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Abstract: The emergence of deep-learning methods in different computer vision tasks has proved
to offer increased detection, recognition or segmentation accuracy when large annotated image
datasets are available. In the case of medical image processing and computer-aided diagnosis within
ultrasound images, where the amount of available annotated data is smaller, a natural question
arises: are deep-learning methods better than conventional machine-learning methods? How do
the conventional machine-learning methods behave in comparison with deep-learning methods
on the same dataset? Based on the study of various deep-learning architectures, a lightweight
multi-resolution Convolutional Neural Network (CNN) architecture is proposed. It is suitable for
differentiating, within ultrasound images, between the Hepatocellular Carcinoma (HCC), respectively
the cirrhotic parenchyma (PAR) on which HCC had evolved. The proposed deep-learning model
is compared with other CNN architectures that have been adapted by transfer learning for the
ultrasound binary classification task, but also with conventional machine-learning (ML) solutions
trained on textural features. The achieved results show that the deep-learning approach overcomes
classical machine-learning solutions, by providing a higher classification performance.

Keywords: image processing; Convolutional Neural Networks (CNN); pattern recognition;
ultrasound images; Hepatocellular Carcinoma (HCC); automatic diagnosis

1. Introduction

One of the most severe diseases of liver is hepatic cirrhosis that changes the appearance and
structure of the liver and blood vessels. Cirrhosis represents the basis from which HCC evolves, after a
restructuring process, resulting in dysplastic nodules, which can transform into malignant tumors.
HCC represents the most frequent malignant liver tumor, appearing in 75% of the liver cancer cases.
It is one of the most common causes of death from liver diseases reported by WHO (World Health
Organization) [1].

HCC is surrounded by cirrhotic liver tissue (parenchyma) that in some cases has a very similar
visual aspect, making HCC areas hard to recognize by the human eye. An automatic process in which

Sensors 2020, 20, 3085; doi:10.3390/s20113085 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0003-0978-7826
https://orcid.org/0000-0003-4293-922X
https://orcid.org/0000-0002-5987-9174
https://orcid.org/0000-0003-2018-4647
https://orcid.org/0000-0001-7918-1956
https://orcid.org/0000-0002-3160-5489
http://dx.doi.org/10.3390/s20113085
http://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/20/11/3085?type=check_update&version=2


Sensors 2020, 20, 3085 2 of 22

the doctor could select the region of interest, or in which regions of interest are generated automatically
by a recognition module, together with a computer-aided diagnosis tool predicting the likelihood that
an area belongs to HCC or not, would ease the medical practitioner’s work. The corresponding tool,
based on computerized, non-invasive methods, can also replace the needle biopsy, the actual golden
standard for HCC diagnosis, which is dangerous, as it could lead to the spread of the tumor inside the
human body [1].

A common method of liver examination is ultrasonography. It is highly used because it is
cheap, safe, non-invasive, and thus repeatable, suitable for patient disease monitoring. Other medical
examination techniques, such as the Computer Tomography (CT), the Magnetic Resonance Imaging
(MRI), the endoscopy or the Contrast Enhanced Ultrasonography (CEUS) are considered irradiating or
expensive.

In ultrasound images, HCC usually appears as a hyperechogenic, inhomogeneous structure, due
to the interleave of various tissue types, such as necrosis, fibrosis, active growth tissue, fatty cells [1].
As it can be noted from Figure 1, the visual aspect within ultrasound images of the PAR and HCC
presents relevant features that characterize textures, such as finesse, coarseness, smoothness, surface
granulation, randomness, irregularity.

Figure 1. (left) Ultrasound image for which the medical specialist can select a region of interest for
which the HCC/PAR confidence is needed; (right) Ground truth area—HCC area inside the large green
polygon and PAR on which it has evolved delimited by the red polygon.

The human-based analysis of the regions in the ultrasound images made in order to find
problematic areas such as HCC or PAR can be aided by an automatic recognition method, such as the
one proposed in this paper. The medical specialist could select regions of interest, as shown by the
yellow patch in Figure 1 and obtain a probability score, displayed as a color confidence map, for each
selected region. The proposed method classifies regions of interest from the ultrasound images and
can provide a confidence map over the whole ultrasonographic image.

1.1. Deep-Learning Methods in Computer Vision Applications

Deep-learning methods are successfully used in computer vision tasks, such as object recognition,
semantic segmentation of images, behavior recognition, generation of synthetic images [2,3],
writer identity detection [4], face detection and identification [5], image classification [6], image
segmentation [7], object detection [3]. For image classification, which is closely related to the subject of
this paper, among the most popular networks we can mention VGGNet [8] that is a sequential network
that contains blocks of 3×3 convolution layers in between a periodic max-pooling operation is done.
The disadvantage of this network is that it has a high computational cost. GoogleNet [9] and its variants
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like InceptionNet-v3 [10] represent a milestone in the development of CNN architectures. The original
GoogleNet contains 22 layers, so it is deeper than VGGNet, but it is also more computationally efficient.
The achievement of a reduced computational cost is due to a good local network topology obtained
by the usage of the so-called inception modules. As deeper neural networks are hard to train and
may suffer from the problem of vanishing gradients that affects convergence, ResNet [11] includes
a network topology that contains residual connections. These residual connections favor optimal
training for really deep networks without degrading. ResNet models containing 18, 34, 50, 101 and
even 152 layers have been proposed. Another approach that ensures the maximum information flow
between the layers of the network is considered in DenseNet [12]. In this configuration, all layers that
have equal feature-map sizes are directly connected with each other. To preserve the feed-forward
nature of the network, each layer obtains additional inputs from all preceding layers and forwards
its own feature maps to subsequent layers. A smaller CNN architecture, SqueezeNet [13] obtains a
competitive accuracy with respect to large size CNN, while having fewer parameters and lower model
size. The key design ideas considered by [13] are: the replacement of the 3× 3 filters with 1×1 filters,
the decrease in number of input channels to 3×3 filters and late downsample in the network so that
convolution layers have large activation maps.

