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The interactions among non-coding RNA (ncRNA) and RNA binding protein (RBP) are increasingly recog-
nized as one of basic mechanisms in gene regulation, and play a crucial role in cancer progressions.
However, the current understanding of this regulation network, especially its dynamic spectrum accord-
ing to the differentially expressed nodes (i.e. ncRNAs and RBP) is limited. Utilizing transcriptomics and
interactomics resources, dysregulated RBP-ncRNA circuits (RNCs) are systematically dissected across
14 tumor types. We found these aberrant RNCs are robust and enriched with cancer-associated
ncRNAs, RBPs and drug targets. Notably, the nodes in altered RNCs can jointly predict the clinical out-
come while the individual node can’t, underscoring RNCs can serve as prognostic biomarkers. We iden-
tified 30 pan-cancer RNCs dysregulated at least in six tumor types. Pan-cancer RNC analysis can reveal
novel mechanism of action (MOA) and repurpose for existing drugs. Importantly, our experiments eluci-
dated the novel role of hsa-miR-224-5p, a member of the pan-cancer RNC hsa-miR-224-5p_MAGI2-
AS3_MBNL2, in EMT program. Our analysis highlights the potential utilities of RNCs in elucidating
ncRNA function in cancer, associating with clinical outcomes and discovering novel drug targets or MOA.

� 2021 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Increasing evidence suggests the interactions between RNA-
binding proteins (RBPs) and noncoding RNAs such as long noncod-
ing RNAs (lncRNAs) and microRNA (miRNAs) play a fundamental
role in gene post-transcriptional regulation [1,2]. RBPs are a class
of proteins that directly bind to RNA and control the synthesis,
maturation, modification and degradation throughout the whole
RNA life cycle [3]. The coupling of deep sequencing and mass
spectrometry studies, such as RNA pull down assay and cross link-
ing immunoprecipitation with high-throughput sequencing
(HITS-CLIP), have greatly expanded the RNA-binding proteome
[4]. It is estimated that there are �1500 RBPs in the human gen-
ome, most of which are ubiquitously expressed in many tissues
[3]. Conservation analysis among different species indicated that
RBPs are more evolutionary conserved compared to non-RBPs,
especially those involved in various biological processes such as
mRNA splicing and ribosome biogenesis [5].

When RBPs and a variety of ncRNAs are close enough physically,

they can interact to form functional RBP-ncRNA circuits (RNC). For
example, miRNAs bind with their RBP partners to form the
RNA-induced silencing complex (RISC), thereby to repress the
translation of mRNA and induces its degradation [6]. Jiang and
his colleagues also found RNA-binding protein NONO-PSF hetero-
dimer binds many expressed pri-miRNAs to affect miRNA biogen-
esis. At the same time, NONO-PSF also interacts with lncRNA,
nuclear paraspeckle assembly transcript 1 (NEAT1), which harbors
a ’pseudo pri-miRNA’ structure to facilitate the miRNA processing
[7]. Recently, dysregulated RNCs have been associated with several
cancers [8–11]. For example, the RBP ELAVL1/HuR was found to
mediate the interaction between miR-124-3p and lncRNA NEAT1,
which controls carcinogenesis in ovarian cancers [8]. This cooper-
ative manner can also be identified in another lncRNA, metastasis-
associated lung adenocarcinoma transcript 1(MALAT1). Several
studies found MALAT interacts with multiple serine/arginine (SR)
splicing factors and miRNAs such as miR-101, miR-217, thereby
to control the alternative splicing of endogenous pre-mRNAs, and
to inhibit proliferation and invasion in carcinoma [9–11].

Above experimental examples clearly demonstrated the regula-
tory role of RNCs in tumorgenesis. However, many questions have
not been fully addressed. For example, can we identify the RNC
computationally since the experimental approaches are usually
time-consuming and labor-intensive? Is the RNC mediated regula-
tion a generic mechanism across many cancers? More importantly,
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are the perturbations of RNC linked with prognostic and therapeu-
tic significance? Answers to the above questions need to combine
the individual RBP-miRNA, RBP-lncRNA and miRNA-lncRNA inter-
actions into a regulation network; and to integrate other omics
resources such transcriptomics and clinical data to delimit the dys-
regulated RNC from the basal regulation network. Several data-
bases such as ENCORI and CLIPdb have archived the
experimentally verified interactions among RBPs and ncRNAs
[12,13]. As the first step to investigate the RNC, we previously have
also developed a computational pipeline, RBPvsMIR, to detect the
competing miRNAs and RBP pairs that regulate the shared tran-
scripts [14]. In this study, we utilized a systems biology approach
to decipher RNCs associated with cancer progressions. First, an
RBP-ncRNA regulation network was constructed by leveraging
the available interactions from experimental data. Altered RNCs
under different cancer conditions were then systematically charac-
terized to understand how the perturbations impact these RNCs.
Finally, we shown these dysregulated RBP-ncRNA circuits are asso-
ciated with cancers mechanism and have valuable clinical utilities.
2. Results

Our pipeline utilized interactomics data among RBP and ncRNAs
(miRNA and lncRNA) from the ENCORI database to construct RBP-
miRNA-lncRNA regulation networks. Spurious interactions, which
have <3 CLIP experimental evidence, were filtered out. Homoge-
neous primary cancer samples were selected from TCGA for tran-
scriptomics analysis. A network motif finding algorithm, which
simultaneously examined the dysregulation extent of both nodes
and edges was used to infer the dynamic RNC changes under dis-
ease conditions. This pipeline is illustrated in Fig. 1 and is
described in details in the Method section.
2.1. Global characteristics of basal RBP-ncRNA regulation network

