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Abstract

Background: 25% of breast cancer patients suffer from aggressive HER2-positive tumours that are characterised by
overexpression of the HER2 protein or by its increased tyrosine kinase activity. Herceptin is a major drug used to
treat HER2 positive breast cancer. Understanding the molecular events that occur when breast cancer cells are
exposed to Herceptin is therefore of significant importance. Dual specificity phosphatases (DUSPs) are central
regulators of cell signalling that function downstream of HER2, but their role in the cellular response to Herceptin is
mostly unknown. This study aims to model the initial effects of Herceptin exposure on DUSPs in HER2-positive
breast cancer cells using Boolean modelling.

Results: We experimentally measured expression time courses of 21 different DUSPs between 0 and 24 h following
Herceptin treatment of human MDA-MB-453 HER2-positive breast cancer cells. We clustered these time courses into
patterns of similar dynamics over time. In parallel, we built a series of Boolean models representing the known
regulatory mechanisms of DUSPs and then demonstrated that the dynamics predicted by the models is in
agreement with the experimental data. Furthermore, we used the models to predict regulatory mechanisms of
DUSPs, where these mechanisms were partially known.

Conclusions: Boolean modelling is a powerful technique to investigate and understand signalling pathways. We
obtained an understanding of different regulatory pathways in breast cancer and new insights on how these
signalling pathways are activated. This method can be generalized to other drugs and longer time courses to better
understand how resistance to drugs develops in cancer cells over time.
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Background
Breast cancer represents a major public health issue, affect-
ing one in eight women in the Western world [1]. Approxi-
mately 25% of human breast cancer cases are HER2-
positive, due to overexpression of the HER2 protein or
amplification of the HER2 gene, or due to activating muta-
tions that increase HER2 activity. HER2-positive tumours
are associated with poor prognosis [2, 3]. HER2 is a
185 kDa protein that belongs to the family of tyrosine

kinase epidermal growth factor receptors, and is also
known as Neu or ErbB2. HER2 has no known ligand and is
activated by dimerization or by incorporation into heterodi-
mers with its related family members HER1, HER3 or
HER4 [4]. Increased membrane receptor concentration of
HER2 in HER2-overexpressing cells can also activate HER2
by ligand-independent homo-dimerization, leading to acti-
vation of the HER2 signalling pathway [5]. Activated HER2
auto-phosphorylates and associates with other molecules,
activating several signalling pathways and mediators, such
as the Mitogen-Activated Protein Kinases (MAPKs), which
promote cell growth, proliferation, and survival [6].
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A major drug for treating HER2-positive breast cancer is
Herceptin, a humanized monoclonal antibody that binds
the extracellular Domain IV of HER2. Herceptin reduces
HER2 dimerization leading to, among other effects, inhib-
ition of MAPK signalling [6]. Herceptin has high efficacy in
patients with HER2-positive breast cancer, but resistance to
its effects often develops and poses a significant therapeutic
challenge [7, 8].
MAPKs, such as ERK1, ERK2, p38 and JNK, are major

regulators of HER2 signalling and of other signalling events
that take place in cancer cells. MAPKs are activated by
phosphorylation of specific threonine and tyrosine residues
present in a TXY motif by upstream kinases. Dephosphory-
lation of either or both the threonine and tyrosine residues
of this motif downregulates MAPK activity. Dephosphory-
lation of both residues is carried out by specialized en-
zymes, the dual-specificity phosphatases (DUSPs) that are
part of the larger tyrosine phosphatase superfamily [9].
DUSPs comprise a subfamily of 10 MAPK phosphatases
(MKPs) that are key players in inactivating MAPKs, leading
to down-regulation of MAPK signalling [10, 11]. A second
subfamily of DUSPs, the atypical DUSPs, are also involved
in regulating the same pathways [12]. Each DUSP has dif-
ferent subcellular localization and substrate specificity [13].
DUSPs are of particular interest in the context of cancer,
since they play putative roles in tumour progression and in
resistance to therapy [14]. Deeper understanding of the
mechanisms that regulate DUSP expression in HER2 sig-
nalling is crucial to clarify their contribution in cancer pro-
motion and in development of resistance of Herceptin. A
good experimental model to study HER2-positive breast
cancer is MDA-MB-453, a human breast cancer cell line
that overexpresses endogenous HER2 protein [15, 16].
One of the most useful methods to predict the outcome

