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Abstract: Two of the biggest challenges in building models for detecting emotions from electroen-
cephalography (EEG) devices are the relatively small amount of labeled samples and the strong
variability of signal feature distributions between different subjects. In this study, we propose a
context-generalized model that tackles the data constraints and subject variability simultaneously
using a deep neural network architecture optimized for normally distributed subject-independent fea-
ture embeddings. Variational autoencoders (VAEs) at the input level allow the lower feature layers of
the model to be trained on both labeled and unlabeled samples, maximizing the use of the limited data
resources. Meanwhile, variational regularization encourages the model to learn Gaussian-distributed
feature embeddings, resulting in robustness to small dataset imbalances. Subject-adversarial regular-
ization applied to the bi-lateral features further enforces subject-independence on the final feature
embedding used for emotion classification. The results from subject-independent performance exper-
iments on the SEED and DEAP EEG-emotion datasets show that our model generalizes better across
subjects than other state-of-the-art feature embeddings when paired with deep learning classifiers.
Furthermore, qualitative analysis of the embedding space reveals that our proposed subject-invariant
bi-lateral variational domain adversarial neural network (BiVDANN) architecture may improve the
subject-independent performance by discovering normally distributed features.

Keywords: electroencephalography; emotion modeling; subject independence; domain generaliza-
tion; variational autoencoder; domain adversarial network

1. Introduction

Emotions play an important role in daily life, not only in regulating human interactions
but also in influencing our perception of the world around us. Computer systems may
also benefit from learning and understanding human emotions, enabling them to facilitate
smooth human–computer interactions, leading to an improved overall user experience [1].
We convey emotions in different ways: through facial expressions, vocal tone, or gestures.
Modern sensors and data-processing techniques can convert these into data channels,
which can be decoded by computer systems. Naturally, each data channel has its pros and
cons. For example, features that appear to be the most natural for human observers might
also be the modalities most prone to outside influence and the most likely to differ across
cultures. This can hinder the identification of the true state of a subject, particularly when
the subject knows it is being observed (i.e., observer effect). Thus, it may be beneficial to
consider other signals, particularly those closer to the fundamental source of emotions, the
brain. Electroencephalography (EEG) has gained considerable attention from researchers
since it has advanced into a viable option for portable, affordable, and easy-to-use solutions
for detecting emotions directly from the brain. However, the biggest challenge for existing
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EEG technologies is that the signal is very weak and is naturally subject to non-emotion
related noise effects [2]. This noise can be internal, a natural effect of user variability,
or external, caused by electrical signals from the rest of the body or the surrounding
environment. The true extent of this noise is difficult to measure; however, studies [3] have
shown that as much as half of EEG signals can be under the influence of facial expressions
alone. Therefore, it is important to be able to extract the most stable brain emotion features
from the EEG data to build a robust emotion model.

EEG is prone to certain types of noise; this necessitates the use of some combination of
signal cleaning and enhancement techniques in the processing pipeline. The most common
of these are signal filters designed to filter out nuisance signals from certain frequency
bands not directly related to brain signals. Additionally, it is occasionally necessary to
decompose and analyze the components of the cleaned signal to further improve the signal-
to-noise ratio. Of these, some of the most commonly used are independent component
analysis (ICA) [4], artifact subspace reconstruction (ASR) [5], common average reference,
surface Laplacian, and principal component analysis (PCA) [6]. These techniques can be
used to identify noise sources and remove them from the signal. However, most of these
have the disadvantage of requiring manual intervention by the researcher to distinguish
and remove the noise sources from the decomposed signal.

In recent years, similar forms of manual filtering and feature engineering have largely
been made obsolete in other signal-processing fields, such as computer vision, due to the
prominence of deep learning (DL). In response, recent studies in EEG emotion analysis have
also explored machine learning as a strategy to automatically discover the most relevant
features from the EEG signal through different DL techniques and architectures [7]. In
particular, significant effort is being put toward developing models that can perform well
across different subjects. This is one of the goals of the current work, to achieve improved
generalizability by identifying subject-invariant features from EEG.

1.1. Machine Learning with EEG

Machine learning, particularly deep learning, offers to bypass some of the EEG feature
extraction steps by discovering features directly from the data distributions. To leverage
the full functional potential of DL, some studies propose building end-to-end pipelines
for EEG. In one of the most prominent works [8], researchers proposed a specialized DL
architecture with convolutional neural networks (CNNs) to learn directly from the raw
EEG signals. To emulate the time-frequency filters normally used to extract band power
features from EEG, they introduced a structured temporal and spatial convolution strategy
that outperformed filter bank common spatial patterns (FBCSP) [9], the de facto standard
method at the time. A more recent work proposed EEGNet [10], a similar architecture to
the previous DeepConvNet, but with even more strongly specialized filters designed for
EEG signal processing. Specifically, they introduced depthwise convolutional filters and
pointwise filters to estimate bandpass filters, and they analyzed the features learned by
their models on several EEG datasets. They found that the EEGNet model was successful
in learning some filters that showed a good correlation with certain bandwidths.

While promising, a key limitation of these works is that learning the most basic generic
filters, as is the case in image-based DL models, requires a large comprehensive training
dataset. To alleviate this, end-to-end EEG models tend to feature fewer learnable parame-
ters by limiting the number of layers and networks weights, and by constraining each layer
to as few filters as possible to avoid overfitting. Even the DeepConvNet implementation
in Schirrmeister et al. [8] is relatively shallow in comparison to most architectures used in
image and audio analyses. A survey [11] found that larger DL models are not effective for
EEG BCI applications since they are regularly outperformed by shallower implementations.
This concurs with our findings in a previous work analyzing meditation [12], where a shal-
low model matched or even outperformed more complex deep models. This is likely the
result of the relatively small size of available EEG datasets and the large number of param-
eters typically used in DL models. Modeling a complex phenomenon such as emotion may
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require a considerably large dataset or different methods of regularization to learn an ideal
set of generic low-level features. In the interim, where neither a sufficiently large dataset
for EEG nor a generic deep feature extractor is available, it may be prudent to opt for the
standard frequency filtering methods to build robust high-level feature representations.