After eliminating redundancy, we obtained 116,451 regulations
among 642 miRNAs, 3296 lncRNAs, and 1209 RBPs. Totally, 51,955
miRNA-lncRNA-RBP RNCs, consisting of 600 miRNAs, 601 lncRNAs,
and 59 RBPs, were extracted and used in the following analysis
(Table S1A). A global picture of the RBP-ncRNA network was shown
in Fig. 2A. Examining the degree (i.e. the number of undirected
edges for each node) distribution of the network in Cytoscape
[15], we found RBP-ncRNA network had a typical scale-free struc-
ture, which is indicative of transcriptional regulatory networks
(Fig. 2B, R square = 0.777) [16]. Next, comparing with known
cancer-related RBPs from CGC and IntOGen databases [17,18], we
found the RBP-ncRNA network is significantly enriched with
cancer-associated RBPs (Fisher exact Test: P-value = 5.88E-06).
Similarly, the RBP-ncRNA network contains 108 lncRNAs and 511
miRNAs which have been linked with cancers (Fisher exact Test:
of P-value of lncRNA = 7.26E-30, P-value of miRNA = 2.58E-87).
The above results indicated the nodes in RBP-ncRNAs network
tightly connected with cancer progression. Besides, we observed
that all cancer-associated nodes, lncRNA nodes and miRNA nodes
have significantly higher degrees than other non-cancer nodes
(Fig. 2C, D, E, Wilcoxon rank-sum test). The average degree of
cancer-related RBPs was higher than that of other RBP, although
the difference was not significant (Fig. 2F). A higher degree indi-
cated that these cancer-associated nodes were more likely to be
the information transmission hubs in the network. Overall, the
topological characteristics and enriched cancer nodes demon-
strated that the constructed RBP-ncRNA regulation network is a
plausible approximation and can provide insight into the cancer
biology.
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2.2. Dysregulated RBP-ncRNA circuits can be recapitulated from other
datasets

To investigate if the RNCs are biologically meaningful, we
would like to see if the dysregulated RNC found from one dataset
can be recapitulated from another validation dataset of the same
cancer type. Due to the limited public available multiple omics
datasets, we only focused on breast cancer. First, we randomly split
the original TCGA breast data into Train data (4/5 of the original
TCGA data) and Test data (the remaining 1/5 part). The dysregu-
lated RNC were separately identified from both Train and Test data
with the same method. As shown in Fig. S1A, 356 RNCs are over-
lapped between the two datasets, corresponding to 55% of Train
data and 44.1% of the Test data. This result clearly indicated many
of the dysregulated RNCs can be recapitulated (Fisher exact test:
P-value = 2.2E-16). To further establish the validity of dysregulated
RNCs, we also identified the RNCs from another independent
breast cancer datasets downloaded from GEO. It should be noted
that the new dataset is generated from oligos arrays, therefore
there is inherent platform level noise when compared with RNA-
seq based TCGA dataset. Despite this, there is still significant por-
tion of RNCs overlapped between both datasets (Fig. S1B, Fisher
exact test: P-value = 1.6E-16). Overall, the recurrent occurrence
of RNCs from different datasets strongly suggested that the dysreg-
ulated RNC are related to the main theme in cancers.

2.3. Dysregulated RBP-ncRNA circuits in breast cancer and esophageal
cancer

In cells, RBP dynamically modulated the signaling transduction
cascade, thus we identified the aberrant RBP-ncRNAs by combining
the differentially expressed nodes and edges between tumor and
normal samples (See method for details). As a pilot study, we
investigated the breast and esophageal cancer in details.

The 1116 dysregulated RNCs, which includes 47 RBPs, 109
lncRNAs and 138 miRNAs, were identified in esophageal cancer
(Table S2). Similarly, the 787 aberrant RNCs including 37 RBP, 89
lncRNA and 161 miRNAs were obtained from the breast cancer
(Table S3). There are 42 RNCs shared by both cancers, which
respectively corresponds to 5.3% and 3.8% of the RNCs identified
in breast and esophageal cancers. For example, the hsa-miR-18a-
5p_SNHG15_EIF4A3 sub-network was identified from both can-
cers. Previously, hsa-miR-18a-5p was found over-expressed in dif-
ferent human cancers including breast and esophageal cancer
[19,20]. And SNHG15, a well-studied lncRNA, is identified as a
key regulator in tumorigenesis and progression of various cancers
[21,22]. The RBP EIF4A3 is also found over-expressed in many can-
cers and can coordinate cell cycle and cell apoptosis [23,24].

Most RNCs are cancer-specific and perturbated only in one can-
cer. For example, the RNC hsa-miR-101-3p_MALAT1_AUH was
specifically altered in esophageal cancer. Concordantly, previous
report found hsa-miR-101-3p represses the expression of the
lncRNA MALAT1 to inhibit proliferation, migration, and invasion
in esophageal squamous cell carcinoma cells [11]. Meanwhile,
the RNC hsa-miR-148a-3p_HOTAIR_DDX54 was abnormal only in
breast cancer. Consistently, Tao et al. found that miR-148a targets
HOTAIR and is inhibited in breast cancer [25].

