte
chain in dilute solutions containing added salt at concentration
cs under a constant external electric field E, as defined through

μ=v Ep (117)

Figure 28. Differences in polymer concentration and degree of ionization approach zero differently as the critical point is approached. (a) Effect of
dielectric mismatch parameter. (b) Effect of hydrophobicity parameter. Reproduced with permission from ref 118. Copyright 2010 American
Institute of Physics.
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where vp is the velocity of the polyelectrolyte chain, is
independent of its molecular weight (proportional to the
degree of polymerization N) at all salt concentrations.33,39

μ ∼ N 0 (118)

This remarkable result is in contradiction with the standard
expectation, based on isolated ions, that

μ = QD k T/ B (119)

where Q and D are the charge and the diffusion coefficient of
the molecule. Equation 119 is obtained by balancing the
frictional force (kBT/D)vp and the electrical force QE.
The discrepancy between the observed molecular weight

independence of μ and the Einstein law of eq 119 arises from
the fact that the polyelectrolyte chain is not an independent
entity, but it is always coupled to its counterion cloud. As the
polyelectrolyte molecule moves toward its favorite electrode, its
counterion cloud (being oppositely charged) tries to drag the
chain in the opposite direction, resulting in a compromise
(Figure 29a). A self-consistent hydrodynamic treatment of the

counterion cloud dynamics along with the Zimm dynamics of
the polyelectrolyte chain results in the following prediction for
μ:82

μ κ= −DQ R k T[1 ( )]/g B (120)

Here, the second term is the contribution from the counterion
cloud. As a final result from this theory (the details are given in
the original ref 82)

μ κ= A N( ) 0
(121)

with the prefactor A(κ) decreasing with cs as cs
−1/3 for higher

salt concentrations (Figure 29b). While the molecular weight
independence of μ is in agreement with experiments, the
predicted salt concentration dependence is only in qualitative
agreement.
There still remains theoretical challenges to enable

quantitative comparison between experimental value of μ and
theory. One of the primary challenges is the treatment of
anisotropic relaxation of the counterion cloud during the
mobility of the polyelectrolyte chain.
Collective Diffusion Coefficient of Million Molecular

Weight Polymer Is Comparable to That of a Sodium Ion.
In salt-free polyelectrolyte solutions, we expect the hydro-
dynamic radius Rh of a chain to be proportional to N, and hence
the diffusion coefficient DSE according to the Stokes−Einstein
(SE) law is expected to obey

∼ ∼D
R N
1 1

h
SE

(122)

This is not observed in dynamic light scattering (DLS)
experiments on salt-free polyelectrolyte solutions.25 The
measured value, labeled as the “fast” diffusion coefficient Df,
is several orders of magnitude higher than the expected value
DSE. Remarkably, Df for polyelectrolyte concentrations C above
a threshold value is independent of C and N over several orders
of magnitude

∼D C Nf
0 0

(123)

as shown in Figure 30, where a compilation of DLS data from
several laboratories is presented.128 Even more remarkably, Df

of say 106Da sodium poly(styrenesulfonate) is only a factor of 4
smaller than the diffusion coefficient of a small ion such as K+,
Na+, Cl−, etc.; upon addition of small molecular salt, Df
decreases continuously with salt concentration cs, eventually
attaining the value of DSE appropriate for high salt
concentrations. These dramatic properties21,22 of Df must
arise from electrostatic correlations in the system.
Using the standard theory of polymer dynamics,183 the time

evolution of the local monomer density at time t, resolved at
the scattering wave vector k, is given by

ρ
ρ

∂
∂

= −Γ
t

t

( )k
k k (124)

Figure 29. (a) Counterion cloud contributes to the electrophoretic
mobility of polyelectrolytes resulting in the molecular weight
independence of the mobility in solutions. (b) Presence of salt
decreases the mobility, but still maintaining the molecular weight
independence.

