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Background: Accurate prediction of recurrence is crucial for personalized treatment in
breast cancer, and whether the radiomics features of ultrasound (US) could be used to
predict recurrence of breast cancer is still uncertain. Here, we developed a radiomics
signature based on preoperative US to predict disease-free survival (DFS) in patients with
invasive breast cancer and assess its additional value to the clinicopathological predictors
for individualized DFS prediction.

Methods: We identified 620 patients with invasive breast cancer and randomly divided
them into the training (n = 372) and validation (n = 248) cohorts. A radiomics signature was
constructed using least absolute shrinkage and selection operator (LASSO) Cox
regression in the training cohort and validated in the validation cohort. Univariate and
multivariate Cox proportional hazards model and Kaplan–Meier survival analysis were
used to determine the association of the radiomics signature and clinicopathological
variables with DFS. To evaluate the additional value of the radiomics signature for DFS
prediction, a radiomics nomogram combining the radiomics signature and
clinicopathological predictors was constructed and assessed in terms of discrimination,
calibration, reclassification, and clinical usefulness.

Results: The radiomics signature was significantly associated with DFS, independent
of the clinicopathological predictors. The radiomics nomogram performed better than
the clinicopathological nomogram (C-index, 0.796 vs. 0.761) and provided better
calibration and positive net reclassification improvement (0.147, P = 0.035) in the
validation cohort. Decision curve analysis also demonstrated that the radiomics
nomogram was clinically useful.
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Conclusion: US radiomics signature is a potential imaging biomarker for risk stratification
of DFS in invasive breast cancer, and US-based radiomics nomogram improved accuracy
of DFS prediction.
Keywords: breast cancer, radiomics, ultrasound, disease-free survival, nomogram
INTRODUCTION

Recurrence remains the principal cause of breast cancer-related
death, which seriously endanger the health of women (1, 2).
More intensive therapy seems to improve prognosis for patients
at high risk of recurrence (3). For predicting breast cancer
recurrence, many prognostic models have been developed
based on the clinicopathological factors like tumor size, nodal
status, and Ki-67 expression, but the performance of most
models declined for some independent populations (4). Gene
tests have been reported to predict patient outcome (5), but they
are difficult to be widely used in clinically due to the high price
and complex operation. More convenient and appropriate
methods to enhance recurrence prediction for breast cancer is
the need of the hour.

Radiomics holds promise in predicting breast cancer
recurrence due to its high-dimensional features extracted from
medical images (6), which are not only related to the multigene
assay recurrence scores of breast cancer but also associated to the
recurrence survival (7–9). However, most previous studies about
radiomics and breast cancer survival conducted thus far were
based on magnetic resonance imaging (MRI). Ultrasound (US) is
a safe, inexpensive, and widely available modality. US radiomics
features could distinguish benign breast tumors from malignant
tumors, could predict axillary lymph node metastasis, and could
assist clinicians with accurate prognosis prediction in breast
cancer (10–12). Therefore, whether US radiomics features
could be used to predict breast cancer recurrence is merits
further investigation.

Considering the above findings, a multiple-feature-based
radiomics signature extracted from preoperative US images
was developed for predicting disease-free survival (DFS) of
invasive breast cancer in our study and its additional value
added to the clinicopathological predictor was further assessed.
MATERIALS AND METHODS

Patients
This study has obtained the ethical approval from the
institutional review board, the informed patient consent was
waived due to the nature of retrospective analysis. From
February 2014 to November 2016, 812 consecutive women of
breast cancer were identified. The inclusion criteria included: (1)
patients with complete clinicopathological data and follow-up
information; (2) primary unilateral invasive breast cancer
confirmed by histopathology; (3) US examination performed
within 2 weeks preoperatively (4); patients with no anticancer
therapy before US examination; and (5) patients without history
2

of breast cancer and/or other malignancy. The exclusion criteria
included: (1) patients who received preoperative neoadjuvant
chemotherapy; (2) patients presenting with metastatic disease;
(3) insufficient quality of images and/or only partial tumor
included in the images; and (4) patients lost to follow up.
Finally, we enrolled 620 patients (mean age: 49.62 years, range:
27–87 years) (Figure S1) and divided them into the training
cohort (n = 372) and validation cohort (n=248) randomly.