1.2. Deep-Learning Methods for Medical Image Analysis

The deep-learning techniques have been adopted in the field of medical image analysis in
general [2,3,14] and for ultrasound images in particular [15], while conventional methods are also
largely used [16]. A revision of deep-learning methods for radiological applications such as image
classification, object detection or image segmentation in the X-ray images is provided by [2], while [3]
presents how the application of deep-learning in computer vision has contributed to the development
of assistive technologies with particular applications for object localization and recognition, scene
understanding, human pose estimation and tracking, action and event recognition, anticipation.

A relevant and complex approach concerning the involvement of the deep-learning techniques in
the characterization and recognition of the ultrasound images was presented in [17], where the authors
implemented a deep CNN of type Inception-ResNet-v2, pre-trained using the ImageNet dataset.
High-level features were computed based on sequences of liver B-mode ultrasound images. Then,
a Support Vector Machines (SVM) classifier was trained on these high-level features, the purpose being
to perform fatty liver recognition. A similar approach was presented in [18], to automatically diagnose
cirrhosis from ultrasound images. Here, CNN networks were used for generating potentially important
features from ultrasound images, then an SVM classifier was trained using these features, the resulting
accuracy being 96%. Another method, based on deep-learning, which performs the detection of
the cirrhosis severity grade for patients affected by chronic, B type hepatitis, within 2D shear wave
elastographic images, was described in [19]. A CNN consisting of four convolutional layers and a single
fully connected layer was adopted, the training set containing 1990 images belonging to 398 patients.
The resulted performance, measured through the Area under the Receiver Operating Characteristic
(AUC) metric, was always above 85% [19]. Another relevant approach was described in [20], where
the authors aimed to detect tumor structures from breast ultrasound images, using a CNN-based
technique, called Single Shot MultiBox Detector (SSD). The experimental dataset consisted of 579
benign and 464 malignant breast lesion cases. The proposed method provided better performance,
in terms of precision and recall, than the other existing state of the art methods.

Regarding the role of the CNN-based techniques in the analysis and recognition of other types
of medical images, an approach aiming to perform liver lesion patch-based recognition within CT
images was described in [21], where the authors trained a CNN by using image patches, which were
centered at each pixel. The patches contained both tumor as well as normal liver tissue. In [22]
the authors performed liver tumor segmentation within CT images, with the aid of a 2D CNN.
The corresponding algorithm defined a region of interest by employing a deformable registration
of a baseline scan, manual tumor delineations, as well as the automatic segmentation of the liver.
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A voxel classifier was built with the aid of a CNN. In the experimental dataset, 67 tumors of 21
patients were included. Finally, the average overlap error of this method was assessed to 16.26%.
An increased diagnostic performance concerning liver fibrosis staging was reported in [23], where the
authors implemented a Deep Convolutional Neural Network (DCNN)-based technique. Gadoxetic,
acid-enhanced, hepatobiliary phase magnetic resonance (MR) imaging was used in the experiments,
the area under the Receiver Operating Characteristic(ROC) being 85%. The DCNN technique was
also employed in [24] , for detecting, within CT images, incipient pulmonary malignant nodules.
The training dataset consisted of 62,492 regions of interest extracted from 40,772 nodules and 21,720
non-nodules, as part of the Lung Image Database Consortium (LIDC) data store. In this case,
a maximum classification accuracy of 86.4% was achieved.

1.3. Classical Machine-Learning Methods for Medical Image Analysis

Texture-based methods in combination with traditional classification techniques have been
widely employed, as well, for the purpose of automatic recognition of various affections, particularly
of the tumor structures, within medical images [16,25–27]. Thus, in [25], the Wavelet transform,
together with ANN were considered, to perform recognition of the liver tumors within ultrasound
images. The parameters of the run-length matrix, as well as the Haralick features derived from
the Gray Level Co-occurrence Matrix (GLCM) and also other gray level-based first order statistics
were employed in combination with ANN classifiers, respectively Fisher Linear Discriminants, for
performing automatic recognition of liver lesions based on ultrasound images in [26]. A more recent
approach was described in [27], where the authors performed the recognition of the liver tumors
by employing textural parameters computed from typical, as well as contrast enhanced CT images.
The authors concatenated the textural features, which resulted from the original image, respectively
from the contrast enhanced CT images acquired during the arterial and venous phases, obtaining a
multi-phase feature vector. After feature selection, a C4.5 classifier was adopted, yielding an accuracy
greater than 90%. The recently modified versions of the SVM classifier constitute a valuable alternative
for high-performance recognition through traditional classifiers. In [28] the authors proposed a new
formulation for the unconstrained convex minimization problem, in the case of the Lagrangian dual
of the lately approached Twin Support Vector Machines (TWSVM). The newly defined technique
was tested on multiple real-world datasets, including medical datasets [28] and provided a better
performance than previously existing versions of the same classifier, such as classical SVM, TWSVM
and Least-Squares TWSVM (LS-TWSVM).

However, lately, the deep-learning techniques, such as Recurrent Neural Networks (RNN),
Stacked Denoising Autoencoders (SAE), Deep Belief Networks (DBN), as well as CNN were
successfully implemented, in order to perform automatic diagnosis within medical images [29–31].
CNN have revealed, during the last decade, excellent results for image recognition, segmentation,
detection, or feature extraction. Relevant research papers demonstrate the wide application of these
networks within various types of medical images (such as X-ray, CT, MRI or histopathology images),
for the diagnosis of different medical affections [17,21–24,29].

1.4. Contributions

Even if various approaches performing the recognition of the HCC malignant tumors, or of other
significant liver affections, within ultrasound images, already exist [32,33], the deep-learning methods
and their comparison with the traditional methods have not been yet sufficiently explored in this
context. Taking into account the above described methods, one can conclude that no relevant approach
exists in order to perform automatic HCC recognition within ultrasound images, by employing a
systematic study upon the CNN architectures appropriate for this purpose, compared with the effect
of the most significant texture/feature-based classification techniques.

Thus, the contributions of this paper are as follows:
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• The proposal, development and experimentation of a multi-resolution CNN-based architecture
suitable for highly textured ultrasound liver images. The proposed model combines parallel
convolutions that capture multi-resolution features, residual connections that enable feature
sharing between layers, and atrous convolutions for spatial pyramid pooling [7] that enlarge the
field of view of the filters enabling a denser feature pool generation.