2.4. The nodes within the same dysregulated RBP-ncRNA circuits are
functionally coherent

We examined the degree distribution of the breast specific and
esophageal specific dysregulated RNCs (Fig. S2A and S2B). As
shown in Fig. S2C and S2D, the power-law distribution was fitted
well for the degrees in the two sub-networks (in breast cancer, R
square = 0.862; in esophageal cancer, R square = 0.835). These



Fig. 1. The identification of RNCs. Candidate miRNA-lncRNA, miRNA-RBP, and RBP–lncRNA pairs were obtained from the ENCORI database. The altered extent of nodes and
edges were combined to identify dysregulated RNCs by using miRNA, lncRNA, and RBP expression profiles.
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results indicated that the two sub-networks approximated scale-
free topology, which is the common feature of the most biological
networks [26]. Then, we carried out Gene Ontology (GO) functional
similarity analysis to investigate the nodes’ relationship (see
Method section). The 243 and 330 RNCs, where every node has
GO annotations information of the biological processes, were
selected for breast and esophageal cancer, respectively. The results
showed the functional similarities of nodes within the same
RNCs are higher than that of nodes random generated (Wilcoxon
rank-sum test, breast: P-value = 0.00441, esophageal:
P-value = 0.00741, Table S4 listed the significant RNCs). As an
example, the abnormal RNC hsa-miR-15a-5p_XIST_DDX3X in
breast cancer has significantly closer function similarity
(P-value = 0.0219). DDX3X is an ATP-dependent RNA helicase. Con-
sistently, it has been reported that XIST colocalized with DDX3X
and other chromatin binders to direct chromosome conformation
[27]. The coherent functional spectrum among nodes within the
same RNCs can help to efficiently establish orchestrated actions
upon complex signaling. Thus, it is potentially to ascribe novel
functions to RBP or ncRNA according to the other nodes within
the same RNCs.
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2.5. Dysregulated RBP-ncRNA circuits are associated with cancer
pathways and enriched with drug targets

To further understand the functional significance of those aber-
rant RNCs in the two cancers, we performed enrichment analysis of
KEGG pathway. A few interesting themes have emerged. We found
that the RBPs in these RNCs were enriched in the pathways of
spliceosome (breast cancer: P-value = 1.20E-13; esophageal cancer:
P-value = 2.64E-09), RNA transport (breast cancer: P-value = 0.0732;
esophageal cancer: P-value = 3.11E-04) and mRNA surveillance
pathways (breast cancer: P-value = 7.61E-5; esophageal cancer:
P-value = 7.34E-04). Our results are consistent with recent findings
about the important role of abnormal RNA processing in cancers
[28,29]. For example, researches showed that spliceosome path-
way is associated with the development of many types of cancer
[30,31]. Mis-spliced RNAs trigger an antiviral immune response
in breast cancer [32], suggesting that targeted spliceosome therapy
could serve as a research hotspot for cancer treatment [33].
Another enriched KEGG pathway is Herpes simplex infection
(breast cancer: P-value = 0.0113; esophageal cancer:
P-value = 0.0519). This is because several RBPs, which are general



Fig. 2. The global properties of basal RBP-ncRNA regulation network. (A) The overview of RBP-ncRNA regulation network; (B) The log-log plots show that the degree
distributions of the RNCs network follow the power law. (C, D, E and F) Cancer-related nodes had a higher degree than other nodes.
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components of spliceosome, are interacted with and modulated by
the viral protein during infection [34].

Besides, some of the RBPs were known therapeutic targets in
cancers. For example, RNA binding fox-1 homolog 2 (RBFOX2) is
found dysregulated in both breast and esophageal cancers. RBFOX2
is an essential regulator of alternative splicing, which leads to a
higher degree of tissue invasiveness in multiple cancer models
[35]. Choi et al. further demonstrated that resveratrol treatment
inhibited specific RBFOX2 localization from nucleus to the cyto-
plasm, thereby to attenuate cancer progression and tumor growth
[36]. Based on a recent summary of known therapeutic RBPs in
cancers, we found the RBPs in those dysregulated RNCs are signif-
icantly enriched with these druggable RBPs (Fisher exact Test:
breast P-value = 0.00027; esophageal P-value = 0.00976) [37].
Importantly, this result also implied that the other RBPs within
dysregulated RNCs, though still unknown about their pharmaceu-
tical usage, may potentially be developed as drug target for cancer
treatments.

2.6. Dysregulated RBP-ncRNA circuits are prognostic biomarkers

To test whether the expression of dysregulated RNCs correlated
with patient survival, we used the Cox multivariate regression
model for assessing their clinical usage in breast and esophageal
cancer. 18.7% and 29.7% of dysregulated RNCs were found to corre-
late with survival in breast and esophageal cancer, respectively
(Fig. 3A and 3B). For example, the RNC hsa-miR-
429_LINC00667_SRSF1 was correlated with breast cancer patient
survival (Fig. 3D, KM survival analysis, P-value = 0.000647). This
agrees with previous studies showing that hsa-miR-429,
LINC00667 and the RBP SRSF1 correlate with cancer patient sur-
vival [38–40]. Also, the RNC hsa-miR-125a-5p_NEAT1_FMR1 can
stratify the two groups of patients with different clinical outcomes
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in esophageal cancer (Fig. 3E), which were consistent with previ-
ous researches [41–43]. In addition, the dysregulated RNCs could
be used to identify the common RNCs shared by two or more
tumors. As can be seen from Fig. 3C, there are 3 abnormal RNC
shared by the breast and esophageal cancer. For example, hsa-
miR-181b-5p_LINC00667_HNRNPC were significantly associated
with the patient survival in breast and esophageal cancer with
the P-value of 0.00417 and 0.0233, respectively (Fig. 3F).