of signalling pathways is a systems biology approach
through logical modelling [17]. Logical models such as
Boolean models are powerful tools to represent dynamic
molecular processes in complex cellular systems, where
construction of detailed kinetic models would be prohibi-
tively expensive and time-consuming, or where complete
knowledge of molecular interactions or quantitative de-
tails of biological processes is lacking [18]. In a Boolean
model, nodes represent biological components of interest
and are connected by edges describing the nature of the
interaction occurring between them. The activity of bio-
logical components is represented by discrete values
(states), generally 0 (OFF, inactive) or 1 (ON, active), and
actions are represented by activation (positive regulation)
or inhibition (negative regulation) [18].
Several studies of qualitative and quantitative modelling

related to HER signalling have been performed. Chen et al.
presented a quantitative model of HER signalling during
the immediate-early phase of ligand-stimulated cell signal-
ling [19]. Samaga and colleagues built a comprehensive

logical model of the signalling network of EGFR in liver
cancer, which was based on the comprehensive EGFR net-
work map published by Oda and colleagues [20, 21]. Von
der Hyde et al., constructed a Boolean model of HER2 sig-
nalling to identify individual drug response patterns and
their resistance in HER2-positive breast cancer [22]. How-
ever, none of these studies addressed DUSPs specifically,
leaving a major gap in our understanding of how Herceptin
affects these important regulators of cell signalling.
Our work analyses Herceptin action on DUSP expres-

sion in HER2-positive breast cancer cells, in order to
investigate and in some cases predict regulatory mecha-
nisms for DUSPs in this context. The current study exam-
ines DUSPs during the initial phase of Herceptin
treatment, in which some changes in gene expression
occur, but which is still too early for compensatory muta-
tions to arise or to be selected for. Initially, DUSP mRNA
expression in HER2-positive breast cancer cells was deter-
mined experimentally during the period between 0 to 24 h
following cell exposure to Herceptin. In parallel, we con-
structed a series of models that collectively accounted for
the response of each DUSP to the drug and for the varia-
tions in responses among DUSPs, and enabled prediction
of new regulatory mechanisms that were unknown.

Methods
Cell line
The human breast cancer cell line MDA-MB-453
(American Type Culture Collection, Manassas, VA, USA)
was cultured in RPMI 1640 medium (Gibco, Carlsbad, CA,
USA) containing 50 U/ml penicillin, 50 mg/ml strepto-
mycin and 10% heat-inactivated foetal bovine serum (FBS -
Gibco) at 37 °C in an atmosphere of 5% CO2.

Herceptin treatment
Cells were plated in 60 mm plates in duplicate for each
time point, and cultured for two days until they reached
75% confluency. Cells were then treated with 50 μM Her-
ceptin (Roche, Switzerland) continuously for 2, 4, 12 or
24 h and then collected. Plates prepared and grown in par-
allel but not exposed to Herceptin were used as time 0.
Total RNA was extracted from cells using the RNeasy
Mini Kit (QIAGEN, Germany) and was treated with
DNase I at room temperature for 15 min. One microgram
of total cellular RNA was reverse transcribed in a final vol-
ume of 20 μl using the qScript cDNA synthesis kit
(Quanta Biosciences, Beverly, MA, USA) according to the
manufacturer’s protocol. 0.5 μl (25 ng) cDNA was used to
perform quantitative PCR (RT-qPCR) using KAPA SYBR
Fast qPCR Master Mix (2X) ABI Prism (Kapa Biosystems,
Wilmington, MA, USA) and target-specific forward and
reverse primers (Additional file 1) in an AB StepOnePlus
instrument (Applied Biosystems, Foster City, CA, USA).
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The amplification conditions consisted of an initial acti-
vation step of 95 °C for 20 s, followed by 40 cycles of 95 °
C for 3 s and 60 °C for 30 s, and ending with one run of
95 °C for 15 s, 60 °C for 60 s and 95 °C for 15 s.
Standard curves were used to assess primer efficiency,