1.2. Topographic Models

Due to the complexity of learning end-to-end EEG models, many works have opted
to build machine-learned emotion models from EEG topographs. This representation
combines the time-frequency features of fast Fourier transform/power spectral density
(FFT/PSD) filters with the spatial information of the EEG channel locations. This allows the
modeling of the signal distribution across different regions of the brain. One of the earliest
works to propose the use of spectral topography maps with DL was Bashivan et al. [13].
Their study used CNNs and recurrent neural networks (RNNs) to model the effects of
mental workloads on EEG. Their experiments showed that deep models trained on EEG
topography data could cope well with inter- and intra-subject differences. Our work is
patterned on Bashivan et al. [13] in that we also use image-based representations of EEG;
however, we forgo the use of long-term short-term memory (LSTM) models due to their
high data requirements.

In a more recent work [14], the researchers proposed a similar bi-hemispheric model
of EEG emotion; however, they used an end-to-end model based on domain adversarial
training. This was a vast improvement from Schirrmeister et al. [8] in that features were
learned automatically through DL. As input, they used differential entropy (DE) features
passed to two feature extractors, one for each hemispheric EEG signal. Furthermore, three
discriminators were used: one for each brain hemisphere and the other for the whole brain
features. Thereafter, adversarial regularization was used to adapt the feature distribution
of the trained source domains to each target user domain. As a result, their BiDANN
model performed better than state-of-the-art approaches on the SEED dataset [15,16],
another popular public EEG dataset, particularly on subject-independent tests. They have
since refined their approach by implementing the input electrode streams as pairwise
sub-networks organized into horizontal and vertical streams [17]. This allows their model
to learn how EEG signals traverse over time and across different regions in the brain. This
approach saw improvements in both subject-dependent and subject-independent tests.
Both of these methods required domain-adversarial training or fine-tuning of the model to
each target subject. They represent a step towards finding subject-invariant EEG features
which could be the key to solving the subject generalization problem.

1.3. Subject-Invariant Feature Extraction

Regardless of the input feature, a key challenge in EEG-emotion studies is finding high-
level features that are invariant across subjects. Domain adaptation and domain generalization
approaches attempt to solve this problem by allowing models to optimize for features
that can generalize across different domains [18]. Here a domain represents a probability
distribution from which one can obtain samples used to train a model (e.g., training and
testing). Domain adaptation aims to produce optimized models for the target domain
by applying knowledge learned from a labeled source domain, while also leveraging
unlabeled samples from the (possibly unlabeled) target domain. The problem of contextual
variance is not unique to EEG studies. In fact, domain adaptation is currently a hot topic in
the field of computer vision [18,19]. This is driven by realizations that along with the great
learning potential and flexibility of deep learning models comes the increased propensity
to overfit to a single sample distribution (i.e., the training set) [20].

On the other hand, domain generalization aims to learn a unified representation from
a set of similar domains, with the intent of maximizing its usability on an unseen target
domain. Unlike domain adaptation, domain generalization does not require adjusting the
model to adapt to a new target, making it more appealing for systems designed for general
use. In this work, we propose a robust domain-generalized EEG emotion architecture
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that combines latent space regularization based on variational auto-encoders (VAEs) with
subject adversarial regularization.

2. Literature Review

While most domain adaptation techniques were originally intended for other signal
processing applications such as image processing and sensor drift [21], a growing number
of these techniques are gradually being applied successfully to EEG analysis. Roy et al. [7]
provides a comprehensive survey of recent advancements in DL for EEG analysis, while
Lan et al. [22] provides a good benchmark of domain adaptation methods applied to EEG-
emotion data. In this section, we discuss a number of recent methods for extracting
domain-invariant features from EEG and narrow down which techniques can potentially
lend themselves to domain generalization.

2.1. Domain Adaptation

Domain adaptation constitutes a subset of transfer-learning techniques, which attempt
to directly adjust learned model parameters to better accommodate a target dataset. The
underlying principle is that data from two domains collected under different conditions
can be assumed to have different feature distributions. The general goal of adaptation is
to find a feature transformation where the domains are indistinguishable but still retain
some of the original characteristics of the data [21]. In the case of EEG, it is often desirable
to remove factors stemming from subjective characteristics while maintaining the effects of
the phenomenon being studied (e.g., emotion). The majority of techniques currently being
explored in this field are either kernel methods or DL methods.

2.1.1. Kernel-Based Methods

Kernel methods are a class of algorithms that use kernel functions to project data onto
a high-dimensional feature space where they are more likely to be linearly separable. These
projections are typically calculated from inner product spaces, also known as Hilbert spaces,
H, which also encode data similarity metrics. For more efficient computation,H is paired
with a corresponding reproducing kernel, k(x, x′), which when satisfying certain properties
of linearity and continuity, defines a reproducing kernel Hilbert space (RKHS) [23]. This is
the core of the kernel trick, which enables substitution of the kernel function, k(x, x′), with a
more efficient feature mapping, <Φ(x), Φ(x′)>, where Φ is the feature map. This enables
the kernel projection to be more efficiently applied to machine learning classification
methods such as support vector machines.

Among domain adaptation kernel methods, one powerful kernel-based approach is
proposed by transfer component analysis (TCA) [24]. TCA implements domain adaptation
in RKHS by optimizing kernel parameters to minimize the maximum mean discrepancy
(MMD) metric between domains. MMD essentially measures the difference between
the means of the probability distributions of source and target feature mappings Φ(XS)
and Φ(XT). As the distance between means approaches zero, the RKHS becomes more
universal [22]. To preserve the original properties of the data, variance is maintained by
maximizing the trace of the covariance matrix of the projected samples. However, an
important limitation of TCA is that adaptation can only be applied to binary domains since
the MMD metric is a pairwise calculation only suited for domain transfer.