To test whether the whole RNC could better stratify patients
than individual use of miRNAs node, lncRNA node or RBP node,
Kaplan-Meier survival analysis was conducted and compared
(see Method). In the majority of the RNCs (BRCA: 69%, ESCA:
65%), individual nodes were found unable to classify patients sig-
nificantly (Table S5). For example, the three single nodes in the
RNC hsa-miR-181b-5p_LINC00667_HNRNPC were not significantly
correlated with patient survival in esophageal cancer, but the RNC
can collectively predict the clinical outcome (Fig. 3F,
P-value = 0.0233). These results suggested that RNC may serve as
prognostic biomarkers even when the individual nodes are not
associated with clinical features.

2.7. Pan-cancer RBP-ncRNA circuits reveal novel miRNA function

Having proved that the abnormal RBP-ncRNA network is func-
tionally related to cancers and useful in clinical application, it
would be natural to identify the common RNCs that are dysregu-
lated in multiple tumor types. This investigation should shed light
on the universal mechanism on tumorgenesis. Totally, 9421 RNCs
significantly dysregulated in at least one tumor type were identi-
fied (Table S6). Thirty pan-cancer RNCs (pan-RNCs), which were
dysregulated in at least six examined cancers, are found (Fig. 4A).
The miRNA, RBP and lncRNA components, in the pan-RNCs are
listed in Table 1. The fact that only a few RNCs are pan-RNCs sug-



Fig. 3. The RNCs are potential prognostic biomarkers in breast and esophageal cancers. (A-C) The pie charts represent the number of dysregulated RNCs identified only in
breast cancer, only in esophageal cancer and shared by both cancers. The number of RNC correlated with patient survival is also colored in light gray. (D-F) Kaplan-Meier
survival analysis was performed on two groups of patients with different clinical outcomes. Representative KM plots are shown. The red lines represent the group with high
risk, and the black lines represent the group with low risk. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
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gested most RNC based post-transcriptional regulations are local
and relevant to the specific tumor type. Of all the pan-RNCs, 93%
(28/30) can be integrated into a big interlocking network
(Fig. 4B), indicating that RBPs can be efficiently organized by their
shared lncRNA or miRNA mediators.

We further compared the common properties of 30 pan-RNCs
with the other thousands of dysregulated RNCs, in terms of net-
work topology and clinical application. We found the degree is sig-
nificantly high for pan-RNCs in each cancer type (Table S7). This
comparison indicated that nodes in pan-RNCs tended to be the
hubs in the basal RBP-ncRNA network, implying their important
functional roles. In addition, twenty-nine of the pan-RNCs can sig-
nificantly separate the patients in at least one cancer type. As a
comparison, only about half of the other aberrant RNC
(4818/9391) can predict the clinical outcome well. This result sug-
gested that pan-RNCs are also versatile prognostic biomarkers in
multiple cancers (Fisher exact test: breast P-value = 6.192E-08).

By integrating these RNCs, we constructed a pan-RNC network,
which consisted of 16 miRNAs, 9 lncRNAs and 12 RBPs. In the pan-
cancer network (Fig. 4B), the RBP muscleblind-like splicing regula-
tor 2 (MBNL2), acted as a central hub with 14 partners, indicating
that it was involved in many pan-RNCs. This gene is originally
identified as a member of the muscleblind protein family which
is involved in myotonic dystrophy [44,45]. It encodes a C3H-type
zinc finger protein that modulates alternative splicing of pre-
mRNAs. However, increasing evidence suggested its pivotal role
in the invasive properties of cancer cells. The expression of MBNL2
in breast and lung carcinoma tumor tissues was significantly lower
compared to normal tissues. MBNL class of splicing factor is also a
driver of EMT in breast cancer [46]. Furthermore, MBNL2-mediated
anti-metastasis regulation was significantly correlated with the
EMT in breast and lung carcinoma tumor tissues [47]. But there
is no report on how it interacts with ncRNAs in tumors to date.
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Also, the lncRNA MAGI2-AS3 was with high connections with
RBPs and miRNAs in the pan-cancer network (Degree = 8,
Fig. 4B). Recent reports indicated it is an EMT-associated lncRNA
in breast cancer, bladder cancer and gastric cancers [48–50]. In
the pan-RNC network, MAGI2-AS3_MBNL2 interaction is totally
involved in 4 RNCs (Table 1). Among their miRNA partners (hsa-
miR-224-5p, hsa-miR-31-5p and hsa-miR-374a/b-5p), both hsa-
miR-31-5p and hsa-miR-374a/b-5p have been found to regulate
the malignant transformation. For example, miR-31 overexpres-
sion reduced glioma cell invasion in mesenchymal stem cells
[51]. Sun et al. also found miR-374 promotes the proliferation
and migration of rat bone marrow-derived mesenchymal stem
cells [52]. Thus, the MAGI2-AS3_MBNL2 associated pan-RNCs
might underlie cancer development by participating in the EMT
pathway. Compared with hsa-miR-31-5p and hsa-miR-374a/b-5p,
little is known about miR-224 except that it is a predictive biomar-
ker in hepatocellular carcinoma [53]. Considering its interaction
with the MAGI2-AS3_MBNL2 axis, it is reasonable to predict the
role of miR-224 in EMT. To verify this hypothesis, we either
over-expressed or inhibited hsa-miR-224-5p in an esophageal
squamous cell line TE1. As shown in Fig. 4C, ectopic expression
of hsa-miR-224-5p could up-regulate vimentin protein, which is
a mesenchymal cells marker; on the contrary, expression of vimen-
tin was significantly decreased after depletion of miRNA by inhibi-
tor. These results demonstrated that hsa-miR-224-5p facilitates
primary cancer cells to gain mesenchymal properties and turns
into migratory and invasive cancer cells. Furthermore, the pan-
RNC hsa-miR-224-5p_MAGI2-AS3_MBNL2 was differentially
altered in 9 out of 14 surveyed tumor types. Survival analysis indi-
cated that it is a prognostic marker in UCEC, LUSC and BRCA with
Log Rank P-value 0.0284, 0.0392, and 0.0293, respectively
(Fig. 4D). All above analysis pinpointed that this pan-RNC plays
an important role in EMT program across multiple cancers.