• In the context of a rich field of existing architectures used for image classification tasks,
transfer learning procedure is employed on other five architectures: VGG [8], ResNet [11],
Inception-V3 [10], SqueezeNet [13] and DenseNet [12]. A comparison of the classification
performance in terms of accuracy, sensitivity, specificity and AUC is analyzed on the evaluation
for the proposed method and the five fine-tuned architectures.

• The proposed deep-learning model is also compared with various conventional classification
models that extract textural features and perform AdaBoost, SVM, Multi-layer Perceptron (MLP)
or Random Forest (RF)-based classification. The explored textural features are (1) those derived
from the GLCM matrix of order two and three [32], as well as from other statistical texture analysis
methods applied on the original images; (2) the Shannon entropy computed after the recursive
application of the Wavelet transform; (3) the Hurst fractal coefficient [34] and (4) Local Binary
Patterns(LBP) [35].

• Two annotated ultrasound image datasets have been involved in this study. Due to medical
and practical patient diagnosis reasons, the images have been collected with two different
ultrasound devices (General Electric Logiq 9 and General Electric Logiq 7). The first dataset
contains information collected from 200 patients, while the second employs 68 cases. For each
patient at least 3 ultrasound images have been annotated by the medical specialists, so the HCC
area within the image is well marked (as shown in Figure 1 right). Extensive experiments reveal the
conclusion that deep-learning-based models overcome the classical machine-learning techniques
bringing an improvement of 17% in sensitivity and an improvement of 20% in specificity.

2. Materials

The protocol for the communication and management of medical imaging is the Digital Imaging
and Communications in Medicine (DICOM) [36]. For the ease of annotation and for further image
analysis the DICOM images considered in this research were converted to BMP and then annotated by
medical specialists using the VGG Image Annotator (VIA) tool [37,38]. The usage of two devices with
different setups for the medical ultrasound analysis procedure has generated two datasets (we name
them dataset GE7 and dataset GE9) on which the proposed method was tested. All the considered
patients were biopsied for diagnostic confirmation.

2.1. Dataset GE7

The experimental dataset GE7 includes B-mode ultrasound images that have been acquired using
a GE Logiq 7 (General Electric, USA) ultrasound machine. The parameters of the device for acquiring
the ultrasound images had always the same values: Frequency of 5.5 MHz, Gain of 78, Depth of
16.0 cm, DR (Dynamic Range) of 111. Several 200 patients were analyzed in this study for dataset
GE7. For each patient, the number of annotated ultrasound images varies from 3 up to 30. The patch
generation procedure described in Section 2.3 is used.

2.2. Dataset GE9

The second experimental dataset GE9 includes B-mode ultrasound images that have been acquired
using a GE Logiq 9 (General Electric, USA) ultrasound machine. The parameters of the device for
acquiring the ultrasound images had always the same values: Frequency of 6 MHz, Gain of 58, Depth
of 16.0 cm, DR (Dynamic Range) of 69. The ultrasound images of this dataset resulted from the
ultrasound liver analysis of 68 patients. The number of annotated images per patient varies from 3 to
35 images. The patch generation procedure described in Section 2.3 is used.
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2.3. Patch Generation Procedure

In both datasets, the HCC was marked as a polygonal area in the image, as shown in
Figure 1—right, and Figure 2—middle. For each ultrasound image, considering the marked HCC
area, rectangular image patches(regions) have been selected, by means of a controlled sliding window
procedure. Part of these patches are located inside the annotated area and they correspond to the HCC
class. The samples of the generated patches are depicted in green in Figure 2. Other patches are in the
immediate vicinity of the polygonal annotation, but outside the marked HCC area. They correspond
to the PAR samples and are shown in red in Figure 2. Cases of healthy patients were not considered
because, usually, HCC evolves on cirrhotic liver tissue, for patients already affected by cirrhosis.
The medical specialists suggested a focus on these two cases—to make the differentiation between
HCC and the cirrhotic parenchyma on which it evolved, while healthy tissues have not been included
in this study.

Figure 2. Generation of HCC and PAR patches of 56× 56 pixels by scanning the marked area and its
close exterior.

Due to the nature of the tumors, due to the small area they occupy in the ultrasound images
and in order to ensure at least one valid HCC and one valid PAR region per annotation, a size of
56× 56 pixels was selected for the regions of interest. The ultrasound image is traversed with a sliding
window of size 56× 56 pixels. If the window is inside the marked area, and its intersection with any
other generated patch is smaller than 0.1% of their union, then the window is added to the set of HCC
generated patches. If the window is outside the HCC marked area but one of its corners is on the
boundary of the marked region and its intersection with any other patch is smaller than 0.1% of its
area, we add it to the set of the PAR patches. To ensure variety and diversity in the selected image
samples a minimal intersection factor of 0.1% was considered when generating the regions of interest.

Depending on the size of the HCC annotated area and on the number of annotated images for a
patient, at least 3 HCC patches and 5 PAR patches have been generated for each patient. The selection
was validated by medical specialists.

2.4. Ground Truth Data

To proof the efficacy of the proposed approach the two datasets GE7 and GE9 were considered.
Table 1 shows the distribution of patches for each class.

Table 1. Ground truth data.

Dataset Cases Annotated Images HCC Patches PAR Patches

GE7 200 823 7930 8190
GE9 68 508 5140 5200
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For training the proposed CNN model, the train dataset was augmented by means of rotation,
zoom and reflection operations. Rotations in the range [−45◦,45◦], every 5 degrees, and zoom out/in
with a factor of 0.8 and 1.2 were applied. A validation set was used for evaluating the classification
performance during training. Table 2 shows the distribution of samples per class for training, for
validation and for testing. Example images for each class in the two datasets are shown in Figures 3–6.

Table 2. Train/test/validation set configurations.

Dataset and Class Train Train (Augmented) Test Validation

GE7 HCC 5324 53,240 1586 1020
GE7 PAR 5510 55,100 1638 1042
GE9 HCC 3312 33,120 1028 800
GE9 PAR 3360 33,600 1040 800

Figure 3. HCC patches from dataset GE7.

Figure 4. PAR patches from dataset GE7.

