
ll
OPEN ACCESS
Protocol
Using ICLite for deconvolution of bulk
transcriptional data from mixed cell
populations
Matthew J. Camiolo,

Sally E. Wenzel,

Anuradha Ray

camiolomj@upmc.edu

Highlights

ICLite identifies gene

modules in bulk

transcriptional data

from mixed cell

populations

Protocol details how

to run and interpret

the results of ICLite

Discussion of

parameter tuning,

data formatting, and

solution evaluation

Details for post-run

exploration including

gene ontology and

semantic similarity
Bulk expression data from heterogeneous cell populations pose a challenge for investigators, as

differences in cell numbers and transcriptional programs may complicate analysis. To improve

the performance of bulk RNA sequencing on mixed populations, we created Immune Cell

Linkage through Exploratory Matrices (ICLite). The ICLite package for R constructs modules of

correlated genes and identifies their relationship to specific lineages in mixed cell populations.

This protocol details formatting, optimization of run parameters, and interpretation of results

following implementation of ICLite.
Camiolo et al., STAR Protocols

2, 100847

December 17, 2021 ª 2021

The Authors.

https://doi.org/10.1016/

j.xpro.2021.100847

mailto:camiolomj@upmc.edu
https://doi.org/10.1016/j.xpro.2021.100847
https://doi.org/10.1016/j.xpro.2021.100847
http://crossmark.crossref.org/dialog/?doi=10.1016/j.xpro.2021.100847&domain=pdf

Protocol

Using ICLite for deconvolution of bulk transcriptional
data from mixed cell populations

Matthew J. Camiolo,1,2,5,6,* Sally E. Wenzel,1,3,4 and Anuradha Ray1,4

1Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of
Medicine, Pittsburgh, PA 15213, USA

2Center for Systems Immunology, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA

3Department of Environmental Medicine and Occupational Health, Graduate School of Public Health, University of
Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA

4Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA

5Technical contact

6Lead contact

*Correspondence: camiolomj@upmc.edu
https://doi.org/10.1016/j.xpro.2021.100847

SUMMARY

Bulk expression data from heterogeneous cell populations pose a challenge for
investigators, as differences in cell numbers and transcriptional programs may
complicate analysis. To improve the performance of bulk RNA sequencing on
mixed populations, we created Immune Cell Linkage through Exploratory
Matrices (ICLite). The ICLite package for R constructs modules of correlated
genes and identifies their relationship to specific lineages in mixed cell popula-
tions. This protocol details formatting, optimization of run parameters, and inter-
pretation of results following implementation of ICLite.
For complete details on the use and execution of this protocol, please refer to
Camiolo et al. (2021).

BEFORE YOU BEGIN

While the advent of single cell RNA sequencing has allowed for unprecedented insight into the mo-

lecular underpinnings of disease, its cost and availability may limit its implementation, particularly on

large scale studies of human cohorts. Bulk sequencing is an affordable and readily available alterna-

tive that poses its own unique challenges. Analysis of bulk transcriptional data from heterogenous

cell populations can be particularly difficult. Changes to relative composition as well as cell state

across samples create multiple drivers of variance that can suppress biological discovery and

complicate techniques such as simple differential expression.

The ICLite package for R allows users to gain insight into the function of specific cells from a mixed

population by breaking bulk transcriptional data into smaller sets of gene modules. These gene

modules allow for inference of biological activity, akin to results from a scRNA sequencing experi-

ment. Unlike algorithms designed to estimate relative cell abundance from bulk transcriptional

data using pre-defined gene expression sets, ICLite uses correlation between cell abundance and

gene module expression to assemble de novo gene modules and link them to cells. These gene

modules can be used for a number of downstream applications, such as biological process enrich-

ment and determination of cell activity in health and disease.

The modules identified by ICLite are derived by comparing gene clustering solutions from an array

of user-selected input parameters to determine an optimal solution. ICLite accounts for cluster error,

cell-to-module connectivity and representation of the starting transcriptional dataset to identify the

STAR Protocols 2, 100847, December 17, 2021 ª 2021 The Authors.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1

ll
OPEN ACCESS

mailto:camiolomj@upmc.edu
https://doi.org/10.1016/j.xpro.2021.100847
http://crossmark.crossref.org/dialog/?doi=10.1016/j.xpro.2021.100847&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/

combination of input parameters that provides a best-fit solution. Ultimately, however, it remains up

to the user to decide what solution best suits their needs. For instance, tuning of input parameters

may lead to thorough description of some cell types while providing little to no information on

others. In the protocol below, we detail how to format data for use with ICLite and walk users through

an initial run. We provide example code for determining the most effective solution from a set of

input parameters and guide the user through the process of tuning for the objective best fit as

well as homing on particular populations of interest.

To properly execute the functions of ICLite, you will need log normalized RNA sequencing or micro-

array data as well as matched cell count log ratios or absolute values. Though the execution detailed

in Camiolo et al. (2021) employed high dimensional data from mass cytometry analysis, the ICLite

algorithm is suitable for use with clinically obtained differential cell count data or other measures

of cell prevalence. Given the heterogeneity of immune cells, lower resolution data must be inter-

preted with caution as discussed below (Limitations). In principle, the algorithm behind ICLite should

function on non-immune cell populations as well, as no pre-populated gene lists are required for a

successful run. The output of ICLite includes CSV files of gene module membership, a graphical cor-

relation plot describing the module-to-cell connectivity, and several objects in the R global environ-

ment that can be used for further analysis. We describe downstream analysis below, including study

of module relatedness based on functional similarity.

To properly run an analysis using ICLite, you will need the R statistical software environment installed

on your computer (Core Team, 2015).

Prepare your transcriptional data

Timing: 5 h

The algorithm driving ICLite’s deconvolution process has been tested on both RNA sequencing and

microarray data. In the author’s experience, RNA sequencing data tends to have less sample-to-

sample variation than microarray profiling, making gene module assembly a more robust process.

Below is a general pipeline for preparation of RNA sequencing data for use with ICLite.

CRITICAL: ICLite requires log2 normalized data for execution. The below steps detail how

to build properly formatted RNA sequencing data. Microarray data must also be log

normalized.

