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Abstract

Objectives

Ground-glass opacity (GGO)—a hazy, gray appearing density on computed tomography

(CT) of lungs—is one of the hallmark features of SARS-CoV-2 in COVID-19 patients. This

AI-driven study is focused on segmentation, morphology, and distribution patterns of

GGOs.

Method

We use an AI-driven unsupervised machine learning approach called PointNet++ to detect

and quantify GGOs in CT scans of COVID-19 patients and to assess the severity of the dis-

ease. We have conducted our study on the “MosMedData”, which contains CT lung scans

of 1110 patients with or without COVID-19 infections. We quantify the morphologies of

GGOs using Minkowski tensors and compute the abnormality score of individual regions of

segmented lung and GGOs.

Results

PointNet++ detects GGOs with the highest evaluation accuracy (98%), average class accu-

racy (95%), and intersection over union (92%) using only a fraction of 3D data. On average,

the shapes of GGOs in the COVID-19 datasets deviate from sphericity by 15% and anisotro-

pies in GGOs are dominated by dipole and hexapole components. These anisotropies may

help to quantitatively delineate GGOs of COVID-19 from other lung diseases.
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Conclusion

The PointNet++ and the Minkowski tensor based morphological approach together with

abnormality analysis will provide radiologists and clinicians with a valuable set of tools when

interpreting CT lung scans of COVID-19 patients. Implementation would be particularly use-

ful in countries severely devastated by COVID-19 such as India, where the number of cases

has outstripped available resources creating delays or even breakdowns in patient care.

This AI-driven approach synthesizes both the unique GGO distribution pattern and severity

of the disease to allow for more efficient diagnosis, triaging and conservation of limited

resources.

§1 Introduction

The COVID-19 pandemic has overwhelmed the world. It has infected over 342 million people

and killed over 5.5 million people at the time of writing this paper (source: https://coronavirus.

jhu.edu/map.html). The world economy has experienced shutdowns in response to the health

crisis. This highly contagious disease, caused by severe acute respiratory syndrome coronavirus

2 (SARS-CoV-2), mainly affects the human respiratory system [1]. The clinical symptoms of

the disease range from asymptomatic infection to coughing, body aches, fatigue, fever, short-

ness of breath, vomiting, loss of smell and taste, and, in severe cases, respiratory failure and

death [2]. COVID-19 has a higher incidence among males than females. Older people (> 60

years) with underlying conditions such as obesity, hypertension, deficient immune system,

and heart disease are at increased risk for developing severe illness [3].

Early detection and quantification of COVID-19 are direly needed to reduce the spread and

mitigation of the disease. Two commonly used diagnostic and assessment tests are the reverse

transcriptase-polymerase chain reaction (RT-PCR) and imaging testing such as chest radio-

graph and computed tomography (CT) [4]. The RT-PCR testing has been below par so far for

two reasons: long processing time and poor sensitivity resulting in false negatives. The

RT-PCR results depend critically on the rate of viral expression at the time of specimen

collection.

The multinational Fleischner society emphasizes the importance of chest CT and chest

radiographs in detecting and managing COVID-19 based on patient symptoms, pre-test prob-

ability, risk factors, and available resources [5]. Typical imaging findings of COVID-19 include

ground glass opacities (GGO) in a bilateral and peripheral distribution or multifocal round

GGOs [6]. This can occur with or without interlobular septal thickening and intralobular

lines, commonly referred to as a crazy-paving pattern [7]. Features of organizing pneumonia

can also be seen later in the disease process. The disease manifestation in CT scans depends on

when the scans are taken. Chest CTs may look normal at the onset of the disease and GGO-

related features tend to peak 9–13 days after the onset of the disease. CT can be used to deter-

mine the severity of the disease, which can help triage resources from patients with mild symp-

toms to those with severe symptoms. CT is also helpful in identifying asymptomatic patients in

communities with widespread transmission of COVID-19.

In countries overrun by the pandemic, rapid and accurate detection of GGOs to diagnose

and triage patients with COVID-19 can help improve efficiency and conserve resources. Since

the volume of exams can be overwhelming for radiologists, several computational groups

around the world have resorted to using machine learning (ML) to detect GGOs on CT exams.
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As described in the next section, most of the work is based on supervised deep learning tech-

niques in segmenting tumors in medical images. Our approach to GGO analysis is different

and has four distinguishing features:

• We combine an unsupervised computer vision approach with convex hull and convex points

algorithms to segment and preserve the actual structure of the lung.