Clinicopathological Data
Medical records were reviewed to acquire the clinical and
pathological data, including: age; status of menopausal; history
of risk factors for breast cancer (including family history of
breast cancer and/or benign breast disease history); surgery type
and adjuvant treatment (radiotherapy, chemotherapy, endocrine
therapy, targeted therapy); pathologic tumor size; histologic type;
TNM stage; T stage; N stage; lymphovascular invasion (LVI);
invasion of nerves; associated ductal carcinoma in situ (DCIS);
and status of estrogen receptor (ER), progesterone receptor (PR),
human epidermal growth factor receptor 2 (HER2), and Ki-67,
which were assessed by immunohistochemistry (IHC) and
fluorescence in situ hybridization (FISH). ER/PR was defined
as positive if nuclear staining was present in ≥1% cells (13). The
HER2 status was scored as 0, 1+, 2+, or 3+. Scores 0 and 1+ were
defined as negative, and score 3+ as positive. Score 2+ was
considered indeterminate and was further confirmed with FISH
(14). According to results of IHC and FISH, tumors were
categorized into the following four subtypes: luminal A,
luminal B, HER2-enriched and triple-negative (15). The
targeted therapy was anti-HER2 therapy using trastuzumab.
The American Joint Committee on Cancer TNM Staging
Manual, 7th edition (16), was used for tumor stage.

Follow-Up
DFS was considered as the end point of the present study, which
was defined as the interval time between the surgery and
recurrence or breast cancer-related death, whichever came first.
Recurrence means locoregional recurrence, distant metastasis, or
contralateral breast cancer (17). Physical examination,
histopathology, and imaging modalities such as US, computed
tomography, MRI were used to demonstrated the recurrence. At
the last follow-up, patients without an event and/or died of non-
breast cancer related events were censored; two patients died
from cardiovascular disease in this study.

Imaging Acquisition, Radiomics Analysis
and Radiomics Signature Construction
Figure S2 shows the radiomics workflow. US images were
collected in different machines (Table S1) and exported from
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the data system of our hospital. Radiologist 1 (6 years’
experience) selected one greyscale image with the largest
cross-section for every breast tumor, and drew a single
region-of-interest (ROI) along the tumor margin by Photoshop
software (Figure S3). Then, the ROIs were validated by
radiologist 2 (10 years’ experience). The radiologists did not
know the results of pathology. For multifocal (MF) or
multicentric (MC) disease (18), we chose the largest tumor to
analysis. After the ROIs were defined, radiomics features which
could be divided into four categories, including first-order
statistics features, two-dimensional (2D) shape-based features,
texture features, and wavelet features, were extracted using the
“PyRadiomics” package in Python software (19). Then, a two-
step feature selection method which comprised by Sperman
correlation coefficients and Ward linkage method, and least
absolute shrinkage and selection operator (LASSO) Cox
method were performed (20, 21). Finally, a radiomics signature
was constructed, and a radiomics score (Rad-score) was
calculated at the same time. In the supplementary materials,
there are more details.

The intra-observer agreement of feature extraction was
evaluated by inter-class correlation coefficient (ICC). We
randomly selected 95 patients and redrew ROIs by radiologist
1 one month later after the first ROI segmentation. An ICC >0.75
indicated a good reproducibility.

Validation of Radiomics Signature
In order to assess the association of the radiomics signature with
DFS, patients were divided into a high risk and a low risk groups
using the cutoff of the Rad-score identified by X-tile (22). We
performed Kaplan–Meier survival analysis to analyze DFS
between these two groups and the differences of survival curves
were determined by Log-rank tests. We also assessed the
association of the single selected feature with DFS by the same
way. Then, distribution of Rad-score and DFS along with the
selected features’ expression were assessed. Stratified analyses
were performed using subgroups within the molecular subtype
and categorical clinicopathological variables.

The univariate Cox proportional hazards model was used to
analyze the effects of the clinicopathological variables and
radiomics signature on DFS. Then, the most useful predictors
were selected using multivariate Cox proportional hazards model
by including clinicopathological variables in a step-wise (forward
and backward) manner based on the Bayesian information
criterion (BIC). Finally, the radiomics signature was integrated
into a multivariable Cox proportional hazards model to evaluate
its performance in DFS prediction.

All the above analyses were first performed in the training
cohort, and then validated in the validation cohort, except for the
stratified analyses which were performed in the whole cohort.