Fig. 4. Dysregulated pan-RNCs across cancers. (A). The number of dysregulated RNCs across tumor types. (B). The pan-cancer RNCs network. Red triangle, blue diamond, and
gray ellipse nodes represent RBPs, miRNAs, and lncRNAs, respectively. (C). Western blot of vimentin and GAPDH after transfection with hsa-miR-224-5p mimics or inhibitor
in TE1 cells. (D). hsa-miR-224-5p_MAGI2-AS3_MBNL2 was dysregulated in nine tumor types. Yellow asterisk indicated it is also a prognostic marker for this cancer type. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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2.8. Pan-cancer RBP-ncRNA circuits predict potential drug MOA and
repurposing

In order to study the role of pan-RNC in revealing drug mecha-
nism, we analyze the anticancer drugs or small molecules that tar-
geted the RBPs or affected miRNA expression in the pan-RNCs
networks. First, we found that compared with the basal regulatory
network (18.6%), the pan-RNCs (50%) had the higher proportion of
therapeutic target RBPs (Fisher exact Test: P-value = 0.0304), which
indicated that pan-cancer RNCs preferred to be druggable [37]
(Table 2). Second, RNC analysis suggested a novel drug MOA. As
shown in Fig. 5, previous studies indicated a cumarin-derived
small molecule named CMLD-2, inhibits ELAVL1 (HuR) and exhi-
bits anticancer activity in cancer cells [54,55]. But the MOA of
CMLD-2 under physiological condition is currently not completely
understood. In this study, we found that ELAVL1 interacts with
ncRNAs to form two RNCs, hsa-miR-381-3p_AC093010.3_ELAVL1
and RNC hsa-miR-18a-5p_AC093010.3_ELAVL1. Although ELAVL1
was upregulated in almost all 14 cancer tissues, the perturbation
pattern of these two RNCs varied in different cancers (Fig. 5). For
example, RNC hsa-miR-381-3p_AC093010.3_ELAVL1 but not RNC
hsa-miR-18a-5p_AC093010.3_ELAVL1, is dysregulated in PRAD.
These results indicated CMLD-2 may play an anti-cancer effect
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via regulation of the RNC hsa-miR-381-3p_AC093010.3_ELAVL1
in prostate cancer. Next, we obtained the drugs that can affect
miRNA expression from the SM2miR database, which archives
the experimentally confirmed influences of small molecule on
miRNA expression [56]. We considered drugs coded with code
L01 (Antineoplastic agents) according to the Anatomical Therapeu-
tic Chemical classification, as anticancer agents. As shown in Fig. 5,
some molecules such as Fluorouracil, Azacitidine, Trastumab, Vori-
nostat and Cisplatin, are known anticancer drugs. In addition, we
found that the expression of hsa-miR-18a-5p and hsa-miR-381-
3p could be reversed by many small molecule drugs, suggesting
that they might play the anticancer role via regulating the pan-
RNCs related mechanism. This inspired us to further repurpose
the other small molecules as potential anticancer drugs. For exam-
ple, Ginsenoside Rh2 reverse the expression of hsa-miR-18a-5p,
which is up-regulated in almost all cancer types (Fig. 5) [57]. Gin-
senoside Rh2 is one of the major bioactive ginsenosides in Panax
ginseng. It has long been used to promote longevity and keep heath
in traditional Chinese medicine [58]. Modern pharmaceutical stud-
ies have found Ginsenosides can improve brain function and
enhance cardiovascular health. The investigation has confirmed
its role in anti-proliferation, anti-invasion, anti-metastasis proper-
ties in cancers [58]. Also, the small molecule Bicalutamide upregu-



Table 1
Summary of the pan-RNCs.