Resources for consistent RNA sequencing results can be found through the ENCODE Data Coordi-

nating Center Uniform Processing Pipelines (Davis et al., 2018) at:

https://www.encodeproject.org/pages/pipelines/#RNA-seq

1. Compile a count library from your cells of interest.

a. Generate and sequence cDNA libraries from isolated immune cells using the Illumina Next-

Seq500 System or an equivalent platform

b. Perform sequence alignment using STAR (Dobin et al., 2013) or an equivalent algorithm

c. Quantify read counts to uniquely mapped using featureCounts (Liao et al., 2014)

2. Prepare log2 RNA sequencing data using the DESeq2 package in R (Love et al., 2014). Benefits of

this approach to normalization are discussed below (troubleshooting). For more complete infor-

mation on using the DESeq2 suite, please visit:

https://www.bioconductor.org/packages/release/bioc/vignettes/DESeq2/inst/doc/DESeq2.html

ll
OPEN ACCESS

2 STAR Protocols 2, 100847, December 17, 2021

Protocol

https://www.encodeproject.org/pages/pipelines/#RNA-seq
https://www.bioconductor.org/packages/release/bioc/vignettes/DESeq2/inst/doc/DESeq2.html

Optional: The below code features adjustment for batch outside DESeq2. This process can

also be performed inside DESeq2 by amending the ‘design’ input to the ‘DESeqDataSetFrom-

Matrix’ function.

3. Additional adjustment to address potential batch effect using algorithms such as COMBAT is

encouraged (Leek et al., 2012).

CRITICAL: Multiple entries for the same gene should be avoided. There are no limitations

for the gene nomenclature library used. The sample data set provided by the ICLite

> library(DESeq2)

>

> filePath <- �/R_code/New_RNAseq/" ## replace this with your directory

> gtf <- read.csv(paste(filePath,"gtf_abridged.csv", sep = ""))[,-1]

> counts <- read.csv(paste(filePath,"counts", sep = ""))

> metaData <- read.csv(paste(filePath,"metadata", sep = ""))

> metaData$sex <- factor(metaData$sex)

>

> ## The below code features no design input and is not meant for differential

> ## testing.

>

> dds <- DESeqDataSetFromMatrix(countData = counts, colData = metaData,

> design = �sex, tidy = TRUE)

>

> ## Variance stabilizing transform

> vsdNobatch <- vst(dds, blind = FALSE)

> library(sva)

>

> metaData$batch <- factor(metaData$batch)

>

> ## Build a covariate matrix. This can be amended to include other covariates. In this

> ## example we will only be adjusting for batch

>

> modcombat = model.matrix(�1, data = data.frame(metaData))

>

This step generates normalized and transformed data

> gene_expression_data <- ComBat(assay(vsdNobatch), metadata$batch,

> mod = modcombat, prior.plots = T)

ll
OPEN ACCESS

STAR Protocols 2, 100847, December 17, 2021 3

Protocol

package uses universal gene symbols as identifiers. Conversion for gene ontology analysis

is covered below.

Obtain paired cell count data

Timing: 3 h

Every sample from the transcriptional data set must have paired cell count data for execution of

ICLite. Note that log ratio transformation, as detailed below, is required for compositional data

sets such as those created by the popular automated cell clustering package cytofkit for R (Chen

et al., 2016). Below is a standardized pipeline for automated cell clustering with cytofkit using the

FlowSOM algorithm.

4. Load your FCS files followingmass cytometry event acquisition and normalization as described by

the cytokit authors: https://github.com/JinmiaoChenLab/cytofkit

5. Perform automated clustering and calculate the relative percentage of each cell type across the

samples/individuals in your experiment:

CRITICAL: Cluster percentage values must be log ratio transformed as detailed below

prior to use with ICLite.

KEY RESOURCES TABLE

MATERIALS AND EQUIPMENT

� Data (Bulk RNA-sequencing log2 normalized gene values and paired cell abundance data– see

before you begin)

> cell_clusters <- cytof_cluster(xdata = marker_intensity_data, method = "FlowSOM’’)

> clustered_unstim_cells<-data.frame(marker_intensity_data, cluster = cell_clusters)

> cell_percentages <- cytof_clusterStat(data = clustered_unstim_cells, cluster = "cluster",

> statMethod = "percentage")

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Bulk RNA sequencing from BAL immune
cells of IMSA cohort participants

GEO Accession number:
GSE136587

FCS files from paired mass cytometry of BAL
immune cells of IMSA cohort participants

FlowRepository Repository ID:
FR-FCM-Z395

Software and algorithms

ICLite Camiolo et al. (2021) https://github.com/camiolomj/ICLite/

Blockcluster (4.4.3) Bhatia et al. (2017) https://www.jstatsoft.org/article/view/
v076i09

Corrplot (0.84) Taiyun Wei and Viliam Simko (2017) https://github.com/taiyun/corrplot

Tidyr (1.1.3) Wickham et al. (2019) https://tidyr.tidyverse.org/

R Statistical Software The R Project for Statistical
Computing

https://www.r-project.org/

Other

Local computer – memory: 8GB required, 16GB
recommended; processors: 1 required, 4 recommended

N/A N/A

ll
OPEN ACCESS

4 STAR Protocols 2, 100847, December 17, 2021

Protocol

https://github.com/JinmiaoChenLab/cytofkit
https://github.com/camiolomj/ICLite/
https://www.jstatsoft.org/article/view/v076i09
https://www.jstatsoft.org/article/view/v076i09
https://github.com/taiyun/corrplot
https://tidyr.tidyverse.org/
https://www.r-project.org/

STEP-BY-STEP METHOD DETAILS

CRITICAL: All code appearing in this protocol, including troubleshooting vignettes, is

available as R script titled ‘STAR ICLite Run Code’ in Data S1.

Install ICLite and its dependencies

Timing: 5 min

The ICLite package for R is available through the following public repository:

https://github.com/camiolomj/ICLite/

1. Download the most recent version of the R package blockcluster (Bhatia et al., 2017) from one of

the following sources and install it into your R library:

a. https://cran.r-project.org/src/contrib/Archive/blockcluster/

b. https://www.jstatsoft.org/article/view/v076i09

You may also use the following command lines inside R for installation:

2. Download ICLite to your R library using the code:

Load ICLite and example data

Timing: 5 min

3. Load the ICLite package:

Optional: The ICLite package includes reference the input data from the ImmuneMechanisms

of Severe Asthma (IMSA) cohort (Camiolo et al., 2021), which can be used as reference for

formatting issues or trial runs of the algorithm.

4. Load the example IMSA data set:

> library(devtools)

> install_github("cran/blockcluster")

> library(devtools)

> install_github("camiolomj/ICLite")

> library(ICLite)

> load_IMSA_data()

ll
OPEN ACCESS

STAR Protocols 2, 100847, December 17, 2021 5

Protocol

https://github.com/camiolomj/ICLite/
https://cran.r-project.org/src/contrib/Archive/blockcluster/
https://www.jstatsoft.org/article/view/v076i09

5. Verify the presence of ‘gene_expression_data’ and ‘immune_cell_logratios’ in the Global Envi-

ronment. These objects will be used for example code going forward.