The Additional Value of Radiomics
Signature for DFS Prediction
In order to evaluate the additional value of the radiomics
signature for DFS prediction, a radiomics nomogram
containing the radiomics signature and clinicopathological
Frontiers in Oncology | www.frontiersin.org 3
predic tors was constructed and compared with a
cl inicopathological nomogram containing only the
clinicopathological predictors. The performance of the
nomogram was assessed in the following four aspects: (1)
discrimination, it was evaluated by Harrell’s concordance index
(C-index) (23); (2) calibration curves, they were generated to
compare the predicted vs. actual survival; (3) reclassification, the
improvement of usefulness added by the radiomics signature was
quantified by net reclassification improvement (NRI) (24); (4)
clinical usefulness, it was determined by decision curve analysis
(DCA) (25). In addition, the goodness-of-fit of all the models
were assessed by the likelihood ratio test and BIC.

Subgroup Analyses Based on
Ultrasound Machines
To investigate whether different sonographic platforms affect the
performance of radiomics signature for DFS prediction, we
repeated Kaplan–Meier survival analysis in patients examined
at GE healthcare and Mindray US systems, which were the most
frequently used machines in this study.

Statistical Analysis
Python software (Python Language Reference, version 3.6.9.
Available at http://www.python.org) and R statistical software
(version 4.0.0; R Foundation for Statistical Computing, Vienna,
Austria) were used for all the statistical analyses. Chi-squared or
Fisher’s exact test and Mann–Whitney U test were used to assess
differences in distributions for categorical variables and
continuous variables, respectively. The “lifelines” package was
used for Kaplan–Meier survival analysis, log-rank test, and Cox
regression. The “rms” package was used for the nomogram
construction and calibration. NRI was calculated by
“survIDINRI” package. The “rmda” package was used for
DCA. A bilateral P value < 0.05 was considered significant.
RESULTS

DFS and Clinicopathological
Characteristics
The median period of follow-up was 48.99 (interquartile range
[IQR], 44.42–62.98) months. Events occurred in 80 patients (80/
620, 12.90%), including: 40 distant metastases; 17 locoregional
recurrences; 12 locoregional recurrences and distant metastases;
seven contralateral breast cancer (six invasive breast cancer and
one DCIS); and four breast cancer-related death. The median
DFS was 22.29 (IQR, 14.52–33.84) months. The comparison of
the clinicopathological characteristics in the training and
validation cohorts showed no significantly differences (Table 1).

The Radiomics Signature Construction
and Validation
The mean ICC based on twice feature extraction was 0.824
(range, 0.798–0.999), which means the high intra-observer
agreement for the radiomics feature extraction. Thence, all
findings were based on the first feature extraction.
April 2021 | Volume 11 | Article 621993
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Totally, 14 features were selected from 1209 features to build
radiomics signature in the training cohort (Table S2 and Figure
S4) and only one of them could distinguish patients with
different prognoses (Figures S5, S6). The radiomics signature
showed moderate performance on DFS estimation both in the
training (C-index, 0.714; 95% confidence interval [CI], 0.63–
0.80) and validation (C-index, 0.632; 95% CI, 0.52–0.74) cohorts.
Based on the cutoff (1.816) of Rad-score (Figure S7), patients
with higher Rad-score (≥1.816) were divided into the high-risk
group, whereas patients with lower Rad-score (<1.816) were
divided into the low-risk group, and their characteristics are
shown in Table 2.

The Rad-score prognostic accuracy determined by time-
dependent receiver operator characteristics (ROC) curves and
Kaplan–Meier survival curves are shown in Figure 1. The
radiomics signature was significantly associated with DFS in
the training (P < 0.0001) and validation (P = 0.003) cohorts. The
5-year DFS of the high- and low-risk groups were 61.27% and
90.10% in the training cohort and 76.60 and 87.07% in the
validation cohort, respectively. The distribution of the Rad-score
and DFS are shown in Figures S8–S9, patients with higher Rad-
score were more likely to experience events.

Results of stratified analysis based on molecular subtype are
shown in Figure 2. The Rad-score successfully discriminate
prognoses in luminal B (P = 0.00006) and triple-negative (P =
0.00003), but failed in either luminal A (P = 0.563) or HER2-
enriched (P = 0.109). The radiomics signature remained a
statistically and clinically predictor in most subgroups based
on clinicopathological variables (Figure S10).
TABLE 1 | Characteristics of patients in the training and validation cohorts.