• To the best of our knowledge, we are the first group to use PointNet++ architecture for 3D

visualization, segmentation, classification, and pattern analysis of GGOs.

• We make abnormality predictions using a deep network and Cox proportional-hazards

model using lung CT images of COVID-19 patients.

• We quantify the shapes and sizes of GGOs using Minkowski tensors to understand the mor-

phological variations of GGOs within the COVID-19 cohort.

The paper is organized as follows: In the next section, we briefly review the literature on the

segmentation of GGOs and lungs on chest CT exams of COVID-19 patients using deep learn-

ing approaches. In section 3, we describe the data resource and our approach to segmentation

of lungs and GGOs. In section 4, we present results on detection, segmentation, abnormality

predictions, and shape and size analyses of GGOs. Section 5 contains conclusions.

§2 Related work

Rapid and accurate segmentation of CT scans to assess the severity of the disease in COVID-

19 patients presents several challenges for ML methods: blurring due to low contrast in intensi-

ties of infected and normal tissues, significant variations in infection features, and insufficient

training data. In CT scans of COVID-19 patients, GGOs appear at the periphery of both lungs.

The pixel intensities of GGOs and soft tissue are nearly the same, which makes it difficult for

non-clinicians to delineate GGOs and soft tissue regions. Various groups have proposed con-

ventional and advanced ML approaches to segment the lung regions. In [8], a Convolutional

Neural Network (CNN) Mask R-CNN approach is combined with Bayes, Support Vectors

Machine (SVM), K-means, and Gaussian Mixture Models (GMMs) to segment lungs in CT

scans. This combined supervised and unsupervised ML approach has an accuracy of

97.68 ± 3.42% and an average runtime of 11.2 seconds for lung segmentation. The results are

not surprising because the images are CT scans of healthy patients and therefore not too com-

plicated for segmentation. In [9], the authors utilized a Generative Adversarial Network

(GAN) for lung segmentation in CT images. Note that GAN is commonly used for data aug-

mentation and synthesis. The images presented in [9] are only from healthy lung scans. There

are no signs of infections on those lung scans. Infected lung scans contain diffused regions,

which are much harder to segment by ML algorithms. In [10], a random walker algorithm is

used for lung segmentation. In this approach, a gray value is randomly sampled, and the

GMM is used to compute the clustering probability. Subsequently, a random walker map is

constructed by combining the clustering result with the spatial distance to compute new edge

weights. The authors of [10] tested their methodology on 65 CT scans and reported 97% to

99% accuracy for two different datasets. A CNN-based architecture was proposed for lung seg-

mentation in [11]. The authors reported a 98.5% dice coefficient value for this study. Recently,

the Inf-Net architecture consisting of multiple convolutional, up-sampling, and down-sam-

pling layers was developed for lung segmentation and applied to datasets of COVID-19

patients [12]. The results for GGO segmentation do not match very well with the ground

truth, which indicates that this approach requires further improvements and more training

data.
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Table 1 summarizes ML studies of lung segmentation in CT scans of healthy and COVID-

19 patients.

§3 Materials and methods

We have conducted our study mainly on the “MosMedData: Chest CT Scans with COVID-19

Related Findings dataset (URL: https://mosmed.ai/datasets/covid19_1110), which is freely

available for the purpose of research. The dataset contains CT lung scans of 1110 patients with

or without COVID-19 infections. The images were acquired between March 1st, 2020 and

April 25th, 2020, and are maintained by medical hospitals in Moscow, Russia. The dataset also

contains 50 labeled images of GGOs and their consolidations. The CT images in the dataset

come from 42% male, 56% female, and 2% other categories of patients. We also evaluated the

performance of our trained model on the datasets mentioned in the literature [22–24].