and average change in threshold cycle (ΔCT) values were
determined for each of the samples relative to endogenous
Actinb and GAPDH (internal control) levels using the
ΔΔCT method, where the fold change of target gene ex-
pression is determined relative to a reference sample, nor-
malized to the reference genes (Actinb and GAPDH) [23].
Experiments were performed in triplicates to determine
mean along with standard error, having two biological re-
peats. DUSP-specific forward and reverse primers were
designed using the Primer3 software [24, 25].
Levels of Actinb and GAPDH mRNA transcripts mea-

sured as described above were used to normalize the
amount of input RNA amplified in each reaction. Each
sample was amplified in duplicate and the resultant mean
values were used for analysis. Student T-test statistical ana-
lysis was performed in GraphPad Prism version 7.0a for
Mac OS X (GraphPad Software, La Jolla California, USA).

Correlations of DUSP expression
DUSPs time courses were further analysed by computing
Pearson correlation coefficients between all time series;
the log10 of raw intensity values was taken, then correla-
tions were computed using the corr function in Python
2.7. Since we wanted clusters to be composed of only
positively correlated time courses, we set all negative
correlations to zero then computed clusters using the
clustermap function from the seaborn library, with the
default average linkage method; clusters were plotted
using matplotlib.

Construction of Boolean models
Boolean models were manually constructed following an
extensive literature review. Previously reported network
maps of HER signalling were mined to find the essential
proteins and interactions for HER2 downstream signal-
ling. Relevant proteins and interactions found to be in-
volved in downstream signalling of MAPK - ERK as
described by Chen et al., and other components of
MAPK downstream signalling, JNK and p38, in models
developed by Oda et al. and Samaga et al., were in-
cluded. All the selected interactions have been checked
for cellular context and verified using multiple literature
sources [19–21].
In normal cells, the basal level of the downstream

MAP kinases (ERK, JNK and p38) leads to proliferation;
increased activity of both JNK and p38 leads to apop-
tosis and inhibition of cellular growth and proliferation
[26–29]. However, cancer cells often do not undergo
apoptosis because of the inhibitory action of DUSPs on

both JNK and p38. Detailed interactions of DUSPs with
their cognate kinases were not included in any of the
previously reported maps or models. These were added
to our models, based on literature reports of substrate
specificity [12, 13] and the necessity to investigate their
contribution.
Graphical maps of all the models were created using the

yWorks yEd graph editor (version 3.14.4). All the interact-
ing components of the model were represented as nodes
(rectangular boxes), while the interactions were repre-
sented as edges (sharp arrow for activation and blunt
arrow for inhibition). Circles represent the AND function
which combines several interactions. Model construction
and time course simulation of MAPK signalling pathways
in response to Herceptin treatment was done using the
BooleanNet toolkit under Python 2.7 [30]. Both synchron-
ous and asynchronous simulations were performed. In
synchronous updating rules, all variables are updated at
the same time, while in asynchronous simulations a single
random variable is updated at a time. The asynchronous
simulations confirmed the results obtained from the syn-
chronous simulations, hence we only present the results
of the latter. Heatmaps were generated and exported using
the Python tool matplotlib [31].
Herceptin was selected to be a user defined input,

while Survival was chosen as a readout. Each node in
the model can be either in an active state (ON) or in an
inactive state (OFF), referring to 1 and 0 respectively in
a binary domain n ∈ ℕ; t ∈ ℤ+: n(t) = 0 or 1. In this
model interactions were represented as either activation
or inhibition, combined using AND, OR and NOT Bool-
ean functions, which are sufficient to represent any lo-
gical relationship. All of these reactions were considered
to have equal time scale t = 1. A set of initial conditions
were assumed considering at least one node to be active,
then other nodes either become inactive (1 ➔ 0), active
(0 ➔ 1) or maintain their state (0 ➔ 0 or 1 ➔ 1) after
each time increment. These changes are dependent on
the upstream nodes and interaction conditions. Where
difficulties arose in determining the use of AND or OR
functions, this was solved by reviewing the specific lit-
erature. The AND function was used when there was an
explicit action of two or more proteins acting collectively
on a node, otherwise the OR function was applied [32].