Characteristics Training
cohort
(n = 372)

Validation
cohort
(n = 248)

P-
value

Age, (years)a 49.10 ± 10.46 50.41 ± 10.76 0.094
Menopausal status
Premenopausal
Menopause

238 (63.98)
134 (36.02)

159 (64.11)
89 (35.89)

0.973

History of risk factors for breast
cancerb

No
Yes

359 (96.51)
13 (3.49)

240 (96.77)
8 (3.23)

0.856

Pathologic tumor size (cm)a 2.62 ± 1.40 2.51 ± 1.24 0.416
Molecular subtype
Luminal A
Luminal B
HER2-enriched
Triple-negative

76 (20.43)
204 (54.84)
55 (14.78)
37 (9.95)

46 (18.55)
130 (52.42)
39 (15.73)
33 (13.31)

0.571

TNM stage
I
II
III

90 (24.19)
196 (52.69)
86 (23.12)

78 (31.45)
116 (46.77)
54 (21.77)

0.132

T stage
1
2
3
4

159 (42.74)
193 (51.88)
15 (4.03)
5 (1.34)

116 (46.77)
123 (49.60)
8 (3.23)
1 (0.40)

0.434d

N stage
0
1
2
3

178 (47.85)
113 (30.38)
53 (14.25)
28 (7.53)

126 (50.81)
73 (29.44)
34 (13.71)
15 (6.05)

0.847

ER status
Negative
Positive

96 (25.81)
276 (74.19)

74 (29.84)
174 (70.16)

0.270

PR status
Negative
Positive

113 (30.38)
259 (69.62)

94 (37.90)
154 (62.10)

0.052

HER2 status
Negative
Positive

255 (68.55)
117 (31.45)

163 (65.73)
85 (34.27)

0.463

Ki-67 status
>14%
≤14%

292 (78.49)
80 (21.51)

196 (79.03)
52 (20.97)

0.873

Lymphovascular invasion
Absent
Present

239 (64.25)
133 (35.75)

159 (64.11)
89 (35.89)

0.973

Invasion of nerves
Absent
Present

305 (81.99)
67 (18.01)

206 (83.06)
42 (16.94)

0.730

Associated ductal carcinoma in situ
Absent
Present

274 (73.66)
98 (26.34)

180 (72.58)
68 (27.42)

0.767

Multifocal/multicentric disease
No
Yes

361 (97.04)
11 (2.96)

240 (96.77)
8 (3.23)

0.849

Histology type
invasive ductal carcinoma
invasive lobular carcinoma
Othersc

346 (93.01)
12 (3.23)
14 (3.76)

227 (91.53)
9 (3.63)
12 (4.84)

0.772

Type of surgery
Mastectomy
breast conservation surgery

322 (86.56)
50 (13.44)

222 (89.52)
26 (10.48)

0.271

(Continued)
TABLE 1 | Continued

Characteristics Training
cohort
(n = 372)

Validation
cohort
(n = 248)

P-
value

Adjuvant endocrine therapy
No
Yes

113 (30.38)
259 (69.62)

85 (34.27)
163 (65.73)

0.308

Adjuvant chemotherapy
No
Yes

75 (20.16)
297 (79.84)

53 (21.37)
195 (78.63)

0.715

Adjuvant radiation
No
Yes

239 (64.25)
133 (35.75)

156 (62.90)
92 (37.10)

0.733

Adjuvant targeted therapy
No
Yes

315 (84.68)
57 (15.32)

208 (83.87)
40 (16.13)

0.787
April 2021 | V
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Unless stated otherwise, data are numbers of patients, with percentages in parentheses.
aData represent mean ± standard deviations.
bHistory of risk factors for breast cancer include six patients with family history of breast
cancer, 14 patients with benign breast disease history, one patient with breast lesion
biopsy history.
cOther cancers include 13 mucinous carcinomas, five papillary carcinomas, three
medullary carcinomas, two metaplastic carcinomas, one tubular carcinoma, one
cribriform carcinoma, one apocrine carcinoma.
dP value is calculated after combining T3 and T4 as one group because more than 20% of
the expected frequencies are less than 5.
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TABLE 2 | Characteristics of patients according to the risk group based on radiomics signature in the training and validation cohorts.