§3.1 Segmentation of GGOs in lungs

Currently, there are only a few labeled data sets of CT lung scans of COVID-19 patients. There-

fore, supervised deep learning (DL) approaches such as Convolutional Neural Network

(CNN) or Recurrent Neural Network (RNN) cannot handle the complexity of the raw 3D data

for lungs and GGOs in CT scans. We have circumvented this problem by using an unsuper-

vised DL approach to segment GGOs in unlabeled MosMedData. For algorithmic processing,

we extract 2D slices from 3D data while retaining the ability to reconstruct the 3D volume

whenever required. Our 3D lung scans are available in Neuroimaging Informatics Technology

Initiative (NIfTI) format. We applied the correct windowing filters to retain the regions of

interest (ROIs), i.e., whole lung regions and GGOs. We use image processing operations to

segment CT images irrespective of how they are coded for healthy and diseased cases. To do

this effectively, we first remove skeletal and other background objects from an image slice

using a simple thresholding algorithm (see S1 File) with the minimum and maximum values

of the image intensity set between 117 and 255, respectively. Next, the resulting image is fed to

a marker function which separates the lung from other background objects using morphologi-

cal operations such as dilation and erosion (see S1 File). The dilation operation makes the lung

regions more prominent by filling any small gaps, and the erosion operation removes any

unnecessary objects. Lastly, we apply a structuring element operation to fill any gaps missed by

the dilation operation (see S1 File). The output is a binary image with ‘1’ representing the lung

regions and ‘0’ representing the background.

Next, we use unsupervised approaches to segment lung and GGOs. Fig 7 (see S1 File) (top

panel) shows healthy and COVID-19 infected lung images. The diffused GGO region is inside

Table 1. Summary of existing studies.

Objectives Data Method Results Reference(s)
GGOs segmentation or detection Non-COVID-19 CT Level Set Segmentation accuracy not reported [13]

k-Nearest Neighbor 3.70% Mean error [14]

COVID-19 CT Manual approach ~36% Error rate [15]

GGOs detected manually [16]

MSD-Net 74.22% Dice similarity (DS) [17]

DASC-Net 76.33% DS [18]

Risk Prediction COVID-19 Clinical data Neural Network 77.6% accuracy [19]

97% Area under the curve [20]

Point cloud and PointNet/PointNet++ Non-COVID-19 data GRNet 59.1% mAP@0.25 and 39.1% mAP @0.5 on ScanNetV2 dataset [21]

https://doi.org/10.1371/journal.pone.0263916.t001
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the red square. An expanded view of the GGO region is shown in Fig 7 (see S1 File) (bottom

panel). The binary masks generated for lung segmentation misses GGO regions. Hence, we

applied a convex hull algorithm (see S1 File) to preserve the actual anatomical structure of the

lungs. The convex hull algorithm detects convex points around the outer surface of both lungs.

The inner surface of the lungs was left untouched.

Fig 1 shows the workflow for lung segmentation. The original image (Fig 1A) and its binary

mask leave an incomplete structure of the lung because the pixel intensities of GGO and soft

tissue regions are very similar to each other and hard to delineate. Moreover, some parts of the

lung are missing after masking. We apply the convex hull algorithm (see S1 File) to address

these problems caused by masking. The convex hull detection results are shown in Fig 1C. The

red dots around the edges of both lungs represent convex points. Next, we computed pairwise

Euclidean distances and drew a green line if any pairwise distance was less than 80 pixels (this

value may vary with the dataset). We connected the missing GGO regions from the segmented

lung images in such a way that the original lung structure was restored (Fig 1D and 1E).

Finally, we converted the binary mask into an RGB mask using bitwise operation between

binary masks and original images.

To segment GGOs, we segregated individual clusters of RGB lung masks using the K-

means algorithm. The GGOs were assigned to the cluster 1, lungs without GGOs to cluster

2, and the background corresponding to pixel values zeros to cluster 3. We applied con-

nected component algorithms to remove unwanted small objects from the final results. The

GGO detection results marked with red color are shown in the supplementary material, see

Fig 8 in S1 File.

§4 Results

We have used AI approaches and tensor analysis to characterize GGOs segmented from

images in MosMedData. This section describes the use of PointNet++ for 3D visualization,

classification, segmentation, and spatial distribution of GGOs. Next, we discuss our model for

abnormality assessment and predictions based on the PointNet++ analysis. Lastly, we discuss

how GGO shapes and sizes are quantified with the Minkowski tensor approach.