Results
DUSP expression measured by qPCR
We measured gene expression of 21 DUSPs (10 MKPs
and 11 atypical DUSPs) by RT-qPCR in the human
HER2-positive MDA-MB-453 breast cancer cell line at
0, 2, 4, 12 and 24 h following Herceptin exposure. Data
from time point 0 (non-treated samples) was the refer-
ence against which expression levels at the other time
points were compared for each DUSP. We limited our
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Fig. 1 DUSP mRNA expression measured by RT-qPCR. (a-u) DUSP expression measured by RT-qPCR, comparing expression of the indicated DUSPs
in control (non-treated, time 0) samples with cells at 2, 4, 12 and 24 h following exposure to Herceptin. Bars represent mean ± SE. Two biological
repeats (each in triplicate) were performed. An asterisk indicates a statistically-significant difference of p < 0.05 from the value at t = 0
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analysis to 24 h in order to focus on the initial response
in DUSP gene expression and cell signalling to Hercep-
tin. RT-qPCR expression levels of the 21 selected DUSPs
are shown in Fig. 1(a-u).
Expression of individual DUSPs was variable among the

different time points following Herceptin treatment. Her-
ceptin treatment led to a decrease in expression of most
DUSPs: expression of DUSPs 3, 5, 7, 10, 14, 16, 21 and 22
was decreased during the entire exposure to Herceptin,
while expression of DUSPs 1 and 12 was decreased until
12 h. Some of the DUSPs showed no clear trend or no
strong change, while other DUSPs decreased at the begin-
ning, but rose strongly at later time points (e.g. DUSP9).
Expression of a number of DUSPs increased immediately,
but subsequently decreased: DUSP19 increased up to 2 h
and decreased later. DUSPs 2, 6 and 8 showed a peak at
12 h, DUSP28 and 15 showed a peak at 4 h. DUSP22 ex-
pression was abolished over the entire time series, while
in DUSP16 expression showed a gradual decrease. In con-
trast, DUSP18 showed a gradual increase in expression
throughout the entire time course of this study.

Correlation of DUSP expression and clustering
In order to characterise these different expression pat-
terns in a more rigorous manner, we calculated correla-
tions between expression time courses of all individual

DUSPs. Figure 2 shows an overview of matching DUSP
expression patterns, which revealed seven clusters that
were selected for further modelling and analysis.
From the correlation matrix and visual inspection of

the expression time courses we defined the following
clusters: cluster 1 is composed of DUSPs 2, 6 and 8;
cluster 2 includes DUSPs 9 and 11; DUSPs 4 and 7 be-
long to cluster 3; cluster 4 consists of DUSPs 23 and 28;
DUSPs 5 and 22 are part of cluster 5; DUSPs 3 and 21
belong to cluster 6, while cluster 7 includes DUSPs 1
and 12. There were six remaining DUSPs which did not
fit into any cluster, these are: DUSPs 10, 14, 15, 16, 18
and 19.
The distinct expression patterns over time for each

cluster are shown in Fig. 3, where expression of all
DUSPs in a given cluster is plotted on logarithmic scale.
Generally, an immediate decrease in DUSP expression
can be seen in the clusters. For cluster 1, the immediate
decrease is followed by a sharp increase after 2 h then
an abrupt reduction after 12 h. Cluster 2 shows little
change for the first 4 h, followed by a marked increase
until 12 h, ending with a slight decrease until 24 h. In
cluster 3, an initial reduction for the first 4 h is followed
by an increase in DUSP expression until 12 h. Cluster 4
shows an immediate decrease then abrupt increase at
4 h, followed by a sharp decrease until 12 h, ending with