Figure 5. HCC patches from dataset GE9.

Figure 6. PAR patches from dataset GE9.

3. Methods

3.1. Proposed Deep-Learning Based Method

The proposed solution is envisioned for a possible computer-aided diagnosis tool, which analyzes
ultrasound images and offers the likelihood that a selected region of interest is of HCC type, or it
represents the cirrhotic liver tissue on which it had evolved.

The proposed network contains two modules of parallel multi-resolution convolutions, each
followed by a down-sampling operation, an Atrous Spatial Pyramid Pooling (ASPP) module followed
by a fully connected layer. The receptive field of the ASPP module is expended by means of multiple
dilated convolutions which have as result a dense feature map. This expansion of the receptive field is
done without loss of resolution or coverage.The proposed architecture is depicted in Figure 7.
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Figure 7. Proposed Multi-Resolution CNN.

Every convolution layer is followed by a Rectified Linear Unit (RELU) and a batch
normalization(BN) layer (which for convenience of the representation are not depicted in Figure 7).

Multi-resolution features are obtained by the parallel application of convolutional filters with the
kernel sizes in the set: W = {w1, w2, w3}, where the size of wp is 2p + 1 with p ∈ {1, 2, 3}. As shown
in Figure 7 sizes of 3× 3, 5× 5 and 7× 7 are included. Suppose we have a feature-map volume x
which is provided as input to the multi-resolution parallel convolution block with kernels in the set W.
The output of this block is a feature-map volume y obtained by the concatenation of the convolution
results y1, y2, y3 , where:

y = y1
⊕

y2
⊕

y3 (1)

and the
⊕

symbol denotes the concatenation of outputs.
The Atrous Spatial Pyramid Pooling (ASPP) [39] module is located at the deepest level in the

network. This module is applied on top of the feature pool extracted by the parallel multi-resolution
convolutions with the role of a context module tool. The ASPP structure used in the proposed network
is depicted in Figure 8.

Figure 8. ASPP [39] Module Employed in the Proposed Architecture.
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The five branches of the ASPP module receive an input feature-map volume x that represents the
multi-resolution down-sampled spatial information computed by the previous layers in the network.
The first branch of the ASPP module contains a 1× 1 convolution that has the role of adapting the
module’s input volume to its output feature-map volume. Dilated convolutions with atrous rates 2,3
and 4 are applied in parallel with an adaptive average pooling. The role of dilated convolutions is
to expand the receptive fields of the feature maps. For example, if the atrous rates are 2, 3, 4 dilated
convolutions densely sample features in the vicinity of the center pixel, as depicted in Figure 9.

Figure 9. Receptive field of classical and dilated convolutions.

The main types of layers engaged in the network topology are as follows:

• Convolutional layers that apply sliding convolutional filters with the specified stride and padding
(see Figure 9).

• Dilated convolutions that perform sliding convolutional operations with the specified stride,
padding and atrous sampling rate (see Figure 9)

• Batch normalization (BN) layers that have the role of normalizing the activations and gradients
involved in the learning process of the neural network.

• Rectified Linear Unit layers (RELU) that perform a thresholding with respect to zero on their
inputs.

• Max-pooling layers applied after each set of convolutional layers. Each pooling layer
down-samples its input, and has the role of reducing the input volume and the parameter
space for the subsequent layers.

• Residual connections are used for propagating features from previous layers to the next layers in
the network.

• Data dropout layer is used as a regularization technique for increasing the network’s
generalization capability and making it less prone to overfit the training data (see Figure 8).

• A fully connected layer combines all the features computed by the network to classify the image
patches. A SoftMax function followed by a classification layer that computes the cross-entropy
loss completes the model.

The proposed atrous rates (r) are tuned for the input volume that is received by the ASPP module.
With the used atrous rates we accommodate the size of the filter with the size of the input feature maps.
The fifth branch of the ASPP module is an adaptive average pooling used for reducing overfitting. It is
followed by a 1× 1 convolution that adapts its result to the output depth. The resulting concatenated
feature volumes are then fed to a 1× 1 convolution, followed by batch normalization and data dropout.

The number of filters for each multi-resolution layer helps controlling the size of the network’s
parameter space. In the experimental part the relation between the size of the parameter space and the
accuracy of the classification is analyzed throughout the results. The best configuration was obtained
when NF1 = NF2 = NF3 = 128.

In Figure 10 we show the variation in volume resolution all over the blocks that constitute the
proposed network configuration.
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Figure 10. Variation in volume resolution across the network.

Input images of size 56× 56 are forwarded to the first parallel multi-resolution convolution block
that concatenates the results of the three convolutions with as output a volume of size 3×NF1×56×56.
The convolutions have a padding equal to half of the kernel size, hence the output is equal to the input
resolution (56×56). The first shortcut connection of the network concatenates the input with the result
of the first parallel convolution block, hence a volume of 3×(NF1+1)×56×56 results. This volume
is input to the down-sampling layer which outputs a feature map of size 3×NF2×28×28. Next,
the second multi-resolution convolution block is applied. Its output is concatenated with the second
shortcut connection leading to a volume of 3×(NF2+NF1+1)×28×28. The second max-pooling outputs
a size equal to 3×(NF2+NF1+1)×14×14. This is provided to the ASPP module that contains 5 parallel
branches whose output is concatenated in a volume of size 5×NF3×14×14. This processing flow
ensures a large and variate feature pool of the network.

In conclusion, the key design ideas taken into account in the proposal of the solution are:

1. Inclusion of various size convolution kernels (3×3, 5×5, 7×7) that ensure the extraction of
different meaningful multi-resolution textural features from the input images (homogeneous
areas, granular areas).

2. The consideration of an Atrous Spatial Pyramid Pooling module that samples relevant features
with various densities, enriching the field of view of the multi-resolution textural features.

3. Residual connections are used to propagate the input feature maps of the current layer to its
output, hence multi-resolution feature sharing throughout the network is ensured.

3.2. Conventional Machine-Learning (ML) Methods

To reveal the subtle properties of the hepatic tissue, various conventional texture analysis methods
were taken into account and several features have been computed to be provided as input for
conventional ML algorithms such as MLP, SVM, RF and AdaBoost combined with decision trees.