A more recent work that builds upon TCA is maximum independence domain adapta-
tion (MIDA) [25]. Similar to TCA, MIDA is an unsupervised domain adaptation technique
that uses RKHS projection and combines it with a domain independence criterion. In this
case domain independence is calculated using the Hilbert-Schmidt Independence Criterion
(HSIC) [26], a non-parametric test statistic that is also effective as a kernel independence
measure. MIDA works by first encoding the domain labels into “ domain features” which
are concatenated to the original features. Next, a nonlinear mapping is applied through
a kernel matrix, Kx = Φ(X)TΦ(X), and the samples are projected to a subspace with
dimension h using a learned projection matrix M. The final projection Z is equivalent to
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WTKx. Finally, domain adaptation is achieved by regularizing the kernel matrices Kx, Kd
and projection matrix W by minimizing the HSIC. Additionally, a centering matrix ad-
justs the projected space to approximately zero mean. The main advantage of MIDA lies
in the encoding of domain features into the projection, thus allowing the HSIC to work
across multiple domains. A semi-supervised extension of MIDA (SMIDA) also allows
for concurrent optimization of the mapping using target labels. Recent studies [22,27]
have shown that MIDA outperforms other comparable methods like TCA and MMD in
EEG-emotion datasets.

2.1.2. Deep Learning Methods

In recent years, DL methods have steadily taken over the range of state-of-the-art
of domain adaptation techniques [21]. In the context of EEG analysis, one of the first
promising deep domain adaptation methods to be proposed was the Wasserstein generative
adversarial network (WGAN) [28]. This method uses a pair of generators, neural networks
trained to output a feature vector. A pretraining step initializes separate generators for the
source and target domains. Both are set to output similarly sized vectors, therefore creating
a shared feature space. Next, an adversarial training step adjusts the parameters of the
generators such that the outputs more closely match each other based on a Wasserstein
distance. Thereafter, the combined outputs of the adapted source and target feature spaces
are used as input features for the output classifier network. Experiments on SEED and
DEAP showed that the WGANDA framework showed significantly better results in subject-
independent tests than those of the standard KPCA, TCA, and TPT approaches. However,
the need for training different networks for each new domain makes it difficult to scale the
technique to multiple domains. A separate generator would be necessary for each subject
in the training set, increasing both memory and processing demands.

In another study that used a similar topography representation to our proposed
work [14], domain adversarial networks (DANN) [13] were used to regularize intermediate
feature embeddings for subject invariance. The proposed architecture featured separate
feature embeddings for each hemisphere, as well as a combined embedding for the final
whole brain. Each embedding was trained with a separate DANN, each of which was
trained to recognize subject labels. By fine-tuning the embeddings adversarially to each
target subject during testing, domain distribution differences could be minimized. As a
result, the BiDANN model performed better than state-of-the-art approaches, including
plain DANN and dynamic graph convolution networks [29], on the SEED dataset, and
particularly in the subject-independent tests.

A more recent work [30] applied a similar hemispheric approach that also optimized
for latent representation similarity between the source and target domains. In their pro-
posed work, the architecture features source and target networks which are treated as
separate models during training; however, they feature shared model weights. Shallow
layer output features were adapted using marginal distribution adaptation through an
adversarial domain predictor DANN. Meanwhile, the deep layers up until the final output
features were adapted to the conditional distribution of the target label by combining
the outputs of the source and target networks with association reinforcement. Results
on SEED and DEAP show that their method is more effective than not only the baseline
KPCA, TCA, TPT, but also recent neural network approaches like DANN, MMD and
ADA. However, once again parameter fine-tuning simply adapts the distribution of the
intermediate features to the target domain.

In many of these approaches, the model both identifies salient features from the source
data and optimizes them to accommodate the target subject, in a binary domain transfer
scheme. One key limitation of this scheme is that it requires retraining the model for each
new subject. Systems designed for use by multiple users may require a model that shows
good generalization across multiple subject domains. The base DANN method [13] is a
notable exception since it is not necessarily limited to binary adversarial domains. In the
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following section, we discuss domain adaptation techniques that can be applied toward
domain generalization.

2.2. Domain Generalization

Often with consumer products, it is necessary to have a system that is immediately
usable by as many users as possible. This requires a domain agnostic or domain invariant
model with reasonably good generalization performance. Domain generalization approaches
achieve this by leveraging data from multiple sources to learn a universal representation
that generalizes well across unseen target domains [31].

2.2.1. Domain Agnostic Methods

In addition to methods that explicitly use domain labels, general-purpose techniques
that are agnostic to the source/target domains can also be used for generalization. For
instance, in traditional EEG analysis, better generalization is often achieved by using
ICA [4] to decompose the signal into its source components and subsequently selecting
only the most relevant components. Another typical use-case of ICA is for the removal
of irrelevant noise effects from EMG or EoG. However, the need for manual intervention
limits its applicability in automatic machine learning methods.

Fortunately, linear decomposition methods like PCA, which include inherent feature
selection, have shown some promise for EEG domain generalization. Particularly, kernel
PCA (KPCA) [32], has been shown to be somewhat effective for cross-domain classifica-
tion [27]. While it is not specifically designed for domain adaptation, it is often used in
comparisons to these types of methods [22].

KPCA is an extension to PCA that applies the kernel trick K(x, y) = ΦxTΦ(y) to
project data non-linearly onto a kernel space where it may be more linearly separable.
This space is a RKHS projection, similar to the one employed in MIDA. PCA is applied
within this kernel space by computing the covariance matrix and determining the “ prin-
cipal components” of the projected data by ranking eigenvectors by their corresponding
eigenvalues. By selecting a subset of eigenvectors which contribute most of the variance of
the dataset and using them as basis for the final projection, a more generalized projection
can be achieved. An important limitation of PCA is that it is sensitive to outliers since they
may have a strong influence on the variance of the dataset.