§4.1 Point cloud and PointNet++ for pattern analysis of GGO distribution

A point cloud is a set of geometric data points in which each point represents a 3D centroid in

Cartesian coordinates [25–27]. The PointNet and PointNet++, developed by the Stanford group

Fig 1. Shows the workflow of lung segmentation: In (a) we show an original image of lung CT scan, and (b) shows a binary mask of the original image. Since the pixel

intensities of GGO and bone regions are similar to each other, the binary mask shows an incomplete structure of the lung. Some parts of the lungs are missing. To restore

the missing parts, we applied the convex hull algorithm to the binary mask. The convex hull algorithm detects convex points [red dots in Fig 1C], and we compute pairwise

Euclidean distances to connect nearest-neighbor points by a green line if the distance between them is less than 80 pixels [Fig 1C]. Fig 1D and 1E show the restored mask

and the corresponding RGB image, respectively.

https://doi.org/10.1371/journal.pone.0263916.g001
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[28–30], use point cloud data as input to segment and classify 3D objects in a much more effi-

cient way with less memory overhead than pixel or voxel-based methods such as CNN.

PointNet or PointNet++ has rarely been used for medical image analysis. To the best of our

knowledge, we are the first group to use the PointNet++ architecture for 3D visualization, seg-

mentation, classification, and pattern analysis of GGOs. The main challenge in applying Point-

Net++ to CT scans of COVID-19 patients is the data conversion from images to the point

cloud representation and the training of PointNet++. These challenges are addressed by devel-

oping ML algorithms, which convert segmented lung images (described in section 3.1) to

Hounsfield units (HU) and then to point cloud. They respect the permutation invariance of

the input points and are more robust with respect to input perturbations.

We used the segmented lungs and GGOs as the main data points. We selected 16 slices

from sets of 25 or more slices and kept those representing the full lung and removed others

containing just lungs or soft tissue parts. Incidentally, from the algorithmic point of view,

there are no restrictions on the number of slices one can include in the point cloud representa-

tion. We computed centroid points using the HU data values. Fig 2 shows the workflow dia-

gram of the point cloud and PointNet++ for pattern analysis of GGO distribution.

The sixteen slices we chose generated close to 800,000 geometric data points. We reduced

the number of data points by down-sampling and grouping centroid points to represent the

local neighborhood around each point. In this way, we reduced the number of points in point

clouds to 2048 without affecting the properties of point clouds or the actual structure of lung

images. Next, we trained the PointNet++. As shown in Fig 2, the PointNet++ had a multiple

set of abstraction layers forming a hierarchical feature learning architecture [28, 29], which

merged local and global features to get the score of individual data points and used two fully

connected layers to extract global features for classification.

The training and testing curves for PointNet++ are shown in Fig 3 and the performance

of PointNet++ in Table 2. The evaluation accuracy of PointNet++ is 97.64% and its evalua-

tion intersection over union is 92.20%. The results of PointNet++ are displayed in Fig 4,

where cyan color bubbles represent lung and green color bubbles represent GGOs. These

3D results are constructed with sixteen slices. The 3D renditions can be rotated in any

direction to view the distribution pattern of GGOs over the entire stack (see the movie in

the supplementary material).

§4.2 Automated abnormality classification

Abnormality score classification is a vital part of self-interpretable AI and anomaly detection

[31]. We computed the abnormality of individual regions of the segmented lung and GGOs

(described in section 3.1) using a CNN network presented in Fig 5. This network is the same

as VGG-16 except for the first four convolution layers which were reduced to two. These archi-

tectural changes achieved better performance. The first four convolution layers of the VGG-16

network accept images of size 224 x 224 pixels and 112 x 112pixels. Our input data size is 512 x

512pixels. To accommodate our images into VGG-16, we had to resize the image. But resizing

large images into smaller sizes at the initial stage has a chance of information loss. Hence, we

have replaced the four convolution layers with two layers. Accordingly, we have changed the

kernel size and max-pooling operations. Moreover, in the VGG-16 network, the final layer is

the fully connected layer. In our case, the final layer is the Cox layer, which computes abnor-

mality scores. If we use exactly the VGG-16 network, we will not be able to compute abnormal-

ity scores. The CNN network is comprised of multiple convolutions, max-pooling, and dense

layers at the end of the network. Rectified linear units were used after each convolution layer,

and an adaptive learning technique with log-likelihood loss functions was used for the training
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of the network. The dropout was set at 0.5, the initial learning rate to 0.001, and the model was

trained up to 60 epochs.