The Haralick features (homogeneity, energy, entropy, correlation, contrast and variance) were
defined, based on the GLCM matrix, as described in [34]. These features can emphasize visual and
physical properties within ultrasound images, such as heterogeneity, echogenicity, gray level disorder,
gray level complexity, gray level contrast. The GLCM is defined over an image and represents the
distribution of co-occurring pixel values at a given offset. The definition of the GLCM of order n is
provided in (2). Thus, each element of this matrix stores the number of the n-tuples of pixels, placed at
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the coordinates (x1, y1), (x2, y2), . . . , (xn, yn), with the gray level values g1, g2, . . . , gn, being in a spatial
relationship defined by the displacement vectors,

−→
d .

CD(g1, g2, . . . , gn) = #{((x1, y1), (x2, y2), . . . , (xn, yn) :

I(x1, y1) = g1, I(x2, y2) = g2, . . . , I(xn, yn) = gn,

|x2 − x1| = |
−→
dx1|, |x3 − x1| = |

−→
dx2|, . . . , |xn − x1| = |

−−−→
dxn−1|,

|y2 − y1| = |
−→
dy1|, |y3 − y1| = |

−→
dy2|, . . . , |yn − y1| = |

−−−→
dyn−1|,

sgn((x2 − x1)(y2 − y1)) = sgn(
−→
dx1 ·

−→
dy1), . . . ,

sgn((xn − x1)(yn − y1)) = sgn(
−−−→
dxn−1 ·

−−−→
dyn−1))} (2)

In Equation (2), # stands for the cardinal number of the set, while I stands for the image intensity
function. The displacement vectors are provided in Equation (3):

−→
d = ((

−→
dx1,
−→
dy1), (

−→
dx2,
−→
dy2), . . . , (

−−−→
dxn−1,

−−−→
dyn−1)) (3)

In the perfomed experiments, the second and third order GLCM were computed, (n ∈ {2, 3}) [32].
For the second order GLCM, the absolute value of the corresponding displacement vector components
was considered to be equal to 1, while the directions of these vectors varied between 0◦ and 360◦, being
always a multiple of 45◦. In the case of the third order GLCM, specific orientations of the displacement
vectors were taken into account. Thus, the corresponding three pixels involved in the computation
of the third order GLCM, were either collinear, or they formed a right-angle triangle, the current
pixel being situated in the central position. In the case of the collinear pixels, the direction pairs were
(0◦,180◦), (90◦, 270◦), (45◦, 225◦), (135◦, 315◦), while in the case of the right-angle triangle, the direction
pairs were the following: (0◦,90◦), (90◦, 180◦), (180◦, 270◦), (0◦, 270◦), (45◦, 135◦),(135◦, 225◦), (225◦,
315◦), and (45◦, 315◦). The absolute values of the corresponding displacement vector components
(offsets) were either 0 or 2, in this case. Finally, the Haralick features were computed, in both cases of
second and third order GLCM matrices, as the arithmetic mean of the individual values, for each of
the GLCM matrices, which corresponded to each combination of parameters [32]. The auto-correlation
index [34] was also taken into account, as a granularity measure, while the Hurst fractal index [40]
characterized the roughness of the texture. Edge-based statistics were computed as well, such as edge
frequency, edge contrast and average edge orientation [32], aiming to reveal the complexity of each
class of tissue. The density (arithmetic mean) and frequency of the textural micro-structures, resulted
after applying the Laws’ energy transforms [40], were also included in the feature set. Multi-resolution
textural features were considered to be well, such as the Shannon entropy computed after applying the
Haar Wavelet transform recursively, twice. The low-low (ll), low-high (lh), high-low (hl) and high-high
(hh) components were first determined on the original image, then the Haar Wavelet transform was
applied again, on all these components. The Shannon entropy was determined on each component,
at the first or second level, as expressed by Equation (4).

Entropy = −
N

∑
x=1

M

∑
y=1
|I(x, y)|log2|I(x, y)| (4)

In Equation (4), M and N are the dimensions of the region of interest, while I is the image intensity
function [32,34]. All the textural features were computed on the rectangular regions of interest, with
56× 56 pixels, after the application of the median filter (for speckle noise attenuation), independently
on orientation, illumination and region of interest size.

Relevant feature selection was also performed, employing specific methods, such as
Correlation-based Feature Selection (CFS), Consistency-based Feature Subset Evaluation, Information
Gain Attribute Evaluation, respectively Gain Ratio Attribute Evaluation [41]. Only those features
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with a relevance score above the selected threshold were considered to be relevant. The final set of
relevant features resulted as a union of the relevant feature sets provided by each applied method.
These textural features were used, before and after feature selection, in combination with the following
traditional classification methods:

• Support Vector Machines (SVM)
• Multi-layer Perceptron (MLP)
• Random Forest (RF)
• AdaBoost meta-classifier combined with the C4.5 technique for decision trees [41].

The approach presented in [42] was also taken into account for comparison. Textural features
extracted from LBP were combined with GLCM features. LBP features have been introduced by [35].
To compute these features a circle of radius R is considered around each pixel. N neighboring pixels
are selected from a circle of radius R and center of coordinates xc, yc. The LBP code is obtained by a
sign function s applied to the differences between the intensity of neighbors and the intensity of the
center pixel. For each neighbor if the difference is greater than 0 a code of 1 is considered otherwise
a code equal to 0 is considered. The N codes form a number that represents the local binary pattern
associated with that pixel.

LBP(xc, yc) =
N−1

∑
p=0

s(Ip − Ic)× 2p (5)

where Ip is the intensity level of one of the N neighbors. Next, based on the generated codes the image
is divided into non-overlapping cells and a histogram of the LBP codes is computed for each cell.
The LBP histograms in combination with GLCM features were considered in the experiments, together
with traditional classifiers such as SVM and AdaBoost in conjunction with decision trees.

4. Experimental Results

For evaluation we use the indicators extracted from the confusion matrix, as well as the AUC.
We are interested in obtaining both a high sensitivity (as positive samples we consider HCC) and a
high specificity (as negative samples we consider PAR regions). Training and evaluation is done on
both datasets, GE7 and GE9.