Another study [33] proposed the use of variational mode decomposition (VMD) [34],
a technique that combines signal decomposition and component selection, and combines it
with DL. VMD is a time-frequency decomposition approach that algorithmically detects
and decomposes a signal into its principal “ modes”. This involves an iterative process
where each mode is updated directly in Fourier domain using a narrow-band Wiener filter
corresponding to the current estimate of the mode’s center-frequency. Meanwhile, the cen-
ter frequency is re-estimated based on the center-of-gravity of the mode’s power spectrum.
As a result, each intrinsic mode function (IMF) exhibits certain sparsity properties with
regards to their bandwidths. That is, they have a limited bandwidth and are assumed to be
compact around a center pulsation which is determined together with the decomposition.
IMFs can serve the same purpose as principal components in PCA [6]; however, the former
preserves time-frequency information by isolating the modes of the signal and can be used
to generate a meaningful PSD. In Pandey and Seeja [33], the top three IMFs were selected
and their PSD features were combined into feature vectors which were subsequently used
to train a deep neural network (DNN). Through experiments on the DEAP dataset, they
found that the VMD-based model performed better than comparable models trained on
raw PSD or differential entropy features.

2.2.2. Deep Latent Variable Methods

Another possible approach to domain generalization is to use neural networks to
discover latent features in the data. This is comparable to the domain agnostic models,
however DNNs also tend to scale better with larger datasets.
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In a recent study [35], they proposed the use of variational autoencoders (VAE) to
extract features for classifying EEG motor imagery. VAEs are generative machine learning
structures that learn an n-dimensional embedding of data constrained to a distribution.
An encoder network transforms data to an embedding space while a decoder network
reconstructs the original input from the embedding. An additional constraint is applied to
the distribution of the embeddings. By combining these objectives, the encoder is able to
generate a well-distributed set of features. Their work shows that Gaussian VAEs can be
used to effectively extract salient features from 2D EEG spectrographs, resulting in a model
that outperforms the state-of-the-art subject-independent results for the BCI Competition
IV 2b dataset. They also showed empirically that the ideal EEG features naturally follow a
normal distribution based on a Kolmogorov-Smirnov test. We adopt a similar approach
with VAEs but with an additional subject-invariant regularizer.

Alternatively, we can take a more unsupervised approach by allowing the machine
learner to discover domain-invariant features. In Chai et al. [36], they proposed the use
of autoencoders to enforce a consistency constraint, combined with subspace alignment
techniques, to minimize domain differences. Their proposed subspace alignment auto-
encoder (SAAE) uses MMD for domain-invariant regularization and showed competitive
performance on the SEED dataset, outperforming baselines like TCA. A limitation of the
work is that the subspace alignment requires data from all domains to be loaded onto
memory simultaneously. This limits its scalability to multiple domains, so only binary
domain transfer was explored.

2.2.3. Multi-Domain Adaptation

To build generalized models, it may be necessary to consider marginal distributions
across multiple domains. Fortunately, certain approaches used for domain adaptation
exhibit characteristics that could be applied for domain generalization [27]. Notably, do-
main agnostic techniques and those that support multi-domain regularization can be used
to enforce domain generalization. Among these, KPCA, VMD, and MIDA provide good
comparative performance while offering varied approaches to generalization. Methods
discussed in this section are summarized in Table 1.

Table 1. Summary of Related EEG Domain Adaptation and Generalization Methods.

Method Algorithm Type Domain Invariance Adaptation Type Distribution

TCA [24] Kernel-based MMD Binary domain Centered distribution
MIDA [25] Kernel-based HSIC Multi-domain Centered distribution

WGAN [28] Deep Learning Wasserstein distance Binary domain None
KPCA [32] Kernel-based Principal components None Centered distribution
VMD [33] Signal Decomposition IMF decomposition None Approx. Gaussian
VAE [35] Deep Learning None None Gaussian

SAAE [36] Deep Learning MMD Binary domain None
DANN [37] Deep Learning Adversarial training Multi-domain None

BiDANN [14] Deep Learning Adversarial training Binary domain None
BiVDANN [Ours] Deep Learning Adversarial training Multi-domain Gaussian

2.3. Contributions of the Work

In summary, while recent advancements in DL have brought about marked improve-
ments in EEG emotion recognition models, complex methods with many parameters still
suffer due to the relatively small labeled datasets and the high subject variability of EEG.
Topographic representations provide a practical middle ground that allows machine learn-
ing algorithms to discover high-level spatial-temporal context-specific features, while also
reducing data requirements by utilizing manually extracted, but well-researched, effective
low-level features (i.e., PSD). Meanwhile, domain adaptation has proven to be quite ef-
fective for handling subject variability; however, most methods require fine tuning of the
model for each target subject. Contrarily, label-agnostic normalization methods do not cope
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well with small datasets with imbalanced feature distributions. For applications where
subject-specific data are unavailable or model retraining is not computationally feasible, a
flexible general-purpose model is needed.

The proposed work offers a flexible domain-generalized deep EEG emotion model
that builds upon previous works by learning a bi-hemispheric variational embedding
optimized for subject invariance. To work around the small-data constraints of EEG-
emotion datasets, instead of building an end-to-end model, we use topographic inputs
similar to Bashivan et al. [13] while also adopting the bi-hemispheric feature split of
Li et al. [14]. This also enables better flexibility for combining trained models with other
datasets in the future. To optimize for generalized feature embeddings that are not overfit
to the training distributions, VAEs with Gaussian regularization similar to Dai et al. [35]
are applied to the hemispheric topography features. These variational embeddings are
further refined by combining them with domain adversarial training [37] across subjects
to learn subject-independent feature embeddings. This increases the robustness of the
proposed model to the effects of subject variability compared to purely distribution-driven
methods like VMD and KPCA. Additionally, unlike domain adapatation methods like
MIDA, the addition of VAE regularization should increase the resistance of our model
to the overfitting effects of small datasets with non-Gaussian feature distributions. We
validate the performance of the models by focusing on subject-independent classification
performance when combined with a DL classifier, similar to the approach used in Pandey
and Seeja [33]. Furthermore, we perform qualitative analysis of the embedding spaces using
manifold learning algorithms to demonstrate the differences in the feature distributions.