Transcriptional data formatting

6. Format your gene expression data so that columns represent samples/individuals and rows repre-

sent genes.

Cell count data transformation and formatting

Timing: 10 min

Optional: This step is not necessary if using the included immune cell log ratio data.

Cell count data where each of the values for a given sample or individual represent a fraction of the

whole must be log ratio transformed to address the constraints of compositional data (van den Boo-

gaart and Tolosana-Delgado, 2008). Failure to perform this step may lead to unreliable results as

discussed below (troubleshooting).

7. Inspect cell count values prior to running ICLite to determine whether your data is compositional.

While relative percentages from cell count data must be log ratio transformed as detailed below,

absolute cell counts do not.

CRITICAL: Many R packages commonly used for automated cell cluster analysis of mass

cytometry data such as cytofkit, detailed above, provide cluster percentage values for

downstream analysis. These data must be log ratio transformed as detailed below prior

to use with ICLite.

8. If your cell count data is compositional:

a. Install and load the R package ‘‘compositions’’:

b. Transform your cell count data (obtained above in before you begin):

9. The input cell count matrix for ICLite should be formatted such that columns represent cell line-

ages and rows represent samples/individuals. The ‘‘immune_cell_logratios’’ object loaded by

load_IMSA_data()provides an example of properly formatted data.

Setup initial run_ICLite() parameters

Timing: 5 min

Once you have prepared your input data and installed ICLite, you are ready to begin the deconvo-

lution process. We recommend that initial runs with ICLite employ a broad range of run parameters.

> install.packages("compositions")

> library(compositions)

> sample_compositions <-acomp(cell_ percentages, total = 100)

> immune_cell_logratios<-cdt(comp_immune)

ll
OPEN ACCESS

6 STAR Protocols 2, 100847, December 17, 2021

Protocol

10. Create a vector for rho exclusion values. These values should range from 0.3 to 0.9. Gene cor-

relations below this value are converted to 0 in binary space while those above are converted to

1. Higher cutoffs will result in smaller gene modules.

11. Create a vector of minimum connectivity values. Genes that do not meet a threshold of interac-

tions above the rho exclusion will be removed from the analysis. Higher cutoffs will result in

smaller gene modules that are more tightly connected.

12. Create a list of assumed number of clusters to be used for blockclustering.

Optional: Example formatting for run parameters is available in Data S1. This .ZIP file contains

an R script titled ‘STAR ICLite Run Code’ related to the the toy example provided in this manu-

script as fully executable code.

CRITICAL: Users should include a vector of at least 2 input parameters for minimum con-

nectivity, rho cutoff and number of clusters.

Execute run_ICLite()

Timing: 5 h

13. To initiate a run of ICLite, use the code below. For the example code detailed in this manuscript,

see Data S1.

Optional: The blockcluster algorithm is sensitive to seed. To ensure consistency, users may

choose to set the global R seed value prior to running ICLite.

> input_rho<-c(0.4, 0.5, 0.6)

> input_connectivities<-c(150,300)

> number_of_clusters<-as.list(c(12,24,36))

>set.seed(95)

>

>run_ICLite(gene_expression_data = gene_expression_data,

> immune_cell_logratios = immune_cell_logratios,

> input_connectivities = input_connectivities,

> input_rho = input_rho,

> number_of_clusters = number_of_clusters)

ll
OPEN ACCESS

STAR Protocols 2, 100847, December 17, 2021 7

Protocol

Pause point: Saving your workspace after an ICLite run can be done using the command:

The session can be reloaded by using the following command:

Inspect ICLite run results

14. Following completion of an ICLite run, the user will be left with output files in the R working

directory that include:

a. A correlation plot describing all relationships between genemodules and cells in the analysis

titled ‘‘mod solution corrplot.png’’

b. Individual module vs cell lineage dot plots featuring a linear regression trend line, spear-

man’s rho calculation and p-value

c. Comma separated value (CSV) files for gene module membership

The data shown in Figure 1 illustrates the graphical output from solution generated by ICLite on the

IMSA data set included in the package with the parameters described above. Several objects will be

created in the Global Environment, including gene_module_lists,which contains the gene names for

the modules assembled by ICLite.

Should your run produce no connectivity results, see topics below for more information

(troubleshooting).

Tune ICLite run parameters

After inspection of ICLite results, users may choose a narrower band of input parameters focused

around the optimal solution identified during the initial run.

Figure 1. Initial output of ICLite using broad run parameters

(A) Spearman correlation plot generated by execution of ICLite where calculated rho between BAL gene modules

(x-axis) and cell lineages (y-axis) is demarcated by circles colored according to the scale detailed to the right. Only

associations with FDR corrected p-value of < 0.05 are illustrated. The size of the circle is inversely proportional to

p-value of interaction.

(B) Plotting of module scoring vs cell log ratio values with super-imposed linear trend line, Spearman’s rho and p-value

as indicated in the figure.

>save.image("Your_Experiment_Name_Here.Rdata")

>load("Your_Experiment_Name_Here.Rdata")

ll
OPEN ACCESS

8 STAR Protocols 2, 100847, December 17, 2021

Protocol

15. To explore the relationship between input parameters and genes included in module assembly,

use the following code:

The resultant graph plotting the relationship between genematrix size, rho cutoff andminimum con-

nectivity value will be saved in the working directory and is demonstrated in Figure 2.

16. To examine run parameters from the optimal solution, use the following code to create a graph

of fit scoring. Note that dot size is related to solution fit, with the largest dot equating to the best

fit:

The graph will again be saved to the working directory. Results from the above example are illus-

trated in Figure 3. The specific values for the identified optimal run conditions will also be displayed

in the R console after executing this command. Note that subsequent ICLite run parameters can be

chosen based on these data.

CRITICAL: We can see from both text and graphical outputs that the optimal solution

occurred with a rho cutoff = 0.4, connectivity = 150 and number of clusters = 24.

Figure 2. Graphical output from plot_solution_size()

Execution of the plot_solution_size() function will use objects in the R global environment to generate a plot detailing

the number of genes included for module assembly by ICLite (y-value) vs rho cutoff value (x-axis). Coloration of dots

indicates solution connectivity value.

>plot_solution_size()

>plot_fit_score()

ll
OPEN ACCESS

STAR Protocols 2, 100847, December 17, 2021 9

Protocol

17. Create input parameters with smaller gradients of change focusing around the optimal param-

eters from the initial run:

18. Re-run ICLite:

The data shown in Figure 4 illustrates the graphical output from ICLite based on the parameters

described above. This time around, we can see that a solution with rho = 0.45, connectivity = 75

and number of clusters = 26 greatly outperformed our initial run.