4.1. Convolutional Neural Network (CNN) Methods

The proposed CNN model was developed in Python. During training, the parameters of the
proposed multi-resolution network are set up using a uniform distribution initialized by means of the
Glorot method [43]. The model is trained for 100 epochs with a mini-batch size of 64 image instances.
Training convergence is achieved within 100 epochs. Stochastic Gradient Descent is adopted with a
learning rate of 0.0001 and a momentum equal to 0.1. A computing framework consisting of an i7
processor, with 16 GB of memory and with a GeForce GTX 1070 GPU was used.

The influence of the number of filters in each multi-resolution convolution block and in the atrous
spatial pyramid pooling block on the accuracy of the results was investigated. Several setups were
examined as follows:

• Setup 1: for which NF2 = NF1/2, and NF3 = NF1/4. In this topology the first multi-resolution
block has a large number of channels and while advancing through the network the feature space
is decreased by the reduction in the number of filters. It can be remarked that this reduction is not
efficient for the classification task.

• Setup 2: for which NF2 = NF1 ×2, NF3 = NF2 ×4. This means that the feature volume is increased
throughout the network. This setup corresponds to an enlarged feature map as the network goes
deeper.
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• Setup 3: for which NF1 = NF2 = NF3. In this case, the number of output channels is equal between
the multi-resolution blocks, but as one can notice from Figure 10 the volume is increased through
the concatenation operations of the network.

The number of filters was varied during the experiments from 16, to 32, to 64, respectively to 128
filters. The best obtained results are shown in Table 3.

Table 3. HCC/Cirrhotic parenchyma differentiation: the performance of the proposed CNN
multi-resolution method.

Dataset Setup Accuracy Sensitivity Specificity AUC

GE7 NF1 = 128, NF2 = 64, and NF3 = 32 86.94% 91.75% 82.2% 93%
Setup 1 NF1 = 64, NF2 = 32, and NF3 = 16 84.3% 87.2% 82% 90%

NF1 = 32, NF2 = 16 and NF3 = 8 78.6% 80.5% 75.3% 87%

GE7 NF1=16, NF2=32, NF3=64 69.02% 64.58% 76.11% 76%
Setup 2 NF1=32, NF2=64, NF3=128 70.09% 67.18% 73.68% 75%

NF1=64, NF2=128, NF3=256 74.15% 71.6% 77.06% 79%

GE7 NF1= NF2 = NF3 = 32 80.33% 84.27% 72.92% 86%
Setup 3 NF1 = NF2 = NF3 = 64 88.2% 89.44% 86% 92%

NF1 = NF2 = NF3 = 128 91% 94.37% 88.38% 95%

GE9 NF1 = 128, NF2 = 64, and NF3 = 32 82.8% 84.5% 81.13% 89%
Setup 1 NF1 = 64, NF2 = 32, and NF3 = 16 80.10% 79.77% 80.46% 86%

NF1 = 32, NF2 = 16 and NF3 = 8 79.74% 79.11% 80.46% 87%

GE9 NF1=16, NF2=32, NF3=64 77.66% 76.25% 79.4% 84%
Setup 2 NF1=32, NF2=64, NF3=128 79.63% 81.16% 78.12% 85%

NF1=64, NF2=128, NF3=256 82.45% 82.48% 82.42% 90%

GE9 NF1= NF2 = NF3 = 32 76.79% 78.24% 72.58% 82%
Setup 3 NF1 = NF2 = NF3 = 64 82.63% 81.12% 80.42% 88%

NF1 = NF2 = NF3 = 128 84.84% 86.79% 82.95% 91%

It can be observed that optimal results are achieved for setup 3 with NF1 = NF2 = NF3 = 128.
For dataset GE7 the best result highlights an accuracy of 91% with an AUC of 95%, while for dataset
GE9 we obtain an accuracy of 84.84% with an AUC of 91%.

From the experiments it can be noted that the effect of varying the number of output filters of the
multi-resolution blocks has a notable effect in the performance of the network. By the analysis of setup
1 it can be noticed that a large number of filters at the first multi-resolution block for example when
NF1 = 128 followed by NF2 = 64 and NF1 = 32 provides an accuracy of 86.94% for GE7 and 82.8% for
GE9, which is acceptable. However, if the number of filters in the first layer is decreased for example
in the situations of NF1 = 64 or NF1 = 32, and this linear decrease is applied also to NF2 and NF3 then
the accuracy is diminished.

An analysis of setup 2 in which the number of filters for the first multi-resolution block is varied
from 16 to 32 and to 64, while the second multi-resolution block and the ASPP have a larger number of
filters, leads to a small accuracy with respect to setup 1. Hence, a larger number of filters for NF1 is
beneficial for accuracy.

From our experiments it results that an equal number of output filters for each multi-resolution
module and for the ASPP module, as in setup 3 with NF1 = NF2 = NF3 has the role of re-balancing the
number of output channels and provides a good boost in accuracy.

For comparing the proposed solution with other CNN-based methods applied on the same
datasets, five state of the art neural network architectures were considered in the process of transfer
learning. They were pre-trained on the ImageNet [44] dataset, hence they all have the size of the
output layer equal to 1000. They were reshaped to keep the same number of inputs but their outputs
should be equal to 2. The considered architectures and the operations made to modify these networks
to cope with the input datasets are:
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• ResNet18 [11] (18 layers with residual connections). The last fully connected layer is reinitialized
to have 512 input features and 2 output features.

• For VGGNet [8] the output of the network comes from the 6th layer of the classifier, which has
4096 input features, and its output is set to 2.

• In what regards Inceptionv3-Net [10]—it has two output layers (1) the primary output that is a
linear layer at the end of the network and (2) the auxiliary output, used as a regularizer. Both the
auxiliary classifier and the primary one is reshaped during the transfer learning procedure and
their output parameter is set to 2.

• Densenet with 121 [12] layers is used. The output layer is a linear layer with 1024 input features.
To reshape the network, we reinitialize the classifier’s linear layer output to be equal to 2.

• SqueezeNet [13] has various configurations. We have used the one provided in Pytorch, where
the output of the network comes from a 1 × 1 convolutional layer, which is the 1st layer of the
classifier. To reshape the network the Conv2d layer is reinitialized to have an output feature-map
volume of depth 2.