3. Methodology
3.1. Input Data

The framework in this study uses spectral topography data to maximize dataset inter-
compatibility and to improve robustness to localized electrode noise. The pre-processing
and topography generation were performed using MNE-Python [38] with the PSD calcu-
lated using the multitaper method [39] and bilinear spatial interpolation. For the target
channel bands, we refer to findings from previous works [14,40–42] that have repeatedly
shown that relatively high frequency bands typically lead to significantly improved emo-
tion recognition performance. Therefore, we generate three 64× 64 px topographs based on
the following brainwave bands: alpha (8–13 Hz), beta (13–30 Hz), and gamma (30–50 Hz).
Subsequently, these topographs are combined into a single 3-channel image with pixel
values scaled between 0 and 255, as shown in Figure 1. This encoding has two main
advantages: (1) it acts as a form of normalization to scale the values within a standard
range, and (2) it allows the data to be visualized as an RGB image. This may be useful
later for visualizing the DL model’s activations. These data are passed as input to a custom
deep CNN.

Figure 1. Alpha, beta, and gamma power are extracted from the electrode data, plotted onto
separate topographic maps, and are combined into a 3-channel topograph used as input for the
proposed model.
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3.2. Deep Learning Architecture

An overview of the architecture of the proposed model is shown in Figure 2. Similar
to Li et al. [14], we adopt a bi-lateral architecture to emulate the lateralized brain theories
of emotion [43], which are frequently used in neuroscience and neuroimaging studies. In
the context of machine learning, asymmetry features have regularly been found to improve
results considerably when compared to just using electrodes separately [14,15]. This is
enforced at the input level by cropping the topographs into left and right hemispheres each
with their independent VAE weights. This ensures that feature embeddings from either
hemisphere are properly regularized to a Gaussian distribution. The outputs of the lateral
VAEs with β-scaled regularization (beta-VAE [44]) are then combined and filtered using a
bi-lateral convolution to extract lateralized features. Thereafter, we impose generalization
across domains through user adversarial regularization on the bi-lateral feature embedding
by applying domain adversarial training. In this case, different subjects are treated as
different domains. An adversarial classifier attempts to distinguish between different
users, while applying a negative gradient to any upstream layers to train them to resist
these attempts. Effectively, the model learns a feature embedding that is indiscriminate
between users while jointly optimizing the features to distinguish the target emotion labels.
Additionally, the Gaussian penalties of the VAEs prevent the model from converging
to an unexpected out-of-bounds distribution that may also satisfy the adversarial and
target classifiers.

Figure 2. The high-level architecture diagram of the proposed model. From left-to-right, (a) EEG topograph inputs, (b) con-
volutional variational encoders, (c) lateralized embeddings, (d) bi-lateral feature concatenation and lateral convolution, (e)
subject-independent dense embeddings, (f) emotion classifier, and (g) adversarial subject classifier.

3.3. Regularizing for Normally Distributed Features

The proposed model uses a pair of VAEs to generate the initial embeddings for the
input EEG topographs. Aside from serving as a feature embedding regularizer, they have
also been shown to be effective for generating new data and even a viable alternative
to generative adversarial networks (GAN) [45]. Some studies [46,47] have also shown
how VAE-based training can improve classification performance. It is hypothesized that
VAE regularization leads to better-disentangled representations, which could explain the
improved classification performance. In the context of EEG signals, Aznan et al. [48]
demonstrated how VAE can be effective for simulating EEG samples which when used
for pre-training models can improve the cross-subject accuracy. This is further supported
by another recent work [35] that showed how CNN-VAEs can be effective for classifying
motion imagery from EEG spectrograms.
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In the proposed work, separate beta-VAEs are used for each hemisphere to allow the
model to encode bilateral asymmetry features. We opt for the standard mean squared
error (MSE) for the reconstruction loss in the VAEs despite common criticisms to MSE
reconstructions when used in image classifiers. This is because the blurry reconstruction
common to MSE-based VAEs is a non-issue for the EEG topograph inputs, which are
inherently spatially interpolated.

Variational Autoencoders

The VAE is a machine learning structure based on the autoencoder and includes both
encoder and decoder components, as shown in Figure 3. The encoder learns to generate
an embedding that is constrained in both number of dimensions and type of distribution.
For instance, the embedding space can be configured to be an n-dimensional vector of
normally-distributed values. The decoder then takes the embedding and attempts to
generate an accurate reconstruction of the input. By combining these objectives with
gradient optimization methods, the model learns an embedding that approximates latent
factors inherent to the data, similar to matrix factorization. Additionally, the embeddings
are constrained to a Gaussian distribution that allows the model to prioritize factors in the
data that are well-distributed.

Figure 3. Variational autoencoders are composed of an encoder–decoder pair. The encoder outputs mean and s.d. compo-
nents, which are used to sample the latent encoding, z, stochastically from a target distribution. It combines losses for the
reconstruction of the input, x, and the KL-loss between the encoding, z, and the target distribution (i.e., Gaussian).

Originally formalized in Kingma and Welling [49], a VAE is a machine learning
structure that is trained based on learned approximate inference and works by constraining
the generated representations to some continuous distribution (e.g., Gaussian). VAEs
provide a computationally efficient method to optimize deep latent-variable models jointly
with inference models by solving the intractability problem of parameterizing the posterior
distribution, pθ(x|z), for the latent variables, z, given a marginal likelihood, pθ(x) [50].
Similar to other variational methods, VAEs optimize for the evidence lower bound (ELBO)
but also include a KL-divergence term, redefining the ELBO loss as

Lθ,φ(x) = log pθ(x)−DKL(qφ(z|x))||pθ(z|x). (1)

The KL term indicates the KL divergence of the approximate posterior, qφ(z|x), from
the true posterior, pθ(z|x). Due to the non-negative property of the KL term, the ELBO
loss acts as a lower bound on the log-likelihood of the data. Here, the VAE employs a
parametric inference model, qφ(z|x), also known as the encoder, which is parameterized by
θ to approximate the intractable posterior, pθ(z|x). By approximating the posterior with
a generative model, pθ(x, z), the ELBO loss can be applied to enable the joint optimiza-
tion of parameters θ and φ, using stochastic gradient descent, as defined in the AEVB
algorithm [49].