Fig. 2 Clustering of DUSP expression time courses. Clustering of DUSP expression time courses between 0 and 24 h after exposure to Herceptin.
Colours represent the Pearson correlation coefficient between each pair of DUSPs, with negative values clipped to zero
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an increase until 24 h. In cluster 5 the expression shows
a moderate oscillating pattern, the expression varies
within a small range. In cluster 6 a reduction in DUSP
expression is observed until 12 h followed by an increase
until 24 h. Finally, cluster 7 shows an overall pattern of a
slight increase followed by a sharp decrease.

Boolean modelling of the selected clusters
In order to interpret the biological findings, a series of
models were created to simulate and represent the pos-
sible combinations of DUSP regulation (including
induction of expression and substrate specificity). Each
analysed cluster has been matched with a model.
Figures 4-7 show the model and simulation results for

one representative DUSP from each cluster for which
regulatory mechanisms were known: DUSP2 for cluster
1, DUSP4 for cluster 3, DUSP5 for cluster 5 and DUSP1
for cluster 7.
The representative of cluster 1, DUSP2, is induced by

ERK1/2 and JNK1/2; it inhibits ERK1/2 and p38 [13].
When exposed to Herceptin over time, DUSP2 shows an
oscillating pattern in the Boolean model that agrees with
the quantified gene expression data by RT-qPCR (see
Figs. 3a and 4).
The regulation of DUSP4, the chosen representative of

cluster 3, is known: it is induced by ERK1/2 and it in-
hibits ERK1/2 and JNK1/2 [13]. When exposed to Her-
ceptin over time, DUSP4 shows oscillating expression in

Fig. 3 Time series of DUSP expression exposed to Herceptin grouped by selected clusters. The horizontal axis represents time, the vertical axis
represents measured expression expressed in logarithmic scale. Expression levels were normalised with respect to the control (1). Data represents
mean ± SE (two biological repeats, each in triplicate) as noted in Fig. 1. a Cluster 1; b Cluster 2; c Cluster 3; d Cluster 4; e Cluster 5; f Cluster 6; g
Cluster 7
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the Boolean model that agrees with the quantified gene
expression data by RT-PCR (see Figs. 3c and 5).
The representative of cluster 5, DUSP5, is induced by

ERK1/2 and it inhibits ERK1/2 [13]. When exposed to
Herceptin over time, DUSP5 shows oscillating behaviour
in the Boolean model that agrees with the quantified
gene expression data by RT-PCR (see Figs. 3e and 6).
DUSP1, the representative for cluster 7, is induced by

ERK1/2 and p38, and inhibits JNK1/2 [13]. When ex-
posed to Herceptin, Boolean modelling indicates that
DUSP1 expression is initially stable and then decreases,
in accordance with the quantified gene expression data
by RT-PCR up to 12 h (see Fig. 3g and 7).
Figures 8-10 show representative models matching ex-

pression trends with their corresponding predicted heat-
maps for DUSPs whose regulation is only partially

known. Each model and heatmap shows one representa-
tive DUSP per cluster: DUSP9 (cluster 2), DUSP23 (clus-
ter 4) and DUSP3 (cluster 6). For all these DUSPs, it is
currently unknown by which MAPKs they are induced.
In cluster 2, DUSP9 was chosen as a representative

and its regulation is partially known: its substrate is
ERK, but it is unknown by which of the MAP kinases
it is induced. Therefore, we simulated the possible
combinations of all regulators and we found that the
only solution that showed a convincing agreement be-
tween Boolean model simulation and experimental
time course was the one where DUSP9 is induced by
JNK. The agreement between Boolean model (Fig. 8)
and DUSP9 expression time course enables us to pre-
dict that DUSP9 might be regulated by JNK. Since
the two MAP kinases JNK and p38 are symmetrical