> input_connectivities<-c(75,150,225)

> input_rho<-c(0.4, 0.425, 0.45)

> number_of_clusters<-as.list(c(22,24,26))

>set.seed(95)

>

>run_ICLite(gene_expression_data = gene_expression_data,

> immune_cell_logratios = immune_cell_logratios,

> input_connectivities = input_connectivities,

> input_rho = input_rho,

> number_of_clusters = number_of_clusters)

Figure 3. Graphical output from plot_fit_score()

Execution of the plot_fit_score () function will use objects in the R global environment to generate a plot detailing the

ICLite solution score by input rho, connectivity and number of clusters. Size of dots in the plot correspond to relative

value of fit scoring. Coloration of dots indicates solution connectivity value.

ll
OPEN ACCESS

10 STAR Protocols 2, 100847, December 17, 2021

Protocol

Optional: At this time, the user may choose to move onto functional analysis or continue tun-

ing ICLite parameters around the new optimal run.

CRITICAL: As stated above (before you begin), tuning of input parameters may influence

the ability of ICLite to capture relationships to specific cells in your data set. For more

information regarding parameter tuning to address these issues, please see trouble-

shooting below.

Perform gene ontology analysis

The "gene_module_lists" may be used for subsequent Gene Ontology (GO) enrichment analysis as

a means of understanding the biological functions represented by ICLite modules. In the analysis

Figure 4. Output of ICLite using focused parameters

(A) Plotting generated by execution of plot_solution_size() from focused run parameters following the initial

ICLite run.

(B) Plotting generated by execution of plot_fit_score () from focused run parameters.

(C) Spearman correlation plot from the optimal solution using tuned run parameters in ICLite. Calculated rho between

modules (x-axis) and cell lineages (y-axis) is demarcated by circles colored according to the scale detailed to the right.

Only associations with FDR corrected p-value of < 0.05 are illustrated. The size of the circle is inversely proportional to

p-value of interaction.

ll
OPEN ACCESS

STAR Protocols 2, 100847, December 17, 2021 11

Protocol

presented in Camiolo et al., we used the TopGO package in R (Alexa and Rahnenfuhrer, 2020).

Example code for running TopGO is detailed below. More information on TopGO can be found at:

https://www.bioconductor.org/packages/devel/bioc/html/topGO.html

CRITICAL: Output module membership lists will use whatever input nomenclature was

used, which may require conversion prior to running enrichment analysis with popular

tools such as fgsea (Korotkevich et al., 2021) or topGO.

19. Prior to GO enrichment using topGO, convert the gene symbols used in the example IMSA data

into Entrez ids. To do so, first install and load the conversion database (Carlson, 2019):

20. Next, convert our genes of interest from the R object containing our gene modules:

21. Generate a background index of all genes from our transcriptional dataset:

22. Install and load topGO:

23. Run TopGO for the selected ICLite module:

> BiocManager::install("org.Hs.eg.db")

> library(’org.Hs.eg.db’)

> all_genes<-rownames(gene_expression_data)

> background_names<-unique(mapIds(org.Hs.eg.db, all_genes, ’ENTREZID’, ’SYMBOL’))

> BiocManager::install("topGO")

> library(topGO)

> GOI<- gene_module_lists[[n]] ## where n = the module index from ICLite

> GOI_converted<-unique(mapIds(org.Hs.eg.db, GOI, ’ENTREZID’, ’SYMBOL’))

> geneList <- factor(as.integer(background_names %in% GOI_converted))

> names(geneList) <- background_names

> GOdata <- new("topGOdata", allGenes = geneList, nodeSize = 10, ontology = "BP",

> annot = annFUN.org, mapping = "org.Hs.eg.db")

> resultFisher <- runTest(GOdata, algorithm = "classic", statistic = "fisher")

> upRes <- GenTable(GOdata, classicFisher = resultFisher, ranksOf = "classicFisher",

> topNodes = 50, numChar = 40)

ll
OPEN ACCESS

12 STAR Protocols 2, 100847, December 17, 2021

Protocol

https://www.bioconductor.org/packages/devel/bioc/html/topGO.html

Optional: The above example uses pre-defined values for node size, enrichment algorithm

and test statistic. Please refer to the topGO website above for more information regarding

parameter selection.

Example GO enrichment results and corresponding cell log ratio vs module scoring plots from our

optimized ICLite solution are illustrated in Figure 5.

Perform semantic similarity clustering

Gene module membership from ICLite solutions is exclusive, meaning that a single gene may be a

member of only one module. GO semantic similarity allows us to take sets of gene ontology results

and compare them for overlap. This can be used to generate distance measures for dendrogram

construction to better understand functional relationships between gene modules.

The GOSemSim package is not provided with ICLite and must be downloaded and installed sepa-

rately (Yu et al., 2010). Information on this package can be found at:

https://bioconductor.org/packages/release/bioc/html/GOSemSim.html

Figure 5. Pathway analysis of modules linked to T cell populations

(A) Barplot of -log10(p-values) for GO term enrichment of ICLite modules 6 which correlates with CD4 and CD8 EMs,

CMs and TRMs.

(B) Barplot of -log10(p-values) for GO term enrichment of ICLite module 9, which correlates with CD4 and CD8 EMs,

CMs and TRMs.

(C) Plotting of module 6 scoring vs cell log ratio values with super-imposed linear trend line, Spearman’s rho and

p-value as indicated in the figure.

(D) Plotting of module 9 scoring vs cell log ratio values with super-imposed linear trend line, Spearman’s rho and

p-value as indicated in the figure.

ll
OPEN ACCESS

STAR Protocols 2, 100847, December 17, 2021 13

Protocol

https://bioconductor.org/packages/release/bioc/html/GOSemSim.html

24. Install and load the GOSemSim package:

25. After identifying a satisfactory ICLite solution, obtain GO results for all modules as detailed

above and create a list object containing all GO enrichment terms:

26. Create a GO library object:

27. Create a matrix for semantic similarity results:

28. Perform semantic similarity for pairwise comparison between GO term lists corresponding to

ICLite modules:

> BiocManager::install("GOSemSim")

> library(GOSemSim)

> all_GO_terms<-list(module_1_terms, module_2_terms..)