Thus, if we assume that pθ(z) = N (z; 0, I) and that the true posterior for our latent
encoding approximates to a Gaussian distribution, then the approximate posterior becomes
a multivariate Gaussian defined as
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log qφ(z|xi) = logN (z; µi, σ2
i I), (2)

where µi and σi are the mean and s.d. outputs of the encoder for input xi, parameterized
by φ. To calculate the gradients through stochastic sampling, the reparameterization trick
is applied by sampling from the posterior, zil ∼ qφ(z|xi), with zil = µi + σi

⊙
εl , where

εl ∼ N (0, I) and
⊙

denotes an element-wise product. Thus, the resulting loss equation
for the Gaussian implementation of VAE can be defined as

LVAE(θ, φ; xi) '
1
2

J

∑
j=1

(
1 + log((σij)

2)− (µij)
2 − σ2

ij +
1
L

L

∑
l=1

log pθ(xi|zil)

)
, (3)

where J is the feature dimension of the latent embedding, z, and L denotes the number of
random samples taken (typically, L = 1).

Our proposed model implements beta-VAE [44], an extension to the base VAE that intro-
duces a controlled parameter, β, that allows tuning of the learning constraints of the model.
Specifically, it augments the KL-divergence term in Equation (1) into βDKL(qφ(z|x)||p(z)).
This enables stronger disentanglement between latent factors by increasing the regularization
loss and also allows the adjustment of the regularization strength during training. Recent
investigations have found that scheduling β to increase linearly during training results in
improved model convergence [51]; therefore, we adopt a similar training procedure.

Optimizing these objectives enforces improved sampling of latent features despite
biases in the training distribution. Non–Gaussian distributions are often attributed to insuf-
ficient data or problems in the data sampling methodology. In effect, they do not generalize
well. By constraining the reconstruction objective to finding Gaussian embeddings, the
model discovers features that are better suited for generalization. That is, the model can
ignore outliers or badly sampled factors and biases inherent to the training data to some
extent since it models the distribution of clean data [52]. A model trained on these losses
learns a stochastic mapping from the x-space defined by the available training dataset,
to a latent z-space embedding regularized to a distribution that more closely matches
what we would expect from a more comprehensive dataset (i.e., Gaussian). When used
as a pretraining method, such regularization has been found to improve the classification
performance by learning factors of variation that improve data log likelihood [51]. This is
particularly useful in our case since the high-dimensional nature of our dataset combined
with the relatively small sample size increases the possibility of overfitting to the training
distribution. Without proper regularization, there is a high probability that standard deep
learning models will develop a strong bias to the training set resulting in poor performance
on unseen data.

Next, the hemispheric VAE outputs are vertically concatenated and processed with a
bi-lateral convolutional filter to extract lateral brain activity features as shown in Figure 4.
This is inspired by the lateral brain theories of emotion [43] and is an approach that
has proven effective in previous works [13,14]. However, unlike in previous works, the
VAE regularization should force the bi-lateral feature embeddings to be well-distributed,
emulating distributions expected from large comprehensive datasets. In addition, to further
curtail the effects from subject variability, we apply subject-independent regularization
using domain adversarial training.
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Figure 4. The lateralized beta-VAE implementation used in this work. Each hemisphere is composed
of an encoder and decoder pair with the encoder generating a stochastically sampled embedding,
z, based on outputs, µ and σ. Separate weights are used to encode the features for each of the
hemispheres to adhere to neuroscience theories of lateralization.

3.4. Optimizing for Subject-Independence

To achieve better generalization across different subjects, we regularize the bi-lateral
filter features with DANN training. DANN is a domain alignment approach usually pre-
sented in domain adaptation studies as an alternative to GANs [19]. The underlying theory
is that effective domain transfer can be achieved by finding features that are indiscriminate
between the training (source) and test (target) domains [37]. While it is primarily used for
adapting between binary source/target domains, in this work we apply it together with
the features extracted from the VAE embeddings to enforce subject-invariance. A similar
approach for speaker recognition is found in [53] where it showed promising results for
generalizing across different audio datasets. In this case, we treat each subject as an inde-
pendent domain that is assumed to be sampled from a different distribution and apply the
regularization starting from a feature embedding layer shared by the emotion classifier
and the adversarial classifier, as shown in Figure 5.

Figure 5. The domain adversarial network (DANN) implementation used in this work. The feature
embedding layer is shared by the emotion classifier and the adversarial subject domain classifier.
Each classifier is trained to classify for its respective task; however, the gradient is reversed and
scaled with parameter λ, in effect training upstream layers for subject-independence.