Figure 30. Collected data on diffusion coefficient for the “fast”
(ordinary) mode, Df, and the “slow” (extraordinary) mode, Ds. The
fast and slow modes emerge for polymer concentrations above a
threshold value. For fully developed two-mode regime, Df is
independent of polymer concentration c and degree of polymerization
N over several orders of magnitude and is only about a factor of 4
smaller than the diffusion coefficient of a metallic ion such as Na+ in
water. Ds is smaller than Df by 3 orders of magnitude, and it depends
on c and N, suggesting formation of aggregates by similarly charged
polymers. Upon addition of electrolytes, slow mode disappears and Df
progressively becomes smaller approaching eventually the diffusion
coefficient DSE expected from the Stokes−Einstein law. Blue triangle,
green diamond, red square, black circle, and green triangle are from
Förster et al.21 for quarternized poly(2-vinylpyridine) with molecular
weight M = 1.09 × 105, 2 × 105, 7.8 × 105, 5.8 × 105, and 2.26 × 106

g/mol and degree of quarternization q = 0.65, 0.98, 0.75, 0.4, and 1.0,
respectively. Purple plus, aqua cross, purple star, and gold circle are
from Sedlak and Amis22 for sodium poly(styrenesulfonate) with M = 5
× 103, 3.82 × 104, 1.0 × 105, and 1.2 × 106 g/mol, respectively.
Reproduced with permission from ref 128. Copyright 2016 National
Academy of Sciences.
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where the rate of monomer density fluctuations is

∫
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Here η0 is the viscosity of the solution, ξh is the hydrodynamic
screening length proportional to the correlation length of
composition fluctuations, q̂ is the unit vector, and g(k) is the
scattering function per segment discussed in section V (g(k) =
I(k)/C). For salt-free conditions (see eq 67)
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+
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k
k
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(1 )c

2
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2

4
(126)

exhibiting the polyelectrolyte peak, with ξ2 ∼ C−1/2. For small
values of the scattering wave vector pertinent to DLS
experiments, eqs 125 and 126 yield

Γ = Γ + +Dk O k( )k c0
2 4

(127)

where Γ0 ∼ ξ2
−3 and Dc ∼ ξ2

−1. Dc is the usual cooperative
diffusion coefficient proportional to 1/Rh in dilute solutions and
C1/2 in semidilute solutions.
The observed Df is not simply the cooperative diffusion

coefficient. For charged macromolecules, the local motion of a
monomer is coupled to the dynamics of the counterions in the
neighborhood of the monomer. The counterion cloud
generates a local electric field El on the monomer, and as a
result, there is an additional convective contribution to the flux
ρμ0El, where μ0 is the monomer electrophoretic mobility eα/ζ0
(ζ0 is the monomer friction coefficient). It is important to
recognize that the molecular weight independence of the
electrophoretic mobility of a macromolecule must be used.
Inclusion of this coupling, to leading order in monomer

density, into the continuity equation of eq 124 gives

ρ
ρ μ

∂
∂

= −Γ − ·
t

t
z c ik E

( )
( )k p

k
k 0 (128)

Now, according to Poisson’s equation

αρ ρ· =
ϵ ϵ

+i zk E
1

( )c ck k
0

,
(129)

for salt-free solutions, where ρc is the local concentration of
counterions (of valency zc). Therefore, the time evolution of ρk
is coupled to ρc. Analogous to eq 129, the time evolution of ρc,k
can be written as

ρ
ρ
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αρ ρ
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= − ′ −
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where cc = αc/zc, and D′ and μ′ = zcD′/(kBT) are the diffusion
coefficient and electrophoretic mobility of the counterion,
respectively. Because of the coupling of ρk and ρc,k, there are
two decay rates, which we shall label as superfast and fast
modes. If there are additional charged species, there will be
additional modes.
As we anticipate that the fluctuation in the counterion

distribution would come to equilibrium more rapidly than the
macromolecule,184 we can approximate ∂ρc,k/∂t ∼ 0. This
enables an analytical expression for ∂ρk/∂t as

ρ
ρ ρ

μ α

κ
ρ

∂
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= −Γ − −
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c z e
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For small k < κ, this becomes

ρ
ρ ρ

∂
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= −Γ −
t

D kf
k

k k0
2

(132)

where the fast diffusion coefficient is given as

μ α

κ
= +

ϵ ϵ
D D

c z e
f c

p0

0
2

(133)