> hsGO <- godata(’org.Hs.eg.db’, ont="BP")

> ##Where num_clust = the number of modules from the accepted ICLite solution

> GO_semantic_mat<-matrix(0, ncol = num_clust, nrow = num_clust)

> for(c in 1:ncol(GO_semantic_mat)){

>

> gs1<- all_GO_terms [[c]]

>

> for(r in 1:nrow(GO_semantic_mat)){

>

> gs2<- all_GO_terms [[r]]

> GO_semantic_mat[r,c]<-mgoSim(gs1, gs2, semData=hsGO, measure="Wang",

> combine="BMA")

>

> }

> }

ll
OPEN ACCESS

14 STAR Protocols 2, 100847, December 17, 2021

Protocol

29. Create a phylogram based on the sematic similarity results to illustrate similarities in the biolog-

ical process represented by each ICLite module (Paradis and Schliep, 2019):

While not necessary, semantic similarity clustering can provide reassurance that the modules iden-

tified by ICLite are biologically plausible. As demonstrated in Figure 6, ICLite has linked modules of

functionally related genes to similar cells. In principle, we expect thatmodules linked to the same cell

lineages should themselves share ontological similarity.

Use modules from an ICLite solution for sample scoring

Once an ICLite solution has been validated, the modules created may be used for scoring individual

samples. These scores may be treated as continuous variables.

CRITICAL: Module scoringmay be done on external transcriptional data sets, as described

in Camiolo et al., (2021). To do so, gene names must be consistent. Please see the section

above on converting nomenclature.

30. Create module score values for the example cohort. Using this code, we call the function mod_

score() from the ICLite package on the gene_module_lists object from a successful ICLite run.

EXPECTED OUTCOMES

After completion of an ICLite run, the resultant module to gene connectivity solution, correlation

plots and output CSV files will be stored in the R working directory. Output .CSV files can be opened

in R or excel for downstream analysis using tools such as gene ontology enrichment. Though the ex-

amples above used additional R coding for ontology analysis, public internet databases are also suit-

able. Inspection of optimal run parameters can be made using the plot_fit_score() function.

> install_github("cran/ape")

> library("ape")

>

> GO_hclust = hclust(dist(GO_semantic_mat), method = "ward.D2")

> GO_phylo<-as.phylo(GO_hclust)

>

> png(‘‘GO semantic phylogram,.png", height = 2400, width = 2400, res = 300)

> plot(GO_phylo, type = "unrooted", cex = 1.2,

> no.margin = F, label.offset = 0.03)

> dev.off()

> individual_mod_scores<-do.call(cbind, lapply(gene_module_lists, mod_score))

> colnames(individual_mod_scores)<-paste0("Mod_",

> unique(accepted_solution@rowclass)+1)

ll
OPEN ACCESS

STAR Protocols 2, 100847, December 17, 2021 15

Protocol

LIMITATIONS

Given a broad enough array of starting parameters, ICLite should be successful at deriving an output

set of modules. It is, however, possible for the blockclustering process to fail at reaching a suitable

result. Scenarios for this will be covered below (troubleshooting).

ICLite was initially built for use on high-dimensional cell count data derived frommass cytometry ex-

periments. The analysis of immune cells detailed in Camiolo et al. (2021) featured 33 surface markers

with more than 20 distinct cell lineages identified from the bronchoalveolar lavage of cohort partic-

ipants. Using more simplified immune cell data, such as clinically obtained differential cell counts,

may lead to loss of resolution during the solution selection phase of ICLite. Because gene modules

are derived independently, it may still be possible to capture heterogeneous processes within a

‘‘parent’’ cell type. We highly recommend careful gene ontology analysis following these runs to

ensure the biological plausibility of your results. Data generated by ICLite is meant to enable further

hypothesis testing and guide downstream validation.

TROUBLESHOOTING

Below we will cover some common issues that may give rise to errors when running ICLite.

Figure 6. Using semantic similarity to explore functional similarity of ICLite modules

Phylogram of GO term semantic similarity for ICLite modules described in the solution from Figure 4. Distance is

independent of cell associations and based only on functional enrichment in GO terms from recovered ICLite

modules. Module coloring is based off hierarchical clustering of semantic similarity. Terms adjacent to phylogram

summarize cell lineages attached to GO semantic families.

ll
OPEN ACCESS

16 STAR Protocols 2, 100847, December 17, 2021

Protocol

CRITICAL: Code for troubleshooting vignettes is available as R script titled ‘STAR ICLite

Run Code’ in Data S1.

Problem 1

ICLite Fails to Connect ANY Cells to Modules.

Potential solution

In the example provided by load_IMSA_data(), 39 individuals are used for pooled analysis. The po-

wer to discern relationships will be directly related to the number of samples in your dataset. Though

a strong relationship may be identified with fewer samples, we would caution against using data sets

with less than 10 individuals. Successful solution finding may take several iterations using varied in-

puts. In the example provided, we started with broad parameters and focusedmore finely afterward.

An alternate approach would be running two or more sets of focused parameters up front. Details on

how parameters may impact relationship resolution are detailed below. In addition, properly

normalized data is critical to ICLite functionality.

ICLite employs Spearman’s rank correlation, which does not assume linear relationship between cell

count and gene expression values. Log scaling of expression data does allow for more practical

visualization of correlations by graphical output, however. Furthermore, accounting for RNA compo-

sition is recommended for accurate comparison of expression between samples, making normaliza-

tion a critical step towards ensuring reliable results (Anders and Huber, 2010). In the example

provided above, we have employed DESeq’s normalization algorithm prior to analysis with ICLite.

It is important to note that other commonly used normalization methods, such as reads per kilobase

of exon per million reads mapped (RPKM) or transcripts per kilobase million (TPM), are less suitable

for use with ICLite. Both of these methods describe the relative abundance of a transcript among the

population of sequence transcripts, and therefore depend on the composition of the RNA popula-

tion in the sample (Zhao et al., 2020). As RNA repertoires may differ across samples, particularly with

mixed cell population data, use of DESeq2 for normalization is preferable.

Problem 2

ICLite Fails to Describe My Cells of Interest.

Potential solution

Under certain circumstances, describing the activity of specific cells lineages may be of interest to

investigators. The below example is illustrated using the IMSA dataset to demonstrate how input pa-

rameters may influence the ability to resolve these relationships.

Consider a run with the following parameters:

The resultant correlation plot is presented in Figure 7. GO analysis demonstrates appropriate func-

tional enrichment in modules linked to T cell populations, however ICLite as failed to link many other

cell types to gene modules. Looking back at our run parameters, we see that we have selected high

rho exclusion values (0.55 and 0.65), which will remove all but the strongest gene-gene interactions.

> input_connectivities<- c(100, 200)

> input_rho<- c(0.55, 0.65)

> number_of_clusters<- c(12,24,36)

> run_ICLite(gene_expression_data, immune_cell_logratios, input_connectivities,

> input_rho, number_of_clusters)

ll
OPEN ACCESS

STAR Protocols 2, 100847, December 17, 2021 17

Protocol

As noted above (Tuning ICLite Run Parameters), selection of input parameters will influence the total

number of genes included in module generation. We will rerun the analysis, this time also consid-

ering solutions with rho exclusion values of 0.45.