The output of the last dense layer was fed to the Cox proportional hazard model (see S1

File) [32, 33]. This regression model is generally used for computing abnormality scores and

survival analysis. The model computed scores of individual regions of segmented lung and

GGOs. Based on the values of the Cox model, low-abnormality and high-abnormality regions

were determined. The regions which belong to a healthy lung or background were considered

low abnormality regions. The regions containing GGOs or some other malignant signatures

like a tumor nodule were deemed high-abnormality regions. Fig 5A shows the CNN architec-

ture for automated abnormality classification, and the workflow diagram of the methodology

is shown in Fig 5B. The original image was fed to a CNN and then the Cox model was used to

construct the abnormality heatmap. Low and high abnormality regions are colored black and

red, respectively. Fig 9 in S1 File shows regions of abnormality in many CT images.

Fig 2. Shows the workflow diagram of the point cloud and PointNet++ for pattern analysis of GGO distribution. The PointNet++ architecture used in this study is the

same as the original architecture in [28 and 29]. The data preparation pipeline is new, which we developed for generating point clouds from 3D lung CT scans. We stacked

all segmented lung images to construct a 3D image and used sampling and grouping to select 2048 points for point clouds. We fed those points to the PointNet+

+ architecture, which was constructed with a multiple set of abstraction layers. Each set abstraction layer consisted of a sampling layer, grouping layer, and PointNet [28].

Multiple set abstraction layers formed a hierarchical feature learning architecture, which was divided into two parts: Segmentation and classification. For data

segmentation, we merged local and global features to get the score of individual data points. For classification, global features were fed to two fully connected (FC) layers.

MLP—Multilayer Perceptron.

https://doi.org/10.1371/journal.pone.0263916.g002
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§4.3 Shape analysis of GGOs

GGOs are highly anisotropic objects. Scalar quantities such as volume and surface area cannot

capture anisotropic features of GGOs. Therefore, we use Minkowski tensors to characterize

the shapes of GGOs [34, 35]. Minkowski tensors are based on the mathematical foundations of

integral and stochastic geometry. A simple example of shape representation by a tensor is the

moment of inertia of a rotating body about an axis. Generalizing the concept of volume, sur-

face area and local curvatures, Minkowski tensors quantify the morphologies of anisotropic

objects in terms of shape indices. Minkowski functionals are rank-2 tensors and have four

independent real-valued components in d = 2 spatial dimensions and six in d = 3 dimensions.

For a three-dimensional object K with the surface @K, the six tensor components are given by,

W2;0

0
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r � rdV ;W2;0

1
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1
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3

Z

H rð Þn� ndA

Fig 3. Shows the PointNet++ training and testing curves. Training and testing accuracies increase with increasing

wall time and concomitantly the loss decreases with increasing wall time. This is an ideal behavior of a properly trained

model.

https://doi.org/10.1371/journal.pone.0263916.g003

Table 2. Performance results of PointNet++.

Evaluation Mean Loss 0.0613 ± 0.0477

Evaluation Accuracy 0.9764 ± 0.0210

Evaluation Average Class Accuracy 0.9517 ± 0.04751

Mean Intersection over Union (MIoU) 0.9220 ± 0.05630

https://doi.org/10.1371/journal.pone.0263916.t002
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where H(r) = (κ1 + κ2)/ 2 and G(r) = (κ1 κ2) are the mean and Gaussian curvatures, n(r) is the

normal vector of @K at r, and� denotes the tensor product (a� a)ij = aiaj.

Fig 4. Final results after training the PointNet++ using point cloud data are shown here. The 3D images show different regions from different angles. Cyan color

points/bubbles represent non-GGO regions and green color points/bubbles represent GGO regions.

https://doi.org/10.1371/journal.pone.0263916.g004

Fig 5. (a) The architecture of the CNN for abnormality prediction. We used the segmented lungs and GGOs as input images (described in section 3.1). (b)

Workflow diagram for abnormality prediction. We used the CNN architecture mentioned in Fig 5A. The output of the CNN network was fed to the Cox model to

compute abnormality. The output of abnormality scores is represented by a heatmap. Orange to red color denotes high-abnormality regions.

https://doi.org/10.1371/journal.pone.0263916.g005
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Geometric methods have been developed for biological shape analysis, and shape-based

methods have been used for diagnosis of lung nodules [36–38]. Minkowski tensor-based shape

analysis is a new approach to analyze shapes of GGOs. They have been used in general theory

of relativity and materials science. Highly efficient algorithms have been developed to compute

Minkowski tensors in linear time (URL: www.theorie1.physik.uni-erlangen.de), and they have

been used to characterize a variety of systems: (a) surface force microscopy images of co-poly-

mer films and X-ray tomography images of open-cell liquid foams; (b) models of liquid foams

and granular materials consisting of spherical beads; and (c) defect structures in molecular

dynamics simulations of metals.