Fig. 4 DUSP2 model. (Left). Network map of DUSP2 regulation (cluster 1) in MDA-MB-453 HER2-positive breast cancer cells exposed to Herceptin.
(Right). Corresponding Boolean time series represented as a heatmap showing gene expression. Green and red indicate nodes in the ON and
OFF states, respectively. Note that time units in Boolean simulations are arbitrary and do not necessarily match the 24 h period of the study, but
the overall expression pattern can be compared to the overall Boolean time series

Fig. 5 DUSP4 model. (Left). Network map of DUSP4 (cluster 3) regulation in MDA-MB-453 HER2-positive breast cancer cells exposed to Herceptin.
(Right). Corresponding Boolean time series represented as a heatmap showing gene expression as described in Fig. 4
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in the model, the same outcome can be achieved if
DUSP9 is induced by p38.
In cluster 4, DUSP23 is the smallest active phosphat-

ase, whose regulation is only partially known: its sub-
strates are ERK [33], JNK1/2 and p38 [34], but it is
unknown by which of the MAP kinases it is induced.
The Boolean model shown in Fig. 9 agrees with the ex-
perimental time course and enables us to predict that
DUSP23 might be regulated by JNK1/2. Since the two
MAP kinases JNK and p38 are symmetrical in the
model, the same outcome can be achieved if DUSP23 is
induced by p38.
In cluster 6, DUSP3 is an atypical phosphatase that

has a similar catalytic domain as the typical MKPs.
Therefore, DUSP3 was suggested to dephosphorylate
MAP kinases in the same manner as MKPs [12]: JNK,
ERK [35] and also p38 [36]. The Boolean simulation
shown in Fig. 10 agrees with the experimental time

course, enabling us to predict that DUSP3 might be reg-
ulated by JNK1/2.
DUSP16 has an inhibitory action on JNK and p38 [13],

but it is unknown by which kinase it is induced. The
model presented in Fig. 11 is in agreement with the
measured DUSP16 expression time course, therefore we
can predict that DUSP16 might be induced by ERK. It is
worth noting that all models presented above show sur-
vival to be ON, but in the case of the DUSP16 model,
survival switches to OFF after some time.

Discussion
Previous studies of Herceptin treatment in HER2 positive
breast cancer and development of resistance to Herceptin
focused on its effects on various signalling pathways and
on cell survival [22, 37–39]. Györffy and colleagues corre-
lated Herceptin resistant tumours from patients with
DUSPs involved in development of Herceptin resistance

Fig. 6 DUSP5 model. (Left). Network map of DUSP5 (cluster 5) regulation in MDA-MB-453 HER2-positive breast cancer cells exposed to Herceptin.
(Right). Corresponding Boolean time series represented as a heatmap showing gene expression as described in Fig. 4

Fig. 7 DUSP1 model. (Left). Network map of DUSP1 (cluster 7) regulation in MDA-MB-453 HER2-positive breast cancer cells exposed to Herceptin.
(Right). Corresponding Boolean time series represented as a heatmap showing gene expression as described in Fig. 4
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in HER2 positive breast cancer, and suggested that DUSP4
is involved in this process [40]. Nonetheless, there are sig-
nificant gaps in our understanding of whether and how
DUSPs participate in development of Herceptin resistance
in breast tumours.
Here we presented a comprehensive analysis of the

early-stage responses of 21 selected DUSPs to Herceptin
treatment in human breast cancer cells. The cell line
MDA-MB-453 is reported in the literature in some
cases as being Herceptin sensitive [41–43] and in others
as Herceptin resistant [44–46]. Our study focuses on
short-term effects of exposure to Herceptin in order to
examine the initial response of HER2-expressing
tumour cells to Herceptin. We expect that this response
is based on the pre-existing cell signalling pathways –
possibly with some rapid re-configuration induced by
Herceptin – and would shed light on the structure of
these pathways. In contrast, the time frame of this study