A batch size of 64 images and 100 epochs have been employed during the training of each
architecture, for each of the two datasets. The variation of sensitivity with respect to the specificity
was studied (see Figures 11, 12 and Table 4) and the degree of separability obtained by each method
using the AUC metric was considered.

Figure 11. GE7 ROC for CNN Methods.
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Figure 12. GE9 ROC for CNN Methods.

In the following, the results of the proposed solution are compared with the ones obtained by
transfer learning.

Table 4. Results obtained using transfer learning.

Dataset Method Accuracy Sensitivity Specificity AUC

VGGNet [8] 79.46% 77.21% 78.8% 84%
Ge7 ResNet [11] 79.34% 78.66% 81.10% 85%

InceptionNet [10] 82% 84.3% 80% 89%
DenseNet [12] 79.46% 79.79% 79.17% 87%
SqueezeNet [13] 79.53% 83.24% 76.77% 86%
Proposed method 91% 94.37% 88.38% 95%

VGGNet [8] 76.38% 78.21% 74.8% 83%
Ge9 ResNet [11] 75.26% 78.11% 72.37% 82%

InceptionNet [10] 80.39% 81.63% 79% 86%
DenseNet [12] 75.44% 74.24% 77.15% 83%
SqueezeNet [13] 74.32% 75.22% 73.22% 82%
Proposed method 84.84% 86.79% 82.95% 91%

It can be noticed from Table 4 that the best performing fine-tuned networks, in terms of accuracy
and AUC are InceptionNet [10] and Densenet [12] due to their inception-like modules and maximum
information flow obtained in Densenet by multiple forward layer connections.

4.2. Conventional Texture-Based Classifiers

To provide a detailed comparison between the deep-learning approach and classical ML classifiers
trained using textural features the following methods provided by the Weka Library[41] were included
in the experiments:

• The John Platt’s Sequential Minimal Optimization (SMO), which implements SVM, the input
data being normalized, the best results being achieved in the case of the polynomial kernel of 1st
degree;

• The AdaBoostM1 meta-classifier, in combination with the J48 technique, the Weka equivalent
of C4.5, where the number of weak learners was varied between 10 and 1000, until the best
performance was achieved (in our cases for 100 weak learners).
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• The RF classifier, where the value of the number of trees parameter was varied between 10 and
1000, until the best performance was achieved (in this study for 100 trees).

• The MLP classifier has been adopted, as well. By varying the number and structure of the hidden
layers the best architecture for this classifier was targeted. The following topologies were taken
into account for this purpose: one, two or three hidden layers, each of them with a, a/2 or a/3
number of nodes, where a = (number of input features + number of classes)/2. For the MLP
classifier, the learning rate was 0.2, the value of α parameter was fixed to 0.8 and the training time
was tuned to 500 epochs, for achieving both high speed and high accuracy of the learning process.

Several 47 textural features were determined on the considered regions of interest, using our
own Visual C++ software modules, as described within Section 3.2, their values being provided at
the inputs of the above mentioned traditional classifiers, before and after relevant feature selection.
During the classification performance assessment, 80% of the data was included in the training set,
while 20% of the data constituted the test set.

Relevant feature selection was employed in these experiments. The following methods were
taken into account:

1. Correlation-based Feature Selection (CFS) in combination with genetic search, taking into account
20 generations;

2. Consistency-based Feature Subset Evaluation in combination with genetic search, considering 20
generations.

3. Information Gain Attribute Evaluation in combination with the Ranker method;
4. Gain Ratio Attribute Evaluation in combination with the Ranker method.

For the first two methods, which performed feature subset assessment, all the features belonging
to the best resulted subset, with the highest merit, were included in the relevant feature set. For the last
two methods, as they performed the assessment of individual attributes, only those textural features
which had a significant score, above 0.3, were considered to be being relevant. The union of the
relevant textural features provided by all these methods was finally taken into account.

Tables 5 and 6 present the classification performance parameters that resulted before and after
feature selection among various potentially relevant textural features and include a comparison with
the deep-learning-based model.

Table 5. HCC/PAR differentiation for dataset GE7: the performance of the traditional classifiers before
and after feature selection.

Dataset Method Accuracy Sensitivity Specificity AUC

Before feature selection
SMO (poly 1) 68.5% 77% 60% 68.5%

GE7 MLP 52.75% 57.5% 48% 55.5%
RF 62.5% 75% 49.5% 60.9%
AdaBoost + J48 60.75% 68% 53.5% 57.8%

After feature selection
SMO (poly 1) 68.75% 77% 60% 68.5%

GE7 MLP 57% 20% 94% 46%
RF 59% 72% 46% 60.7%
AdaBoost + J48 63.75% 78% 49.5% 68%

No feature selection
GE7 AdaBoost + GLCM + LBP [42] 69.5% 75% 64% 73.5%

SVM + GLCM + LBP [42] 64.5% 64% 65% 69%

GE7 Proposed CNN 91% 94.37% 88.38% 95%
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Table 6. HCC/PAR differentiation for dataset GE9: the performance of the traditional classifiers before
and after feature selection.

Dataset Method Accuracy Sensitivity Specificity AUC

Before feature selection
SMO (poly 1) 62.5% 72.2% 52.8% 62.5%

GE9 MLP 58.2% 76% 40.4% 59.8%
RF 58.55% 62.7% 54.4% 63%
AdaBoost + J48 55.2% 49.8% 60.6% 60.3%

After feature selection
SMO (poly 1) 63.86% 73.1% 54.7% 63.9%

GE9 MLP 58.99% 70.7% 47.4% 61.5%
RF 56.93% 52.4% 61.5% 61.7%
AdaBoost + J48 56.93% 52.4% 61.5% 61.7%

No feature selection
GE9 AdaBoost + GLCM + LBP [42] 66% 67% 65.7% 72%

SVM + GLCM + LBP [42] 65% 61.5% 69% 71%

GE9 Proposed CNN 84.84% 86.79% 82.95% 91%

The textural features were extracted in a similar manner with the previous approaches [32].
All these experiments were performed on a computer with an i7 Intel core processor and 8 GB of
Random Access Memory (RAM). The approach presented in [42] that computes LBP and GLCM
statistics, respectively trains SVM and AdaBoost classifiers on the same dataset was also considered.