Noting that μ0 = eα/ζ0, κ
2 = e2αzpczc

2/(ϵ0ϵkBT), and zc = 1 for
monovalent counterions

α= +D D Df c 0 (134)

where D0 = kBT/ζ0 is the monomer diffusion coefficient. Since
Dc of a macromolecule is orders of magnitude smaller than the
monomer diffusion coefficient (if the monomer were to be
alone and not a part of the chain), the fast diffusion coefficient
is predicted as128

α≃D D N c, independent of andf 0 (135)

As the effective degree of ionization is about 0.25−0.3 due to
counterion adsorption, and taking D0 as that of a metallic ion,
the fast diffusion coefficient is about 5 × 10−6 cm2/s as seen in
Figure 30.
Upon addition of salt, the electrostatic correlation between

the monomer and counterions is broken. Now, κ2 in eq 133
increases, and as a result Df approaches Dc, leading to the limit
of the cooperative diffusion coefficient expected for uncharged
systems. These results suggest that gradients in small molecular
salt concentrations can be used to modulate the diffusion
coefficient of density waves of charged macromolecules.
For polymer concentrations higher than a threshold value, a

second branch of diffusion coefficient emerges, as seen in
Figure 30.25 This is known as the “slow mode”, and the
corresponding diffusion coefficient Ds is several orders of
magnitude smaller than Df or DSE. Ds decreases with an increase
in either C or N. This slow mode is attributed to the
spontaneous formation of aggregates due to the formation of
quadrupoles from adsorbed counterions, as discussed in section
V. The predicted concentration dependence of Rg,agg ∼ C1/6 is
in qualitative agreement with the experimental data Ds ∼ C−1/6,
as indicated in Figure 30.128 The emergence of the slow mode
in DLS and the enhanced scattering intensity at near zero
scattering angles are expected to occur simultaneously for
polyelectrolyte concentrations above a threshold value and at
low enough salt concentrations.

Interlude of Slow Mode in Phase Separation Kinetics.
The study of kinetics of liquid−liquid phase separation in
polyelectrolyte solutions remains largely as an unchartered area
of research. From the theoretical point of view, electrostatic and
topological correlations controlling the penalty to create an
interface and the Onsager coefficient describing the transport of
polyelectrolytes across chemical potential gradients need to be
addressed. From the experimental point of view, the main
challenge is to identify a convenient experimental system where
the phase separation kinetics is not too fast, and it has
minimum number of experimental variables. Nevertheless,
some preliminary experimental investigations42 suggest novel
features unseen in uncharged polymer solutions undergoing
phase separation.
Consider an aqueous solution of NaPSS (molecular weight of

110 000 g/mol) at C = 0.5 g/L, containing 0.015 M BaCl2. At
60 °C, the solution is homogeneous in the sense that there is
no macroscopic demixing. The DLS on this system exhibits two
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modes (fast and slow) as shown in Figure 31a where the
distribution function of correlation time f(τ) at different
scattering angles is given. As discussed above, the slow mode
presumably corresponds to aggregates, and the fast mode
corresponds to unaggregated chains. When this solution is
quenched to 2 °C below the cloud point temperature of 41 °C,
the time evolution of DLS data is given in Figure 31b. At 2 min
after the quench, the histogram is similar to that in the
homogeneous phase (Figure 31a) with essentially the same fast
and slow modes. Remarkably, up until 115 min, these two
modes persist, and the average decay rates of these modes
remain unchanged. While the average decay rate remains
unchanged, the population of the fast mode decreases
continuously, and the population of the slow mode increases
continuously. This suggests that the population of aggregates
increases by converting unaggregated chains into aggregates.
After 115 min, the average decay time of the slow mode shifts
to longer times, and domains of bigger sizes form as
corroborated by small-angle light scattering studies.42