MiRNA LncRNA RBP #Number of
tumor type

hsa-miR-224-5p MAGI2-AS3 MBNL2 9
hsa-miR-31-5p MAGI2-AS3 MBNL2 8
hsa-miR-18a-5p SNHG1 PTBP1 7
hsa-miR-18a-5p AC093010.3 ELAVL1 7
hsa-miR-18a-5p AC093010.3 MBNL2 7
hsa-miR-182-5p SNHG1 MBNL2 7
hsa-miR-224-5p MAGI2-AS3 HNRNPC 7
hsa-miR-224-5p AC093010.3 MBNL2 7
hsa-miR-195-5p SNHG1 HNRNPA2B1 7
hsa-miR-374b-5p MAGI2-AS3 MBNL2 7
hsa-miR-19a-3p SNHG20 CBX7 6
hsa-miR-30a-5p AC239868.2 MOV10 6
hsa-miR-31-5p MAGI2-AS3 RBFOX2 6
hsa-miR-139-5p AC093010.3 MBNL2 6
hsa-miR-1-3p MIR4435-2HG PTBP1 6
hsa-miR-1-3p LINC00641 HNRNPA2B1 6
hsa-miR-1-3p LINC00641 IGF2BP3 6
hsa-miR-133a-3p FGD5-AS1 PTBP1 6
hsa-miR-145-5p SNHG1 DDX54 6
hsa-miR-195-5p FGD5-AS1 MBNL2 6
hsa-miR-195-5p SNHG1 UPF1 6
hsa-miR-195-5p SNHG1 PTBP1 6
hsa-miR-195-5p SNHG1 DDX54 6
hsa-miR-195-5p AC024075.2 HNRNPA2B1 6
hsa-miR-374a-5p MAGI2-AS3 MBNL2 6
hsa-miR-381-3p AC093010.3 ELAVL1 6
hsa-miR-381-3p AC093010.3 HNRNPA2B1 6
hsa-miR-140-3p SNHG1 PTBP1 6
hsa-miR-450b-5p LINC00641 MBNL2 6
hsa-miR-374b-5p MAGI2-AS3 IGF2BP2 6
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lated the expression of hsa-miR-381a-3p, which was down-
regulated in nearly all cancer types (Fig. 5). Bicalutamide was an
oral non-steroidal antagonist of androgen receptor. It has been
clinically used in androgen-deprivation therapy for the treatment
of advanced prostate cancers. Recent study indicated that Bicalu-
tamide also inhibits the proliferation and invasion in triple nega-
tive breast cancer, thus it is a promising drug repurposed for
breast cancer treatment [59].
3. Discussion

RNA-binding proteins, representing 7.5% of all protein-coding
genes, play a key regulatory role in the post-transcriptional events
[60]. A thorough analysis indicated only 2% of RBP families are
tissue-specific [3]. This observation raised the question of how do
RBPs precisely establish and maintain the distinct programs in
Table 2
The potential druggable RBPs in pan-RNCs.

RNA regulation
mechanism

DRUGa

MBNL2 Alternative splicing Neobractatin

ELAVL1 mRNA translation, mRNA
stability

Dehydromutactin, Androstanolone,
MS-444, CMLD-2

RBFOX2 Alternative splicing resveratrol

IGF2BP2 mRNA localization,
mRNA stability

IGF2BP3 mRNA localization,
mRNA stability

HNRNPA2B1 Alternative splicing Copperc, Dihydroartemisininc

a The drug targeted to the RBPs and its therapeutic strategy was extracted from the b
b The expression pattern of the RBPs across cancer types in this study.
c The drug was targeted to the RBPs based on the DRUGBANK database (https://go.dr

5241
highly differentiated cells? In recent years, hundreds of RBPs are
characterized via either RNA-centric approaches (i.e. detecting pro-
teins bound to an RNA of interest), or protein-centric methods (i.e.
examining RNAs bound to a protein of interest). Analyses of these
experimental data indicate that RBPs usually interact with multi-
ple ncRNAs such as miRNAs and lncRNAs, to work in concert. Con-
versely, one single ncRNA such as miRNA, can target the mRNAs of
multiple RBPs. Therefore, the combinatorial diversity among RBP-
ncRNA interactions contribute, in part, to the diversity of cellular
programs [2,5,61].

Particularly relevant in cancer, ncRNAs-RBP interactions have
been identified as key determinants. For example, we recently
found the binding of TRA2A with a �8Kbp long lncRNA MALAT1,
triggers carcinogenesis in esophageal cancer cells [62]. RBPs usu-
ally regulate lncRNA stability, transportation, and localization
[63]. RBPs also play a role as ‘‘RNA scaffold” to recruit lncRNA to
participate in gene transcription and post-transcriptional transla-
tion [64]. In addition, Pol II, RNase III enzymes and RBPs in splicing
machinery are actively involved in the miRNA processing. Disrup-
tion of RNA binding proteins impacts multiple steps of the RNA life
cycle in cancers [28,65]. On the other hand, numerous miRNAs
bind with complementary sites in the 30-untranslated region and
guided the degradation of transcripts by interacting with RBPs in
RNA-induced silencing complexes [6]. In addition to this canonical
mechanism, miRNAs post-transcriptionally regulate the target
mRNA/lncRNA expression mostly through shared miRNA response
elements (MREs), which form the basis for lncRNAs and mRNAs
crosstalk [66]. Investigating the RBP-ncRNA circuits formed by
complex ncRNAs-RBP interactions would provide a deeper under-
standing of the robustness of cancer system to perturbations, thus
to design better therapeutic interventions.