Characteristics Training cohort (n = 372) Validation cohort (n = 248)

High-risk (n = 54) Low-risk (n = 318) P-value High-risk (n = 50) Low-risk (n = 198) P-value

Rad-score 2.09 ± 0.21 1.37 ± 0.28 <0.0001 2.12 ± 0.30 1.30 ± 0.41 <0.0001
Age, (years)a 50.83 ± 11.15 48.80 ± 10.31 0.220 51.34 ± 10.72 50.17 ± 10.76 0.513
Menopausal status
Premenopausal
Menopause

29 (53.70)
25 (46.30)

222 (69.81)
96 (30.19)

0.019 29 (58)
21 (42)

117 (59.09)
81 (40.91)

0.889

History of risk factors for breast cancerb

No
Yes

51 (94.44)
3 (5.56)

308 (96.86)
10 (3.14)

0.623 47 (94)
3 (6)

193 (97.47)
5 (2.53)

0.427

Pathologic tumor size (cm)a 3.46 ± 1.48 2.48 ± 1.33 <0.0001 3.14 ± 1.36 2.35 ± 1.15 0.00001
Molecular subtype
Luminal A
Luminal B
HER2-enriched
Triple-negative

6 (11.11)
39 (72.22)
7 (12.96)
2 (3.70)

72 (22.64)
169 (53.14)
44 (13.84)
33 (10.38)

0.043 5 (10)
23 (46)
15 (30)
7 (14)

39 (19.70)
103 (52.02)
28 (14.14)
28 (14.14)

0.042

TNM stage
I
II
III

6 (11.11)
30 (55.56)
18 (33.33)

84 (26.42)
166 (52.20)
68 (21.38)

0.024 7 (14)
23 (46)
20 (40)

71 (35.86)
93 (46.97)
34 (17.17)

0.0004

T stage
1
2
3
4

9 (16.67)
37 (68.52)
5 (9.26)
3 (5.56)

150 (47.17)
156 (49.06)
10 (3.14)
2 (0.63)

<0.0001d 9 (18)
36 (72)
4 (8)
1 (2)

107 (54.04)
87 (43.94)
4 (2.02)
0 (0.00)

<0.0001d

N stage
0
1
2
3

17 (31.48)
22 (40.74)
7 (12.96)
8 (14.81)

161 (50.62)
91 (28.62)
46 (14.47)
20 (6.29)

0.016 21 (42)
12 (24)
11 (22)
6 (12)

105 (53.03)
61 (30.81)
23 (11.62)
9 (4.55)

0.039

ER status
Negative
Positive

17 (31.48)
37 (68.52)

79 (24.84)
239 (75.16)

0.303 16 (32)
34 (68)

58 (29.29)
140 (70.71)

0.709

PR status
Negative
Positive

19 (35.19)
35 (64.81)

94 (29.56)
224 (70.44)

0.406 21 (42)
29 (58)

73 (36.87)
125 (63.13)

0.504

HER2 status
Negative
Positive

32 (59.26)
22 (40.74)

223 (70.13)
95 (29.87)

0.112 32 (64)
18 (36)

131 (66.16)
67 (33.84)

0.774

Ki-67 status
>14%
≤14%

49 (90.74)
5 (9.26)

243 (76.42)
75 (23.58)

0.018 42 (84)
8 (16)

154 (77.78)
44 (22.22)

0.334

Lymphovascular invasion
Absent
Present

25 (46.30)
29 (53.70)

214 (67.30)
104 (32.70)

0.003 23 (46)
27 (54)

136 (68.69)
62 (31.31)

0.003

Invasion of nerves
Absent
Present

43 (79.63)
11 (20.37)

262 (82.39)
56 (17.61)

0.626 40 (80)
10 (20)

166 (83.84)
32 (16.16)

0.518

Associated DCIS
Absent
Present

33 (61.11)
21 (38.89)

241 (75.79)
77 (24.21)

0.024 36 (72)
14 (28)

144 (72.73)
54 (27.27)

0.918

MF/MC disease
No
Yes

54 (100)
0 (0)

307 (96.54)
11 (3.46)

0.341 49 (98)
1 (2)

191 (96.46)
7 (3.54)

0.919

Histology type
IDC
ILC
Othersc

51 (94.44)
1 (1.85)
2 (3.70)

295 (92.77)
11 (3.46)
12 (3.77)

0.874e 48 (96)
1 (2)
1 (2)