CRITICAL: As number of genes included in module assembly increases, so does overall run

time and system memory requirements.

By varying our input parameters, we were able to maintain relationships with T cell populations while

capturing additional information about cell lineages that were previously poorly described (Fig-

ure 8). For a similar number of assumed clusters and minimum connectivity, we are able to describe

relationships between several macrophage and innate lineages and ICLite gene modules. Perform-

ing GO analysis, we see that these new module connections represent interesting biological func-

tions that we may now ascribe to other immune cells from our data set. Table 1 illustrates the

Figure 7. High rho cutoffs result in poor description of macrophage populations

(A) Spearman correlation plot generated by execution of ICLite on the example data set using high rho exclusion

values only. Calculated rho between modules (x-axis) and cell lineages (y-axis) is demarcated by circles colored

according to the scale detailed to the right. Only associations with FDR corrected p-value of < 0.05 are illustrated. The

size of the circle is inversely proportional to p-value of interaction.

(B) Barplot of -log10(p-values) for GO term enrichment of ICLite modules 12 and 23, which correlate with CD4 and CD8

EMs, CMs and TRMs.

> input_connectivities<- c(100, 200)

> input_rho<- c(0.45, 0.55)

> number_of_clusters<- c(20,24,26)

>

> run_ICLite(gene_expression_data, immune_cell_logratios, input_connectivities,

> input_rho, number_of_clusters)

ll
OPEN ACCESS

18 STAR Protocols 2, 100847, December 17, 2021

Protocol

differences in outcome we get by considering a lower rho exclusion value, giving us a favorable so-

lution that describes a greater breadth of cells in our experiment. Note that the relationship between

output GO terms and genes included is not linear!

Problem 3

ICLite Connect Cells and Modules with Disparate Ontological Function.

Potential solution

Extensive work has demonstrated that spurious correlation or anti-correlation may occur when using

compositional data, thereby impacting the results obtained from ICLite. If you find that ICLite is de-

tecting inappropriate relationships between modules and cells, verify that you have addressed the

need for log ratio transformation as detailed above. In brief, if cell count data for every sample adds

up to 1 or 100, it is likely compositional and requires transformation (Cell Count Data Transformation

and Formatting).

Problem 4

Gene modules returned by ICLite seem functionally redundant and connect to similar cells.

Figure 8. Decreasing input stringency identifies additional relationships

(A) Spearman correlation plot generated by execution of ICLite on the example data set using a broader set of rho

exclusion values in parameters used to generate Figure 7. Calculated rho between modules (x-axis) and cell lineages

(y-axis) is demarcated by circles colored according to the scale detailed to the right. Only associations with FDR

corrected p-value of < 0.05 are illustrated. The size of the circle is inversely proportional to p-value of interaction.

(B) Barplot of -log10(p-values) for GO term enrichment of ICLite modules 11 and 22, which correlate with CD4 and CD8

EMs, CMs and TRMs.

(C) Barplot of -log10(p-values) for GO term enrichment of ICLite modules 17 and 10, which correlate with FceRI+

CD127+ innate cells and FceRI+ macrophages, respectively.

ll
OPEN ACCESS

STAR Protocols 2, 100847, December 17, 2021 19

Protocol

Potential solution

The number of assumed gene clusters should be considered in relation to the total size of the tran-

scriptional data set. Though ICLite does penalize for over-clustering, it will only consider solutions

from the input vector. Therefore, initial runs may benefit from a broad array of values that may be

narrowed on successive iterations. Subsequent runs may focus on finer gradients in parameters

around previously successful solutions. Note that the blockclustering algorithm that ICLite employs

is sensitive to seed. To ensure consistency between runs, make sure to set a global seed beforehand.

For the sake of illustration, 3 correlation plots have been drawn showing how number of clusters will

influence solution generation (Figure 9). As might be expected, a greater number of clusters will lead

to a greater number of total positive correlations. Examining the plots, we see that many of the re-

lationships appear to be redundant as number of assumed clusters increases. Specifically, we see

that the T cells in our data set share connection to increasing number of modules as total number

of assumed clusters increases. Ontologically, these modules are highly related and consist of genes

that are clustered together in other solutions (demarcated by red boxes). Though ICLite penalizes for

potential over-clustering, evaluation of ontology followed by semantic similarity clustering may help

the user avoid scenarios where many small gene clusters are functionally redundant.

Problem 5

ICLite terminates mid-run without successful solution generation.

Potential solution

Combinations of high connectivity and rho cutoff values will eventually generate empty test

matrices. For example:

The empty matrix will cause an error in blockcluster:

>Error in blockcluster::coclusterBinary(test_mat, semisupervised = FALSE, :

+ Number of Row clusters exceeds numbers of rows.

Table 1. Comparison of input and output measures from clustering solutions demonstrated in Figures 7

‘‘Unfavorable Solution’’ and 8 ‘‘Favorable Solution’’, respectively

Favorable solution Unfavorable solution

num_clust = 24 num_clust = 24

rho_cutoff = 0.45 rho_cutoff = 0.65

min_connectivity = 200 min_connectivity = 200

Successful Positive Correlations: 56 Successful Positive Correlations: 48

Number of Genes in Solution: 13151 Number of Genes in Solution: 2704

GO Terms Enriched in Modules: 3625 GO Terms Enriched in Modules: 1905

GO Terms Linked to Cells: 994 GO Terms Linked to Cells: 436

> input_connectivities<- c(1000, 2000)

> input_rho<- c(0.85, 0.95)

> number_of_clusters<- c(24,36)

ll
OPEN ACCESS

20 STAR Protocols 2, 100847, December 17, 2021

Protocol

We may decrease the rho exclusion cutoffs (below) to resolve this error:

This time, the run generates 3 successful clustering solutions but fails on the third matrix:

Figure 9. Assessing for relative overclustering in ICLite solutions

Correlation plots from solutions generated by execution of ICLite with similar rho exclusion and connectivity values

but varying number of assumed clusters. Calculated rho between modules (x-axis) and cell lineages (y-axis) is

demarcated by circles colored according to the scale detailed to the right. The size of the circle is inversely

proportional to p-value of interaction.

(A–C) (A) 12 clusters assumed for blockclustering, (B) 24 clusters assumed for blockclustering or (C) 36 clusters

assumed for blockclustering. Red boxes indicate modules with similar ontologic function and gene membership

across solutions.

> input_connectivities<- c(1000, 2000)

> input_rho<- c(0.85, 0.95)

> number_of_clusters<- c(24,36)

> Co-Clustering Failed!