Domain Adversarial Neural Networks

One of the earliest works formalizing DANN adaptation [37] tested the technique on
optical character recognition (OCR) models by adapting pretrained models to different OCR
datasets. As a general-purpose architecture, it is defined primarily by its joint optimization
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of a prediction loss and a domain loss. In a simplified case featuring a single hidden layer
DANN, the prediction and domain losses can be defined by the following:

Li
y(θ f , θy) = Ly(Gy(G f (xi, θ f ); θy), yi),
Li

y(θ f , θd) = Ld(Gd(G f (xi, θ f ); θd), di)
(4)

Here, G f is defined as the neural network feature extractor, Gy is the part of the neural
network responsible for label classification, and Gd is the neural network domain classifier.
The parameters, θ f , θy, θd, refer to the trainable parameters of their corresponding neural
networks. Training the DANN consists of finding the saddle points for parameters θ̂ f , θ̂y, θ̂d,
such that

θ̂ f , θ̂y = arg min
θ f ,θy

E(θ f , θy, θ̂d),

θ̂d = arg max
θd

E(θ̂ f , θ̂y, θd)
(5)

As is apparent from the parametric saddle point in Equation (5), the objective for
θ̂d runs adversarial to that of the other classifiers. Instead of minimizing the error, it is
necessary to maximize it; therefore, the combined objective for the feature generator can be
defined simply as

LDANN(θ f , θy, θd) = Li
y(θ f , θy)− λ

(
Li

d(θ f , θd)
)

, (6)

where λ is a scaling factor that controls the strength of the reversed adversarial gradient.
Typically, λ = 1; however, this hyper-parameter can be tuned if either the target classifier
cannot reach convergence or the feature embedding is not sufficiently domain-invariant.
Empirical testing has also shown that introducing an unsupervised pre-training step as
described in Algorithm 1 leads to better convergence.

Algorithm 1: Bi-lateral VAE Pre-training

Data:
X : EEG topograph training set
Models:
Vl ,Vr : Model weights for left and right βVAEs
Parameters:
β : Variational regularization hyper-parameter

Initialize (Vl ,Vr) with small random variables
Initialize β = βtarget
while target epochs not reached and early-stopping patience not exceeded do

Generate random training mini-batch Xb from X)
Partition Xb into left and right bi-hemispheres (Xb

l ,Xb
r )

Train Vl ,Vr with (Xb
l ,Xb

r ) based on Equation (3)
Update losses history with LV AE
Check if the change in loss is below the threshold and update patience variable
as necessary

Save model weights Vl ,Vr

3.5. Training Phases
3.5.1. Unsupervised VAE Pretraining

Before training the full model, it may be beneficial to pretrain the VAEs in an unsuper-
vised manner with the training set, as shown in Algorithm 1. This step reduces the risk of
exploding error gradients from the large losses during the initial phases of jointly training
the VAEs and the classifiers. We also found that this practice increases the convergence rate
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of the subsequent supervised and semi-supervised training phases by providing a reusable
starting point for supervised training.

3.5.2. Supervised EEG-BiVDANN Training

The proposed model is trained to optimize for generating feature embeddings that
are indiscriminate across subjects in the training set. This is hypothesized to also approxi-
mate toward indiscriminate features for unseen test sets from the same general sampling
population. To optimize for both the variational loss and the adversarial loss, our model
uses interleaved adversarial training, VAE reconstruction, and classifier optimization, as
described in Algorithm 2.

Algorithm 2: Bi-lateral VAE Pretraining

Data:
X : EEG topograph training data
Y : Emotion training labels
Z : Subject context labels
Models:
Vl ,Vr : Model weights for left and right βVAEs
H : Model weights for bi-lateral feature extractor
C : Model weights for emotion classifier
D : Model weights for subject discriminator
Parameters:
β : Variational regularization hyper-parameter
λ : Adversarial gradient hyper-parameter

Load pretrained weights for (Vl ,Vr)
Initialize β = 0
Initialize λ = 0
while target epochs not reached and early-stopping patience not exceeded do

Generate random training mini-batch MX ,MY,MZ from X,Y,Z)
Partition MX into left and right bi-hemispheres (MX

l ,MX
r )

Fine-tune (Vl ,Vr) with (MX
l ,MX

r ) based on Equation (3)
Generate hemispheric outputs (Hl ,Hr) with encoders (V q

l ,V q
r )

Generate bilateral embedding H′ by convolving (Hl ,Hr) withH
Train D with H′ and context labels MZ base on Equation (6)
Propagate negative λ-scaled gradients to trainH and (Vl ,Vr)
Train C with H′ and training labels MY based on Equation (7)
Propagate raw gradients to trainH and (Vl ,Vr)
Update losses history with LC
Check if the change in loss is below the threshold, and update patience
variable as necessary

if β < βtarget then
Slightly increase β

if λ < λtarget then
Slightly increase λ

A jointly optimized model was also tested, however it was found that the interleaved
training allows for finer control and tuning of the individual regularizers. Properly tun-
ing the regularization strengths is essential for preventing the independent losses from
overwhelming each other, particularly with the target label classifier.

3.5.3. EEG-BiVDANN Model Objective

To build a subject-generalized model of EEG emotion, our proposed BiVDANN adopts
the joint optimization of three losses: (1) VAE loss (Equation (3)), (2) subject-independent
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DANN loss (Equation (6)), and (3) emotion classifier loss LC(φv, θv, θ f , θy). Formally, the
combined loss can be defined as

LBiVDANN(φv, θv, θ f , θy, θd) = Ll
βVAE(θ

1
v, φl

v) + Lr
βVAE(θ

r
v, φr

v) + Ly(φv, θ f , θy)− λ
(
Ly(φv, θ f , θd)

)
(7)

The adversarial minimization and maximization objectives are thus defined as follows:

min
φv ,θv ,θ f ,θy

max
θd
LBiVDANN(φv, θv, θ f , θy, θd) (8)

Internally, Equation (8) encapsulates the following min-max optimization steps:

φ̂v, θ̂v = arg min
φv ,θv

LBiVDANN(φv, θv, θ̂ f , θ̂y, θ̂d),

φ̂v, θ̂v, θ̂ f , θ̂y = arg min
φv ,θv ,θ f ,θy

LBiVDANN(φv, θv, θ f , θy, θ̂d),

θ̂d = arg max
θd

LBiVDANN(φ̂v, θ̂v, θ̂ f , θ̂y, θd),

(9)

where the saddle point is defined by symbols φ̂v, θ̂v, θ̂ f , θ̂y, and θ̂d. When these symbols are
found on the right-hand side of Equation (9), it indicates that their respective parameters
are not optimized by the current operation. Tuning of the models relies primarily on
selecting hyper-parameter values that balance the main optimization objectives and may
vary based on the dataset.