In both cases, among the relevant textural features that have been selected, one can remark the
homogeneity, energy, entropy, correlation, contrast, variance, derived from the second and third order
GLCM matrices, the auto-correlation index, the Hurst fractal index, the Shannon entropy resulted after
applying the Wavelet transform recursively, at the first level, as well as at the second level, on all the
components, respectively the features resulted after the application of the Laws filters, corresponding
to various types of micro-structures, such as levels, spots, waves and ripples. All these features
emphasize the heterogeneous, complex, chaotic character of the HCC tissue, respectively differences in
granularity between the HCC malignant tumor and the cirrhotic liver tissue on which it had evolved.
It can be remarked that the classification performance increases after the feature selection process,
in most of the cases. Thus, the best accuracy (recognition rate) was obtained, in both cases, after
feature selection, for the SMO classifier with a polynomial kernel of first degree, the best sensitivity
resulted, in the first case, for the SMO classifier, before and after feature selection, while in the second
case, the best sensitivity was achieved for the MLP classifier after feature selection; the best specificity
resulted, in the first case, for the MLP classifier after feature selection, while in the second case the best
sensitivity resulted for both the RF classifier and the AdaBoost meta-classifier combined with the J48
method of decision trees, after feature selection; the highest AUC was obtained, in the first case for
the SMO classifier that employed a polynomial kernel of first degree, before, as well as after feature
selection, while in the second case, the highest AUC value resulted for the SMO classifier, after the
feature selection process. In the case of the combination of LBP and GLCM, the best configuration with
respect to accuracy is attained with AdaBoost classifiers.

5. Discussions

Concerning the results, both a high sensitivity and a high specificity were targeted because for
the medical specialist both are important. For each of the presented methods the cases of both high
sensitivity and specificity are shown in the results Tables 4–6. It can be noticed that the proposed
deep-learning-based model achieves the most relevant results (accuracy, sensitivity and AUC greater
than 90%). A specificity above 88% was also obtained, which is meaningful for avoiding a false
diagnosis. An accuracy comparison, taking into account all the approached methods, is depicted in
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Figure 13 for dataset GE7 and in Figure 14 for dataset GE9. It can be noticed again that the performance
of the deep-learning methods overcame that of the traditional classification approaches and among the
deep-learning architectures, the proposed deep-learning-based solution led to the best results.

Thus, it can be concluded that the performance of the newly developed deep-learning model is
comparable with the state of the art results, detailed in section 1, regarding all the parameters (accuracy,
sensitivity, specificity and AUC) obtained for the best configuration.

Figure 13. Accuracy comparison among various approaches for classifying hepatocellular carcinoma
vs cirrhotic parenchyma in dataset GE7.

Figure 14. Accuracy comparison among various approaches for classifying hepatocellular carcinoma
vs cirrhotic parenchyma in dataset GE9.

On a large scale, in the context of a medical diagnosis framework, the proposed model can be
used for providing a visual trigger for the medical specialist. As depicted in Figure 15, being given an
input ultrasound image the medical specialist could select the interest region (marked with yellow)
and the proposed method provides a confidence map for that region and its surroundings. Thus,
in Figure 15 a high probability of containing a HCC patch is depicted with red and a high probability
of PAR is depicted with green.

Experiments with regions that are fully contained in a large HCC area or in a large PAR area within
the ultrasound image were performed. By large area it is understood that the polygonal annotation of
HCC, performed by the medical specialist, has an area about 3 times larger than the size of the patches
on which the model was trained (56 × 56 pixels). The model correctly identifies 94% of the HCC
patches and 88% of the PAR patches, as it results from Table 3. Experiments with patches which are
on the border were also performed. The border contains diffuse liver tissue that marks the transition
between the HCC and PAR areas, which are very difficult to classify—that is they contain both HCC
areas and PAR patches. For these situations, the model highly favors the class that has a larger area in
the selection patch. As a future improvement concerning these patches, a pixel-based segmentation
could be approached.
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Figure 15. Input image(left), ground truth with HCC area enclosed in yellow polygon (middle),
predicted confidence map in which HCC likelihood of a patch is marked in red and the PAR high
confidence is marked in green

6. Conclusions

A deep-learning-based solution that achieves results comparable to the state of the art methods
for the problem of differentiating between HCC and the cirrhotic liver tissue areas using image
processing and classification techniques applied to ultrasound images was designed, implemented and
experimented. The topology of the proposed deep-learning model considers the benefits of state of the
art solutions for CNN-based image classification and combines their architectural particularities in a
model suitable for highly textured ultrasound images of liver. The proposed CNN model combines
parallel convolutions that capture multi-resolution textural features, residual connections that enable
feature sharing between layers, and atrous convolutions for spatial pyramid pooling and context
information generation. Extensive experiments compare the performance of the proposed method
with other CNN-based image classification methods and also with conventional machine-learning
techniques applied on relevant textural features extracted from ultrasound images and prove the
efficiency of the proposed solution. The obtained results are highly valuable from the point of view
of the medical specialist, as the final objective, in this case, is that of determining the presence or
absence of the HCC tumor for patients suffering from advanced cirrhosis, hence providing a visual
trigger for the medical expert that analyzes the ultrasound images. As future work we aim to enhance
the experimental dataset by collecting more relevant images including benign liver tumors as well,
respectively to find appropriate techniques in order to combine the images acquired using different
ultrasound machines, under different settings.
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ANN Artificial Neural Networks
ASPP Atrous Spatial Pyramid Pooling
AUC Area Under the Curve
BN Batch Normalization
CFS Correlation-based Feature Selection
CNN Convolutional Neural Network(s)
conv. convolution
DICOM Digital Imaging and Communications in Medicine
GLCM Gray Level Co-occurrence Matrix
HCC Hepatocellular Carcinoma
LBP Local Binary Patterns
ML Machine Learning
MLP Multi-layer Perceptron
MP Max Pooling
PAR cirrhotic parenchyma
RF Random Forest
SMO Sequential Minimal Optimization
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