> Co-Clustering successfully terminated!

> Co-Clustering successfully terminated!

> Error in blockcluster::coclusterBinary(test_mat, semisupervised = FALSE, :

+ Number of Row clusters exceeds numbers of rows.

ll
OPEN ACCESS

STAR Protocols 2, 100847, December 17, 2021 21

Protocol

ICLite creates an environmental object named ‘‘test_mat_list’’ that includes the input matrices for all

solutions fed into blockcluster for module assembly. Inspec this value in RStudio using this code:

Which results in:

We see now that the first 3 matrices were generated without issue but the final has no column or row

values. This can again be corrected by liberalizing our cutoffs. This time, decreasing minimum con-

nectivity as below yields a successful run:

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be ful-

filled by the lead contact, Matthew Camiolo (camiolomj@upmc.edu).

Materials availability

This study did not generate new unique reagents. Example data referenced in the text can be loaded

into R using the command ICLite::load_IMSA_data(). Unprocessed FCS files and gene expression

data can be accessioned as detailed above.

Data and code availability

The GEO accession number for the RNA-seq data is GSE136587. FCS files of mass cytometry data

are available through FlowRepository. The ICLite package and documentation are available for

download at https://github.com/camiolomj/ICLite/. Immune cell count and BAL transcriptional

data from IMSA participants are included as part of the R package and are preformatted to run in

ICLite. Code detailed in this Protocol, including Troubleshooting, is available as an R script through

supplemental information.

> for(m in 1:length(test_mat_list)){

>

> print(attributes(test_mat_list[[m]])$dim)

>

>}

+ }

[1] 4081 4081

[1] 1426 1426

[1] 910 910

[1] 0 0

>

> input_connectivities<- c(750, 1000)

> input_rho<- c(0.45, 0.55)

> number_of_clusters<- c(24,36)

ll
OPEN ACCESS

22 STAR Protocols 2, 100847, December 17, 2021

Protocol

mailto:camiolomj@upmc.edu
https://github.com/camiolomj/ICLite/

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.xpro.2021.100847.

ACKNOWLEDGMENTS

This work was supported by NIH grants P01AI106684 (to A.R. and S.E.W.), R01HL113956 (to A.R.

and P.R.) and R01AI048927 (to A.R.), U10HL109152 (S.E.W.), and 1F32HL14741501 (to M.J.C).

AUTHOR CONTRIBUTIONS

Conceptualization, M.J.C.; methodology, M.J.C.; data analysis, M.J.C.; writing, M.J.C.; supervision,

A.R. and S.E.W.; funding acquisition, A.R., S.E.W., and M.J.C.

DECLARATION OF INTERESTS

A.R. has a research agreement with Pieris Pharmaceuticals. S.E.W. is a consultant for AstraZeneca,

Glaxo Smith-Kline, and Sanofi. She is also involved in clinical trials being run by Knopp, Sanofi,

and AstraZeneca. She has a research agreement with Pieris Pharmaceuticals. M.J.C. is a consultant

for Pieris Pharmaceuticals.

REFERENCES

Alexa, A., and Rahnenfuhrer, J. (2020). topGO:
Enrichment Analysis for Gene Ontology.

Anders, S., and Huber, W. (2010). Differential
expression analysis for sequence count data.
Genome Biol. 11, R106.

Bhatia, P.S., Iovleff, S., and Govaert, G. (2017).
Blockcluster: an R Package for Model-Based Co-
Clustering. Journal of Statistical Software, 76.
https://doi.org/10.18637/jss.v076.i09.

Camiolo, M.J., Zhou, X., Oriss, T.B., Yan, Q.,
Gorry, M., Horne, W., Trudeau, J.B., Scholl, K.,
Chen, W., Kolls, J.K., et al. (2021). High-
dimensional profiling clusters asthma severity by
lymphoid and non-lymphoid status. Cell Rep. 35,
108974.

Carlson, M. (2019). org.Hs.eg.db: Genome Wide
Annotation for Human.

Chen, H., Lau, M.C., Wong, M.T., Newell, E.W.,
Poidinger, M., and Chen, J. (2016). Cytofkit: a
Bioconductor package for an integrated mass
cytometry data analysis pipeline. PLoS Comput.
Biol. 12, e1005112.

Core Team, R. (2015). R: A Language and
Environment for Statistical Computing (R
Foundation for Statistical Computing).

Davis, C.A., Hitz, B.C., Sloan, C.A., Chan, E.T.,
Davidson, J.M., Gabdank, I., Hilton, J.A., Jain, K.,
Baymuradov, U.K., Narayanan, A.K., et al. (2018).
The Encyclopedia of DNA elements (ENCODE):
data portal update. Nucleic Acids Res. 46, D794–
d801.

Dobin, A., Davis, C.A., Schlesinger, F., Drenkow, J.,
Zaleski, C., Jha, S., Batut, P., Chaisson, M., and
Gingeras, T.R. (2013). STAR: ultrafast universal
RNA-seq aligner. Bioinformatics 29, 15–21.

Korotkevich, G., Sukhov, V., Budin, N., Shpak, B.,
Artyomov, M.N., and Sergushichev, A. (2021). Fast
gene set enrichment analysis. bioRxiv, 060012.
https://doi.org/10.1101/060012.

Leek, J.T., Johnson, W.E., Parker, H.S., Jaffe, A.E.,
and Storey, J.D. (2012). The sva package for
removing batch effects and other unwanted
variation in high-throughput experiments.
Bioinformatics 28, 882–883.

Liao, Y., Smyth, G.K., and Shi, W. (2014).
featureCounts: an efficient general purpose
program for assigning sequence reads to genomic
features. Bioinformatics 30, 923–930.

Love, M.I., Huber, W., and Anders, S. (2014).
Moderated estimation of fold change and
dispersion for RNA-seq data with DESeq2.
Genome Biol. 15, 550.

Paradis, E., and Schliep, K. (2019). Ape 5.0: an
environment for modern phylogenetics and
evolutionary analyses in R. Bioinformatics 35,
526–528.

van Den Boogaart, K.G., and Tolosana-Delgado, R.
(2008). ‘‘compositions’’: A unified R package to
analyze compositional data. Comput. Geosci. 34,
320–338.

Wickham, Hadley & Averick; Mara & Bryan; Jennifer
& Chang; Winston & McGowan; Lucy & François;
Romain & Grolemund; Garrett & Hayes; Alex &
Henry; Lionel & Hester; Jim & Kuhn; Max &
Pedersen; Thomas &Miller; Evan & Bache; Stephan
& Müller; Kirill & Ooms; Jeroen & Robinson; David
& Seidel; Dana & Spinu; Vitalie & Yutani; Hiroaki
(2019). Welcome to the Tidyverse. Journal of Open
Source Software 4. https://doi.org/10.21105/joss.
01686.