We characterize anisotropies in GGOs in terms of the eigenvalues of Minkowski tensors.

The degree of anisotropy is expressed as the ratios of the minima to maxima of eigenvalues:

b
r;s
v :¼

jmminj

jmmaxj
2 0; 1½ �

where μmin is the minimum and μmax is the maximum eigenvalue of the tensor Wr;s
v . The abso-

lute value is introduced because the tensor W2;2
0 can have negative eigenvalues for non-convex

objects. For isotropic bodies, b
r;s
v ¼ 1, and deviations from unity reflect the degree of

anisotropy.

We analyzed the shapes of individual GGOs using Minkowski tensors and their eigenvalues

and computed areas, perimeters, area fractions, isoperimetric ratios, anisotropy indices, and

different quadrupole moments (q2, q3, q4, q5, and q6) of GGOs. The results are shown in Fig 6.

The probability distribution in Fig 6A indicates a peak around -600 HU and a tail extending to

-150 HU for GGOs in the dataset. A majority of GGOs in the dataset lie in the tail region corre-

sponding to high-abnormality scores in the heatmap of Fig 5. The average area and perimeters

of GGOs in image slices are 3821 and 578, respectively. The β1 index is around 0.85, which

Fig 6. GGO shape analysis of COVID-19 data using Minkowski tensors. (a) Probability distribution shows that

GGOs for all the images lie between -800 and -150 HU with peaks in the distribution centered around -600 HU. (b)

Radial distribution function versus distance shows a peak around 125 pixels.

https://doi.org/10.1371/journal.pone.0263916.g006
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indicates 15% asphericity for GGOs. The isoperimetric ratio is 0.144. Among the moments, q3

and q6 are the largest and the dipole moment q2 is the second largest. We also computed the

radial distribution function, g(r), and pixel radius and normalized integrated intensity (Fig

6B). The radial distribution function lies between 90 and 150 pixels, peaking around 120

which indicates that pixels in GGOs are correlated over long distances.

§5 Conclusion

We have demonstrated the efficacy of an end-to-end unsupervised deep learning approach to

modeling GGOs segmented from CT images of the lungs in COVID-19 patients. The segmen-

tation and classification approach, PointNet++, can accurately detect GGOs in 3D CT scans.

Instead of modeling all the pixels of a GGO, we use point cloud feature learning in which a

small fraction of pixels is sampled randomly and the 3D shape of a GGO is faithfully recon-

structed. In addition to its efficiency, our approach has the benefit of representing the local

neighborhood of a point using features that can be used in downstream ML algorithms. The

accuracy of PointNet++ in detecting GGOs is 98%, the average class accuracy is 95%, and the

intersection over union is 92%. To the best of our knowledge, no other group has demon-

strated the segmentation or quantified the morphologies of GGOs from 3D CT scans of lungs.

We have used a mathematical approach based on Minkowski tensors to quantify the size

and shape distributions of GGOs. On average, the shapes of GGOs in the COVID-19 datasets

deviate from sphericity by 15% and anisotropies in GGOs are dominated by dipole and hexa-

pole components. These anisotropies may help to quantitatively delineate GGOs of COVID-

19 from other lung diseases. Furthermore, the 3D modeling of GGO in the lung enhances

identification of classic disease patterns in COVID-19.

The PointNet++ and the Minkowski tensor based morphological approach together with

abnormality analysis will provide radiologists and clinicians with a valuable set of tools when

interpreting CT lung scans of COVID-19 patients. Implementation would be particularly use-

ful in countries severely devastated by COVID-19 such as India, where the number of cases

has outstripped available resources creating delays or even breakdowns in patient care. This

AI-driven approach synthesizes both the unique GGO distribution pattern and severity of the

disease to allow for more efficient diagnosis, triaging and conservation of limited resources.

Software and hardware

Our model was trained using TensorFlow (r2.3) on NVIDIA DGX-1 servers equipped with

eight NVIDIA V100 GPUs. All the algorithms were developed using Python.

Codes

The relevant codes will be made available for the public upon acceptance of this manuscript.
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