179 (90.40)
8 (4.04)
11 (5.56)

0.324e

Type of surgery
Mastectomy
BCS

53 (98.15)
1 (1.85)

269 (84.59)
49 (15.41)

0.007 50 (100)
0 (0)

172 (86.87)
26 (13.13)

0.007

(Continued)
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TABLE 2 | Continued

Characteristics Training cohort (n = 372) Validation cohort (n = 248)

High-risk (n = 54) Low-risk (n = 318) P-value High-risk (n = 50) Low-risk (n = 198) P-value

Adjuvant endocrine therapy
No
Yes

20 (37.04)
34 (62.96)

93 (29.25)
225 (70.75)

0.250 18 (36)
32 (64)

67 (33.84)
131 (66.16)

0.774

Adjuvant chemotherapy
No
Yes

11 (20.37)
43 (79.63)

64 (20.13)
254 (79.87)

0.967 8 (16)
42 (84)

45 (22.73)
153 (77.27)

0.300

Adjuvant radiation
No
Yes

34 (62.96)
20 (37.04)

205 (64.47)
113 (35.53)

0.831 32 (64)
18 (36)

124 (62.63)
74 (37.37)

0.857

Adjuvant targeted therapy
No
Yes

44 (81.48)
10 (18.52)

271 (85.22)
47 (14.78)

0.481 42 (84)
8 (16)

166 (83.84)
32 (16.16)

0.978
Frontiers in Oncology | www.frontiersin.org
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Unless stated otherwise, data are numbers of patients, with percentages in parentheses.
aData represent mean ± standard deviations.
bHistory of risk factors for breast cancer include six patients with family history of breast cancer, 14 patients with benign breast disease history, one patient with breast lesion biopsy history.
cOther cancers include 13 mucinous carcinomas, five papillary carcinomas, three medullary carcinomas, two metaplastic carcinomas, one tubular carcinoma, one cribriform carcinoma,
one apocrine carcinoma.
dP value is calculated after combining T3 and T4 as one group owing to the expected frequencies being <1.
eP value is calculated after combining ILC and Others as one group because more than 20% of the expected frequencies are less than 5.
Rad-score, radiomics score; DCIS, ductal carcinoma in situ; MF, multifocal; MC, multicentric; IDC, invasive ductal carcinoma; ILC, invasive lobular carcinoma; BCS, breast conservation
surgery.
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FIGURE 1 | Radiomics score measured by time-dependent ROC curves and Kaplan–Meier survival curves in the training and validation cohorts. We used AUCs at
1, 3, and 5 years to assess prognostic accuracy in the training (A) and validation (B) cohorts. A significant association of the Rad-score with DFS was shown in the
training (C) and validation (D) cohorts. We calculated P values using the log-rank test. Data are the AUC or P-value. ROC, receiver operator characteristics; AUC,
area under the curve; DFS, disease-free survival.
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Both in the univariate (Table S3) and multivariable analyses
(Table 3), the Rad-score was an independent predictor for DFS.
The Additional Value of Radiomics
Signature for DFS Prediction
The estimation of the radiomics nomogram achieved a better
agreement with actual observation than that of the
clinicopathological nomogram (Figure 3). The radiomics
nomogram yielded the highest C-index (0.801 and 0.796 in the
training and validation cohorts, respectively), the highest log
likelihood (−241.70), and the lowest BIC (502.75) (Table 4).
Including the radiomics signature to the clinicopathological
nomogram resulted improvement of classification accuracy for
survival outcomes, with a total NRI of 0.147 in the validation
cohort for 5-year DFS estimation (Table S4). Finally, the results
of DCA demonstrated that the radiomics nomogram was
superior than the clinicopathological nomogram in terms of
clinical usefulness both in the training and validation cohorts
(Figure 4).
A B

DC

FIGURE 2 | Kaplan–Meier survival curves of DFS according to the Rad-score classifier in subgroups within molecular subtypes of patients with invasive breast
cancer in the whole cohort. (A) Luminal A (n = 122). (B) Luminal B (n = 334). (C) HER2-enriched (n = 94). (D) Triple-negative (n = 70). We calculated P values using
the log-rank test. DFS, disease-free survival; Rad-score, radiomics score.
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TABLE 3 | Multivariate analysis of DFS in the training cohort.