In this study, we first constructed the human RNC network
based on experimentally identified RBP-ncRNA interactions. We
only considered the interactions among RBP, miRNA and lncRNA,
whereas it is far more complicated in the real RBP-ncRNA network.
It may contain other types of nodes (such as circular RNAs), more
nodes engaged in the altered RNC (i.e. the number of nodes in RNC
larger than 3), and sometimes the edges are with directions. Nev-
ertheless, we have shown the resulted networks demonstrate typ-
ical scale free property of transcriptional networks, and the
function of nodes relates to cancer biology. Combining with the
differentially expressed analyses of lncRNA, miRNA, and RBP in
each tumor type, we comprehensively dissected dysregulated
RBP-ncRNA circuits across 14 tumor types. Survival analyses sug-
gested that RNCs can serve as prognostic biomarkers. Furthermore,
the RBPs and ncRNAs within aberrant RNCs are also promising
drug targets. In addition, we identified 30 pan-RNCs that are dys-
regulated in multiple cancers. They are usually with high links
Therapeutic
strategya

PMID Expression in cancersb

Small molecule
inducer

31320607 Down-regulated in
cancers

Small molecule
inhibitor

17632515; 11356683;
27677075; 25750985

Upregulated in cancers

Small molecule
inhibitor

23435423, 31028247;
23149937; 19448617

Down-regulated in
most cancers

Gene knockdown 30513526; 29510198; 30220054 Upregulated in most
cancers

Gene knockdown 26158423; 26974154; 29847788 Upregulated in most
cancers

Gene knockdown 21586613; 14633690 Upregulated in most
cancers

iomedical literatures.

ugbank.com/).

https://go.drugbank.com/


Fig. 5. The ELAVL1-related RNCs were affected by CMLD-2. These bar plots represent the expression pattern of ELAVL1 (top left), hsa-miR-18a-5p and hsa-miR-381-3p
(bottom) across 14 tumor types. The molecules colored in red are anticancer drugs. The table at top right summarizes the dysregulation of the RNCs in corresponding cancer;
1 and 0 denote dysregulation and no dysregulation, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version
of this article.)
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with other nodes, which underlies their involvement in cancer
development. Compared with the other abnormal RNCs in individ-
ual cancer, these ‘conserved’ RNCs are good prognostic biomarkers
in many cancers suggesting they have wide clinical applications.
We showed that the nodes within the same dysregulated RNC
often share similar functionality, which can be used to understand
the molecular mechanism and predict novel functions. Specifically,
we demonstrated with experiments that hsa-miR-224-5p affects
EMT program. Analyzing the wiring pattern of RNC also inspires
novel MOA of CMLD-2, an ELAVL1 inhibitor, and repurpose Gin-
senoside Rh2 and Bicalutamide with new indications.
4. Conclusions

Our analysis indicated RNC mediated post-transcriptional regu-
lation is a generic organizing principle across many tumor types,
highlighting the potential of RBP-ncRNA circuits as a new dimen-
sion to elucidate the pathogenesis of cancer, and to develop anti-
cancer drugs.
5. Materials and methods

5.1. Data collection and pre-processing

The expression data of miRNA, lncRNAs and mRNA and the cor-
responding clinical data of samples, were collected from the TCGA
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project [67]. Cancer samples used in our expression analysis are
labelled with barcode (01) in TCGA database, which indicated they
are homogeneous and all from primary cancer. The sample sizes
across 14 cancer types ranged from 89 to 1176 (Table S1B). For
miRNA expression, we calculated the read counts of each mature
miRNA from the isoform quantification files, in which mature
miRNA IDs are updated based on miRBase release 22. For gene
expression, genes in these samples were annotated by the Ensembl
90 annotation of the human genome, and the lncRNA IDs were
extracted based on the gene biotype in the annotation information.
Furthermore, the lncRNAs, miRNAs, or mRNAs that expressed (ex-
pression value >0) in at least half of the samples were retained for
further analysis in each type of cancer.

The mRNA/lncRNA and miRNA expression profiling of breast
tumors were also downloaded from the Gene Expression Omnibus
(GEO, GSE28884). It included 127 breast carcinomas samples and
11 normal samples. We obtained mRNA/lncRNA expression data
based on the re-annotation of probes on the NKI-CMF 35 k oligo
array to the human genome (GRCH38). Limma package was used
for expression normalization and to obtain the significance of
expression changes [68].

5.2. Construction of the basal miRNA-lncRNA-RBP network

The mutual interactions among miRNAs, mRNAs (RBPs) and
lncRNAs were extracted from ENCORI with a high stringency,
where the number of the supported CLIP experimental evidence
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is 3 or greater (miRNA-target relationships are from Ago CLIP-seq
data) [12]. During the construction of regulatory network, the
lncRNA and gene names were mapped to Ensembl IDs, the miRNA
names were mapped to miRBase accession numbers of mature
miRNAs. The RBPs, miRNAs, and lncRNAs that did not map to these
IDs were discarded. As a result, 642 miRNAs, 3296 lncRNAs, and
1209 RBPs constitute 116,451 interactions. In this study, we only
consider RBP-ncRNA sub-networks containing one mRNA, one
miRNA and one lncRNA. Totally there are 51,955 RBP-miRNA-
lncRNA circuits, which consist of 600 miRNAs, 601 lncRNAs and
59 RBPs. The network was visualized with the Network Analyzer
plug-in of Cytoscape [15].

5.3. Identification of the dysregulated RNCs

A sub-network finding algorithm was used to identify abnormal
RNCs [69]. This method outperforms other methods in that it con-
siders the dysregulation extent of both nodes and edges. Briefly,
each node score was calculated through the formula (1), which
was based on the significance of differential expression between
the corresponding cancer samples and normal samples.