These observations suggest a novel mechanism of phase
separation, where an enrichment of polymer aggregates of well-
defined size distribution occurs in the very early stage of
liquid−liquid phase separation. This first step is then followed
by a growth process in the formation of the legitimate new
phases dictated by the phase diagram. It appears that the
polymer aggregates formed in the early stage act as templating
nuclei for the latter stage. When and how the daughter phases
with their equilibrium polymer concentrations form remain as a
mystery. Understanding the mechanism of phase separation in
polyelectrolyte solutions and coacervate systems is one of the
challenging problems in polyelectrolyte physics.
Translocation of Polyelectrolytes between Compart-

ments. The transport of polyelectrolyte chains from one
region to another is a significant phenomenon in gel
electrophoresis and other separation protocols. A fundamental
understanding of this phenomenon at single molecule level has
attracted continued efforts from both experiments and theory.
The question is how a single molecule penetrates through an
entropic barrier presented by a physical constriction in the
presence of a driving force. One simple example is how a single
charged macromolecule such as ssDNA is transported across a
single nanopore in salty aqueous environments under an
external electric field.178 The pioneering work of Kasianowicz et
al.178 has opened a gateway for sensing polynucleotides in the
context of DNA sequencing.179,180 More importantly for
polymer community, single molecule electrophoresis experi-
ments can be used to gain insight into polyelectrolyte physics at
the level of single macromolecule under nonequilibrium
conditions. The experimental literature on this subject is vast,

and the interested reader should consult the references
contained in ref 181. A cartoon of the experimental setup is
given in Figure 32.182 A single protein pore (from α-hemolysin)

is inserted into a thin membrane which separates the donor
(cis) compartment and the receiver compartment (trans) with
both compartments containing an electrolyte. Under an
externally imposed voltage gradient, the electrolyte ions pass
through the pore resulting in an ionic current. When a
polyelectrolyte such as poly(styrenesulfonate) (PSS) is
dispersed in the cis, individual molecules of PSS move from
cis to trans (with positive electrode), causing temporal
blockades of the ionic current flowing through the pore, as
shown in the inset of Figure 32. Durations and depths of the
ionic current blockades are collected from the recorded ionic
current traces, and the mechanism of polymer transport is
discerned.
For the simplest situation of voltage gradient without any

other external forces acting on the polymer undergoing
translocation, substantial progress has been made in under-
standing the translocation mechanism, based on entropic
barrier for penetration of the chain into the pore, pore−
polymer electrostatic and hydrophobic interactions, and
hydrodynamics.181 The progress made so far opens up excellent
opportunities to explore the response of single macromolecules
in non equilibrium under several simultaneous force fields.
Such studies are expected to facilitate a fundamental under-
standing of how simultaneous forces interfere with each other,
either synergistically or antagonistically, in ultimately determin-

Figure 31. (a) Fast and slow modes in the homogeneous phase. (b) The slow mode templates the phase separation kinetics upon quench into
liquid−liquid phase separation region. Reproduced with permission from ref 42. Copyright 2007 American Institute of Physics.

Figure 32. Experimental setup to follow the kinetics of translocation of
a single polyelectrolyte through a nanopore using ionic current
measurements.
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ing the single macromolecule behavior in nonequilibrium
conditions.
As an example, the single molecule electrophoresis experi-

ment (Figure 32) can be conducted in the simultaneous
presence of gradients in voltage, pH, and salt concentration
across the pore and determine how these gradients affect the
translocation speed. To be specific, consider the role of gradient
in salt concentration in the cis and trans compartments on the
translation time (τpeak) of PSS at two different pH values and
fixed voltage differences.182 As shown in Figure 33a,b, a
decrease in cs,cis (salt concentration in cis) makes the
translocation speed faster, at both pH = 7.5 and 4.5. On the
other hand, as shown in Figure 33c,d, a decrease in cs,trans (salt
concentration in trans) has no effect on the translocation speed
at pH = 7.5 but makes the translocation speed slower at pH =
4.5. This is opposite to the behavior with cs,cis gradient.
Although these data in Figure 33 can be qualitatively
interpreted using the charge regularization of PSS and pH-
dependent electrostatic interaction between PSS and the
protein pore, robust quantitative theory is still unavailable.
The experimental scenario described here and its extensions,
accompanied by sound theory, are likely to offer an excellent
opportunity for formulating general rules for how large charged
macromolecules transport themselves under several non-
equilibrium force fields. This in turn would facilitate means
to deliberately navigate charged macromolecules in desirable
pathways.