Variable Hazard ratio (95% CI) P-value

Rad-score 3.95 (1.87–8.37) 0.0003
Lymphovascular invasion
Absent
Present

reference
2.19 (1.14–4.21)

/
0.018

Molecular subtype
Luminal A
Luminal B
HER2-enriched
Triple-negative

reference
2.04 (0.61–6.81)
3.12 (0.80–12.18)
3.15 (0.75–12.43)

/
0.247
0.031
0.038

N stage
0
1
2
3

reference
2.86 (1.21–6.73)
3.81 (1.46–9.97)
3.93 (1.15–12.31)

/
0.016
0.006
0.007

T stage
1
2
3
4

Reference
1.46 (0.68–3.11)
2.90 (0.89–9.43)
0.80 (0.10–6.79)

/
0.332
0.076
0.842
April 2021 | Volume 11 | Article
Rad-score, radiomics score; CI, confidence interval.
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FIGURE 3 | The developed radiomics nomogram (A) and clinicopathological nomogram (B) for DFS prediction in patients with invasive breast cancer, along with the
calibration curves of these nomograms. The patient’s Rad-score is located on the Rad-score axis. To determine the number of points toward the probability of DFS
the patient receives for her Rad-score, a line was drawn straight upward to the point axis, and this process was repeated for each variable. The points achieved for
each of the risk factors was then summed. The final sum is located on the total point axis. To find the patient’s probability of DFS, a line was drawn straight down.
Calibration curves of the radiomics nomogram in the training (C) and validation (E) cohorts, and those of the clinicopathological nomogram in the training (D) and
validation (F) cohorts show the calibration of each model in terms of the agreement between the estimated and observed at 1-, 3-, and 5-year outcomes.
Nomogram-estimated probability is plotted on the x-axis, and the actual survival probability is plotted on the y-axis. The diagonal gray line represents a perfect
estimation by an ideal model, in which the estimated outcome perfectly corresponds to the actual outcome. The colored line represents the nomogram’s
performance, a closer alignment of which with the diagonal dotted line represents a better estimation. DFS, disease-free survival; Rad-score, radiomics score.
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Subgroup Analyses Based on
Ultrasound Machines
As shown in Figure S11, higher Rad-scores were significantly
associated with worse DFS in the GE subgroup (P = 0.0001), but
not in the Mindray subgroup (P = 0.055). Patients with higher
Rad-scores experienced worse DFS than patients with lower Rad-
scores in both the subgroups. Based on the cutoff (1.816) of the
Rad-score, these patient characteristics based on risk group are
shown in Table S5.
DISCUSSION

To our knowledge, this study has developed the first US
radiomics features for DFS prediction of invasive breast cancer.
We showed that the US radiomics signature was an independent
factor in predicting DFS and confirmed its additional value
added to the clinicopathological predictors.

The present radiomics signature comprised 14 features,
including two 2D shape-based features, seven texture features,
and five wavelet features. On the one hand, shape-based
features reflect the shape and morphology of the tumor.
Being consistent with a previous study which selected surface
to volume ratio (SVR) to estimate breast cancer DFS (17), we
selected PerimeterSurfaceRatio feature (the 2D form of SVR) as
Frontiers in Oncology | www.frontiersin.org 9
one of the 14 features. On the other hand, texture analysis is a
suitable way to assess tumor heterogeneity (26), and different
texture features are defined differently to depict specific aspects
of tumor textural heterogeneity and thus may provide
complementary information of tumor characteristics. Most
texture and wavelet features selected in the present study
could describe characteristics of breast cancer in previous
study (12). Thus, the multiple-feature-based radiomics
signature constructed in our study could likely be an
important prognostic factor with the information of
tumor heterogeneity.

In the following analyses, the radiomics signature showed
moderate performance on DFS prediction and successfully
stratified patients into different groups according to the results
of risk stratification, though there was only one selected feature
could stratify the risk of DFS. These findings were similar to a
previous study of lung cancer which demonstrated that no
individual feature could classify patients at different risk of
recurrence, except for radiomics signature (27). Therefore, the
radiomics signature, taking the interactions between different
features into account, could better reflect the heterogeneity of
tumor and is thus related to the outcome of patient, improving
the accuracy of DFS assessment.

In the subsequently univariate, multivariate, and stratified
analyses, the present US radiomics signature was an independent
predictor, indicating the strong association between the
TABLE 4 | Performance of models.