Snode ¼ u�1ð1� pÞ ð1Þ
where P-value indicated the significance of expression change
determined by edgeR package [70]. The u�1 represents the inverse
normal cumulative distribution function. Secondly, each edge score
was calculated according to the change of gene co-expression in
cancer and normal samples using the following equations
separately.

FðrÞ ¼ 1
2
ln

1þ r
1� r

ð2Þ

X ¼ FðrtumorÞ � FðrnormalÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:06

ntumor�3 þ 1:06
nnormal�3

q ð3Þ

Sedge ¼ u�1ð1� 2� ð1�uðjXjÞÞÞ ð4Þ
where rtumor and rnormal are the Spearman correlation coefficient of
gene expression based on normalized read counts between cancer
and normal samples, respectively. The correlations were then com-
puted with Fisher transformation (2). The edge was scored accord-
ing to the difference between correlations in tumor samples and
normal samples through Eqs. (3) and (4).

Subsequently, the score of a candidate RNC is calculated by
combining the node scores and the edge scores as follows:

Sall ¼ a
P

nodeSnodeffiffiffiffiffiffiffiffiffiffi
nnode

p þ ð1� aÞ
P

edgeSedgeffiffiffiffiffiffiffiffiffiffi
nedge

p ð5Þ

where nnode and nedge denote the number of nodes and edges in the
network. The parameter a2(0,1) is used to control the weight of
node score and edge score. Here, we set a = 0.5 to the equal contri-
bution of nodes and edges score.

Permutation analysis was performed to estimate the signifi-
cance of each sub-network score. Firstly, three molecules (one
mRNA, one miRNA and one lncRNA) were randomly selected to
construct a background RNC. This process was repeated 100,000
times. Next, the score for each random RNC was calculated accord-
ing to the equations above and generated the null distribution of
random RNCs.

The P-value for an observed RNC was defined as the proportion
of random RNC scores (random) larger than the observed RNC score
(S): P-value = (Nrandom > S)/Np, where Nrandom > S is the number of
random RNC that have larger scores than the observed network,
and Np is the number of permutations. In this study, only RNCs
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with a nominal P-value < 0.05 were considered as dysregulated
in cancer.

5.4. Survival analysis

For each aberrant RNCs, a univariate Cox regression analysis
was used to evaluate the association between survival and expres-
sion of each node in corresponding cancer. The summary risk
scores of the RNC, were calculated based on the combination of
the expressions and the values of the regression coefficients from
the univariate Cox regression analysis as follows.

Risk Scores ¼
Xn

i¼1

ri � ExpðiÞ ð6Þ

where ri is the Cox regression coefficient of node i in the network
(n = 3), n is the number of nodes, and Exp(i) is the normalized
expression value of node i. The median risk score first was used
as a cut-off to classify patients into high and low-risk groups. Then,
a Kaplan-Meier survival analysis was used to assess the clinical sig-
nificance between the two groups.

5.5. Cancer-related mRNA, lncRNA and miRNA

For evaluation, cancer-related lncRNAs were derived from
LncRNADisease v2.0 and lnc2cancer v3.0 [71,72], whereas cancer-
related miRNAs were obtained from HMDD v2.0 [73]. Besides, we
also collected the cancer-related gene from the Cancer Gene Cen-
sus (CGC) and IntOGen databases, which archive manually anno-
tated causal genes in cancer [17,18].

5.6. Functional similarity analysis

We used Gene Ontology similarity in the biological processes to
measure the functional relationship between nodes in the network.
Firstly, GO terms of the gene, miRNA, and lncRNA were down-
loaded from the NCBI gene (gene2go), miRWalk v2.0, and the RISE
database, respectively [74,75]. Next, the similarity score was calcu-
lated by the sum of similarities among the miRNA, lncRNA, and
gene nodes in each RNC with the method of mgoSim as follows
[76].

Similarity Score ¼
X
Ni2Sn

SimðNi;NjÞ=
ffiffiffi
n

p ð7Þ

Sn denote the set of nodes in the network (n = 3). Lastly, the per-
mutation was used to estimate the statistical significance of each
sub-network score. Nodes with expression values and the GO
annotations, were selected randomly to construct a random sub-
network population, and the random go-similarity score was cal-
culated based on the same method. This process was repeated
10,000 times. The percentage in the background network GO sim-
ilarity scores that is greater than the observed go-similarity score
was reported as nominal P-value.

5.7. Transfection and Western blot

Esophageal squamous cell line TE1 was cultured in as previous
described [14]. hsa-miR-224-5p mimics and inhibitor oligonu-
cleotides were designed and synthesized by GenePharma (Suzhou,
China). The transfections were performed using Lipofectamine
3000 (Invitrogen, USA) according to the manufacturer’s recom-
mendations. After 48 h, cells were placed on ice for 30 min in a
RIPA lysis buffer and PMSF (Solarbio, Beijing, China). After protein
extraction, 30 lg protein per sample was loaded to 10% SDS-
polyacrylamide gel electrophoresis (SDS-PAGE) and transferred to
polyvinylidene fluoride membranes (Immobilon P, Millipore, Bil-
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lerica, USA). After blocking with 5% non-fat milk, the membranes
were incubated with primary antibody at 4 �C overnight, followed
by incubation with secondary antibodies at room temperature for
1 h. The antibodies including GAPDH, E-cadherin and Vimentin
were purchased from Cell Signaling Technology (USA).
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