effectively prevents mutations in genes from affecting
the cellular response. DUSPs 1, 3, 4, 7, 10, 12, and 21
showed a decrease in expression compared to the con-
trol, non-treated group during the entire time series,
while the other DUSPs showed a pattern of increasing
expression over time. Herceptin reduces mitogenic and
survival signals from HER2. It is then possible that the
initial decrease in DUSP expression aims to counter this
effect by removing DUSPs that down-regulate MAPK
activity and thus also counter mitogenic and survival
signalling. At later times additional roles of DUSPs be-
come evident, and their expression patterns diverge. For
example, at 24 h expression of DUSPs 1, 12, 23, 28, 3,
21 increases, possibly indicating the beginning of emer-
ging resistance. Alternatively, these DUSPs may perform
additional roles upon which cell survival depends and
which limit the length of time the cells can withstand
their reduced expression.

Fig. 8 DUSP9 model. (Left). Network map of DUSP9 (cluster 2) regulation in MDA-MB-453 HER2-positive breast cancer cells exposed to Herceptin.
(Right). Corresponding Boolean time series represented as a heatmap showing gene expression as described in Fig. 4

Fig. 9 DUSP23 model. (Left) Network map of DUSP23 (cluster 4) regulation in MDA-MB-453 HER2-positive breast cancer cells exposed to Hercep-
tin. (Right). Corresponding Boolean time series represented as a heatmap showing gene expression as described in Fig. 4
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Uniquely for DUSP16, whose expression is decreased
dramatically following treatment with Herceptin, the
model shows that Survival switches OFF after some
time. Although cells are not dying in the time frame of
24 h, reduced expression of phosphatase might play an
important role in driving apoptosis of cells treated with
Herceptin, and thus prevent resistance to the drug from
arising. Additional experimental and modelling studies
are therefore required to understand cell behaviour at
later time points.
Previous studies have utilized Boolean modelling to

understand cellular responses in cancer. Fumia and
Martins constructed and described theoretical models
which included the main signalling pathways in can-
cer in order to interpret mutational events and cancer
cell response [47]; Grieco et al. performed in silico
simulations to understand the role of deregulations in
MAPK signalling on cell fate decision in cancer [48].

Von der Heyde et al. used reverse and forward engin-
eering techniques in order to reveal individual mecha-
nisms of drug response or resistance in breast cancer
[22]. Sahin et al. constructed a literature-based Bool-
ean model to model the regulation of pRB through
ERBB-receptor signalling in native Herceptin resistant
cell lines. These authors integrated the experimental
data into their model and overcame discrepancies
with additional experimental validation [49]. Our ap-
proach is distinct in that we combine pre-existing
biological knowledge about DUSP regulation to con-
struct mechanistic Boolean models, together with in-
dependent experimental analysis to challenge and
validate these models. The models presented here
were not trained to fit experimental data but we
showed that the predicted dynamics of DUSP expres-
sion is in accordance with experimentally observed
time courses, which gives stronger confidence that

Fig. 10 DUSP3 model. (Left). Network map of DUSP3 (cluster 6) regulation in MDA-MB-453 HER2-positive breast cancer cells exposed to Herceptin.
(Right). Corresponding Boolean time series represented as a heatmap showing gene expression as described in Fig. 4

Fig. 11 DUSP16 model. (Left). Network map of DUSP16 regulation in MDA-MB-453 HER2-positive breast cancer cells exposed to Herceptin. (Right).
Corresponding Boolean time series represented as a heatmap showing gene expression as described in Fig. 4
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the models are mechanistically correct. Moreover, this
approach allowed us to predict new regulatory mech-
anisms for DUSPs with partially known regulation,
such as DUSPs 9, 23, 3 and 16. In the future, this
method can be extended by measuring and simulating
longer time series, as well as by including additional
signalling pathways in order to better understand the
dynamics of development of resistance to Herceptin
in breast cancer.

Additional file

Additional file 1: List of primers used for qPCR analyses of the
expression of the DUSP mRNAs examined in this study. Description: All
sequences are of human origin except for beta actin, which is from
mouse. (DOCX 198 kb)
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