VIII. CONCLUSIONS
So, what has the polyelectrolyte community learnt based on the
multitude of difficult expeditions (both experimentally and
theoretically) over the past six decades? I believe that
tremendous progress has indeed been made in understanding
many of the complex behaviors of polyelectrolytes, as
summarized in the previous sections. The polyelectrolyte
community has recognized the various fundamental concepts

Figure 33. Effect of salt concentration gradients in the donor compartment (a, b) and the receiver compartment (c, d) on the speed of translocation
at pH = 7.5 (a, c) and pH = 4.5 (b, d).

Figure 34. A biological cell is a “Coulomb soup”. Concepts based on
physics of charged macromolecules are vital in understanding the
transport of macromolecules in compartmentalized cellular environ-
ments.
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of polyelectrolyte physics such as the dominance of counterions
in almost all aspects of polyelectrolyte behavior, charge
regularization, concomitant competition between hydropho-
bicity and electrostatic interaction, key forces behind liquid−
liquid phase separation, dynamics of polyelectrolytes, and
transport kinetics across compartments. The intuition that can
readily be cultivated from these conceptual advances has been
instrumental in formulating water-based smart materials such as
hydrogels with superabsorbency of water, virus-like particles
with tunable capabilities for gene/drug delivery, etc.
Yet, we still have a long way to go in making quantitative

predictions for polyelectrolyte systems. More experimentation
is desirable in order to facilitate the validation of good theories.
Specifically, experiments and theory are needed to address the
role of nonlinear Poisson−Boltzmann effects (when the electric
fields are not sufficiently weak), the polarizability effects around
polyelectrolyte chains, the structure of water in crowded
polyelectrolyte solutions, and the role of sequences of the
charged macromolecules.
Returning to the premise of primordial form of life alluded to

in section I, I believe that the polyelectrolyte community has
gained enough understanding of fundamental forces operative
in solutions of charged macromolecules and how they couple
synergistically or antagonistically among themselves. We are
well poised to make progress in two significant directions. The
first is to implement the concepts of polyelectrolyte physics to
understand biological systems from a nanoscopic point of view.
The second is to amplify the basic concepts into making
synthetic machines reminiscent of those which must have
existed in the early form of life.
As an example of the first direction, the physics of

polyelectrolytes is central to a fundamental understanding of
how biological charged macromolecules such as DNA, RNA,
and proteins are transported from one location to another in
biological environments. A mammalian cell, cartooned in
Figure 31, is a thick “Coulomb soup”, and various charged
macromolecules must navigate through restricted spaces before
reaching their destinations to exhibit their functional properties.
These transport mechanisms and various structural reorganiza-
tions take place over a vary narrow range of temperature
(specific to a particular species). Therefore, the temperature is
not the key variable in controlling these biological processes.
Instead, the conformational entropy of polymers, electrostatic
forces which can be modulated by local gradients in salt
concentration and pH, entropy and specificity of dissociated
ions, and entropy associated with the constantly reorganizing
structure of water all contribute to the collective behavior of
biological systems. The basic concepts discussed in the
preceding sections are totally pertinent to a quantitative
description of various biologically pertinent transport processes.
In general, the biological processes as we know today are

extremely complex involving many forces acting simulta-
neously. Nevertheless, our progress made in understanding of
the physics of synthetic polyelectrolytes provides an oppor-
tunity to identify key concepts behind the complex behavior of
biological macromolecules in highly crowded Coulomb soup
environments.
Regarding the second direction we are poised to embark,

there are boundless opportunities. As an example, deliberate
preparation of long-lived metastable conformations of poly-
electrolyte complexes are excellent candidates for designing
macromolecular devices capable of storing memory. The
present time is perhaps ripe to begin to synthesize water-

based molecular engines to recognize other charged macro-
molecules and process them enzymatically using electrostatic,
conformational, van der Waals, and hydrodynamic forces.
Would these molecular engines mimic the first polymers of life
with capabilities to memorize and to reproduce themselves?
How soon can we achieve these goals? Only time will tell!
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