Model C-index (95%CI) BIC Log likelihood P-value

Training cohort Validation cohort

Radiomics signature 0.714 (0.63–0.80) 0.632 (0.52–0.74) 521.80 −258.97 <0.0001a

Clinicopathological nomogram 0.771 (0.69–0.85) 0.761 (0.66–0.86) 511.42 −247.97 <0.001b

Radiomics nomogram 0.801 (0.72–0.88) 0.796 (0.70–0.89) 502.75 −241.70 /
A
pril 2021 | Volume 11 | Artic
aThe likelihood ratio test was performed between the radiomics signature and the radiomics nomogram.
bThe likelihood ratio test was performed between the clinicopathological nomogram and the radiomics nomogram.
A B

FIGURE 4 | Decision curve analysis for each model in the training (A) and validation (B) cohorts. The y-axis measures the net benefit. The net benefit was calculated
by summing the benefits (true positive results) and subtracting the harms (false positive results), weighing the latter by a factor related to the relative harm of an
undetected cancer compared with the harm of unnecessary treatment. The radiomics model had the highest net benefit and simple strategies such as follow-up of
all patients (gray line) or no patients (horizontal black line) across the full range of threshold probabilities at which a patient would choose to undergo imaging follow-up.
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radiomics signature and DFS. Patients at high-risk group
experienced worse DFS than those at low-risk group, implying
that patients at high risk of DFS might need more intensive
treatment and follow-up to improve DFS, whereas treatment for
low-risk patients could be attenuated appropriately.
Consequently, our results would provide valuable information
for clinicians to develop personalized treatment accurately based
on the specific clinicopathological factors and radiomics
signature for invasive breast cancer.

The Kaplan-Meier analyses performed by molecular
subtype showed that only differences of DFS in luminal B
and triple-negative subgroups were statistically significant.
This suggested that the ability of radiomics signature to
assess DFS for invasive breast cancer vary by molecular
subtype, which was similar to an earlier MRI-based study
(28). This also highlighted the fact that breast cancer is a
heterogeneous tumor wherein every subtype has its unique
characteristics and prognosis. Perhaps a specific radiomics
signature for each molecular subtype would predict DFS
better in invasive breast cancer and hence, further studies are
needed to confirm this speculation.

Furthermore, we confirmed the additional value of
radiomics signature to the clinicopathological predictors for
DFS prediction. The single predictor is not enough to assess
the probability of prognosis, whereas nomogram has
the ability to integrate multiple factors. We constructed
a radiomics nomogram in a step-wise manner based on
BIC, achieving better performance compared to the
clinicopathological nomogram, with a better calibration,
positive NRI and higher C-index. Finally, the radiomics
nomogram performed better than the clinicopathological
nomogram in term of clinical usefulness, which confirmed
the additional value of the radiomics signature for
personalized DFS prediction in patients with invasive breast
cancer simultaneously.

Finally, we analyzed whether different sonographic
platforms affect the performance of radiomics signature and
radiomics signature showed significant only in the GE
subgroup. We think this may be related to small sample size
of the Mindray subgroup (n = 121). Small sample size generally
affects the performance of radiomics study (29). Taking small
sample size into consideration, radiomics signature shows
significant association with DFS in the Mindray subgroup
when relax the significant P value to 0.1. Furthermore, the
significant clinicopathological variables (tumor size, T stage, N
stage, TNM stage and LVI) showed consistent in the GE and
Mindray subgroups according to risk group based on radiomics
signature. However, the probability of the dependency of
radiomics signature on the type of US machine could not be
entirely rule out and further studies with larger data are needed
to reveal the truth of this problem.

Our study has some limitations. First, we could not control
the operator dependency or scanning parameters in collecting
US images, which is an inevitable issue. So, we used Z-score
normalization to minimize the influence of contrast and
Frontiers in Oncology | www.frontiersin.org 10
brightness variation before feature extraction for each patient.
Second, radiomics signature showed dependency on the type of
US machine in present study. Third, this study had a relatively
short follow-up period (median follow-up, 48.99 months) and no
independent validation. Thus, further studies with a longer
follow-up, independent data and larger sample size are needed
to resolve these issues.

In summary, the US radiomics signature is a potential
imaging predictor for risk stratification of DFS, the radiomics
nomogram holds promise to serve as a noninvasive tool to assist
clinicians in accurately developing personalized treatment for
patients with invasive breast cancer.
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