Yu, G., Li, F., Qin, Y., Bo, X., Wu, Y., and Wang, S.
(2010). GOSemSim: an R package for measuring
semantic similarity among GO terms and gene
products. Bioinformatics 26, 976–978.

Zhao, S., Ye, Z., and Stanton, R. (2020). Misuse of
RPKM or TPM normalization when comparing
across samples and sequencing protocols. RNA 26,
903–909.

ll
OPEN ACCESS

STAR Protocols 2, 100847, December 17, 2021 23

Protocol

https://doi.org/10.1016/j.xpro.2021.100847
http://refhub.elsevier.com/S2666-1667(21)00553-0/sref1
http://refhub.elsevier.com/S2666-1667(21)00553-0/sref1
http://refhub.elsevier.com/S2666-1667(21)00553-0/sref2
http://refhub.elsevier.com/S2666-1667(21)00553-0/sref2
http://refhub.elsevier.com/S2666-1667(21)00553-0/sref2
https://doi.org/10.18637/jss.v076.i09
http://refhub.elsevier.com/S2666-1667(21)00553-0/sref4
http://refhub.elsevier.com/S2666-1667(21)00553-0/sref4
http://refhub.elsevier.com/S2666-1667(21)00553-0/sref4
http://refhub.elsevier.com/S2666-1667(21)00553-0/sref4
http://refhub.elsevier.com/S2666-1667(21)00553-0/sref4
http://refhub.elsevier.com/S2666-1667(21)00553-0/sref4
http://refhub.elsevier.com/S2666-1667(21)00553-0/sref5
http://refhub.elsevier.com/S2666-1667(21)00553-0/sref5
http://refhub.elsevier.com/S2666-1667(21)00553-0/sref6
http://refhub.elsevier.com/S2666-1667(21)00553-0/sref6
http://refhub.elsevier.com/S2666-1667(21)00553-0/sref6
http://refhub.elsevier.com/S2666-1667(21)00553-0/sref6
http://refhub.elsevier.com/S2666-1667(21)00553-0/sref6
http://refhub.elsevier.com/S2666-1667(21)00553-0/sref7
http://refhub.elsevier.com/S2666-1667(21)00553-0/sref7
http://refhub.elsevier.com/S2666-1667(21)00553-0/sref7
http://refhub.elsevier.com/S2666-1667(21)00553-0/sref8
http://refhub.elsevier.com/S2666-1667(21)00553-0/sref8
http://refhub.elsevier.com/S2666-1667(21)00553-0/sref8
http://refhub.elsevier.com/S2666-1667(21)00553-0/sref8
http://refhub.elsevier.com/S2666-1667(21)00553-0/sref8
http://refhub.elsevier.com/S2666-1667(21)00553-0/sref8
http://refhub.elsevier.com/S2666-1667(21)00553-0/sref9
http://refhub.elsevier.com/S2666-1667(21)00553-0/sref9
http://refhub.elsevier.com/S2666-1667(21)00553-0/sref9
http://refhub.elsevier.com/S2666-1667(21)00553-0/sref9
https://doi.org/10.1101/060012
http://refhub.elsevier.com/S2666-1667(21)00553-0/sref11
http://refhub.elsevier.com/S2666-1667(21)00553-0/sref11
http://refhub.elsevier.com/S2666-1667(21)00553-0/sref11
http://refhub.elsevier.com/S2666-1667(21)00553-0/sref11
http://refhub.elsevier.com/S2666-1667(21)00553-0/sref11
http://refhub.elsevier.com/S2666-1667(21)00553-0/sref12
http://refhub.elsevier.com/S2666-1667(21)00553-0/sref12
http://refhub.elsevier.com/S2666-1667(21)00553-0/sref12
http://refhub.elsevier.com/S2666-1667(21)00553-0/sref12
http://refhub.elsevier.com/S2666-1667(21)00553-0/sref13
http://refhub.elsevier.com/S2666-1667(21)00553-0/sref13
http://refhub.elsevier.com/S2666-1667(21)00553-0/sref13
http://refhub.elsevier.com/S2666-1667(21)00553-0/sref13
http://refhub.elsevier.com/S2666-1667(21)00553-0/sref14
http://refhub.elsevier.com/S2666-1667(21)00553-0/sref14
http://refhub.elsevier.com/S2666-1667(21)00553-0/sref14
http://refhub.elsevier.com/S2666-1667(21)00553-0/sref14
http://refhub.elsevier.com/S2666-1667(21)00553-0/sref15
http://refhub.elsevier.com/S2666-1667(21)00553-0/sref15
http://refhub.elsevier.com/S2666-1667(21)00553-0/sref15
http://refhub.elsevier.com/S2666-1667(21)00553-0/sref15
http://refhub.elsevier.com/S2666-1667(21)00553-0/sref15
http://refhub.elsevier.com/S2666-1667(21)00553-0/sref15
https://doi.org/10.21105/joss.01686
https://doi.org/10.21105/joss.01686
http://refhub.elsevier.com/S2666-1667(21)00553-0/sref16
http://refhub.elsevier.com/S2666-1667(21)00553-0/sref16
http://refhub.elsevier.com/S2666-1667(21)00553-0/sref16
http://refhub.elsevier.com/S2666-1667(21)00553-0/sref16
http://refhub.elsevier.com/S2666-1667(21)00553-0/sref17
http://refhub.elsevier.com/S2666-1667(21)00553-0/sref17
http://refhub.elsevier.com/S2666-1667(21)00553-0/sref17
http://refhub.elsevier.com/S2666-1667(21)00553-0/sref17

	XPRO100847_proof_v2i4.pdf
	Using ICLite for deconvolution of bulk transcriptional data from mixed cell populations
	Before you begin
	Prepare your transcriptional data
	Obtain paired cell count data

	Key resources table
	Materials and equipment
	Step-by-step method details
	Install ICLite and its dependencies
	Load ICLite and example data
	Transcriptional data formatting
	Cell count data transformation and formatting
	Setup initial run_ICLite() parameters
	Execute run_ICLite()
	Inspect ICLite run results
	Tune ICLite run parameters
	Perform gene ontology analysis
	Perform semantic similarity clustering
	Use modules from an ICLite solution for sample scoring

	Expected outcomes
	Limitations
	Troubleshooting
	Problem 1
	Potential solution
	Problem 2
	Potential solution
	Problem 3
	Potential solution
	Problem 4
	Potential solution
	Problem 5
	Potential solution

	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Supplemental information
	Acknowledgments
	Author contributions
	Declaration of interests
	References