3.6. Datasets

In this study, we use two of the largest and most widely studied EEG-emotion datasets:
DEAP [54] and SEED [15]. Both datasets feature multimodal data; however, we constrain
this study to only the EEG portion of the data. Similarly, both also include various types of
annotations; however, we focus on the ones most relevant to emotion.

For DEAP, the dataset comprises data from 32 subjects, each with a single continuous
data gathering session divided into 40 trails that last about 1 min each. Emotion was
elicited using music videos and labels were collected with a questionnaire including a
self-assessment manekin (SAM) for arousal and valence (9-point scale). The EEG device
used for measurement was a 32-channel Biosemi headset capable of recording at a 512 Hz
data rate; however, the final cleaned data were downsampled to 128 Hz. Since we focus
only on the emotion classification aspect, we train the models to classify a binary valence
where valence annotations >5 are positive, and those <5 are negative. The selection of the
valence threshold in other works tends to be rather arbitrary; however, here we opt to use
5 as it is the median value of the SAM questionnaire.

For the SEED dataset, it comprises data from 15 subjects, with each having participated
in 3 separate sessions divided into 15 trials, which were approximately 4 min long. Emo-
tions were elicited using emotional film clips pre-labeled as positive, neutral, or negative.
For the EEG device, they used a 62-channel ESI Neuroscan system capable of recording
data at 1000 Hz but with the final stored data downsampled to 200 Hz.

3.7. Data Preparation

To generate the representative topographs from the raw EEG data, we apply a sliding
window method. For this, we consider that labels in both datasets are applied across entire
trials. Thus, to increase the probability that most segments included the target labeled
emotions we employ a 15 s sliding window with a 50% overlap. This is roughly based on
the findings of a previous study [55] that found∼12 s to be optimal for valence classification.
To extract the time-frequency features and generate the topographic representations we
use MNE-Python [56], an open-source package for MEG and EEG analysis. Specifically, we
apply discrete prolate spheroidal sequences (DPSS) tapers to extract the PSD spectrum [57].
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This method avoids the spectral leakage that is common in methods that use the standard
Welch periodogram. A 64 × 64 px topograph is generated for each brainwave band of
interest (alpha, beta, and gamma), resulting in three-channel matrix whose values are then
scaled between 0 and 255 to generate the input topograph image.

3.8. Model Implementation

The bulk of the machine learning components in this work are implemented in Python,
specifically using the Keras machine learning API [58]. All models were optimized using
the Adam optimizer [59] since it could best handle the highly variable gradients produced
by the joint optimization. For the purpose of discussion, we will divide the proposed
BiVDANN into its main components: bi-lateral feature extractor, emotion classifier, and
adversarial subject classifier. A description of each is shown in Table 2.

Table 2. BiVDANN Implementation Details.

Component Input (Dims) Components (Dims) Output (Dims)

Unilateral VAE Topograph: (32,64)

Encoder:
3 × [Conv2D(3 × 3) + BatchNorm]
VAE Embedding:
[Dense(512) + Mean: Dense(64)
+ SD: Dense(64) + z: Dense(64)]
Decoder:
3 × [Conv2DTranspose(3 × 3) + BatchNorm]

Unilateral Embedding: (64)

Bilateral Feature Extractor Unilateral Embeddings: 2 × (64) [Concat + 2 × [Conv2D(2 × 2) + BatchNorm]
+ 2 × [Dense(128) + BatchNorm]] Bilateral Embedding: (128)

Emotion Classifier Bilateral Embedding: (128) 2 × [Dense(256) + BatchNorm]
+ 1 × [Dense(64) + BatchNorm] + Dense(Softmax) Emotion prediction: (# of classes)

Adversarial Subject Classifier Bilateral Embedding: (128) GradientReversal + 2 × [Dense(256) + BatchNorm]
+ 1 × [Dense(64) + BatchNorm] + Dense(Softmax) Subject prediction: (# of subjects)

4. Experiments and Results
4.1. Training Hyperparameters

The proposed model jointly optimizes the multiple objectives specified in Equation (7);
however, properly controlling conflicting gradients requires fine-tuning of various regular-
ization weights, particularly β and λ. Empirical tests show that linearly increasing both β
and λ during the early stages of training allows the model to converge to a distribution
with the desired characteristics. Specifically, we grow β from zero to full magnitude during
the first 100 epochs, while λ had a slightly faster increase reaching max in the first 50 epochs.
Testing showed that this configuration prevents the model from starving the target emotion
learning objective. Slowly growing beta also prevents the gradient from exploding due
to changes in KL-loss while the model is also exploring the main class objective during
the initial learning phase. Similarly, slowly increasing lambda allows the model to first
learn a strong user discriminator that will later serve as a powerful regularizer when the
negative adversarial gradient reaches a critical point where it matches or overpowers the
class gradient. For the training epochs, a batch size of 256 samples was used to allow the
adversarial batches to contain a good distribution of subject samples, and empirical testing
showed that 300 epochs allowed all models to converge to an optimum state with the help
of early stopping. We used 15% of the training data (∼1200 samples) for validation and set
the early stopping objective based on the emotion class validation accuracy.

Figure 6 shows the learning progression of the model on DEAP. Specifically, it shows
the testing losses and accuracies (Loss/Acc) on the training and validation sets (Train/Val)
for the emotion classifier and the subject discriminator (Class/Disc) over the epochs. Here,
the model is learning with 2 emotion classes (Positive/Negative) and 32 subject classes.
The objective of the model is to first learn a good subject discriminator, and then to
optimize the emotion classifier with features that minimize the performance of the subject
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discriminator. The use of adversarial objectives pushes the emotion classifier toward
subject-invariant features.

Figure 6. Sample training progression for DEAP data. The graphs indicate the training/validation accuracy/losses for the
emotion classifier/subject discriminator over training epochs. The black line indicates the point used for early stopping.

The early training phase is characterized by a rapid decrease in all losses (red lines),
particularly the discriminator loss. This demonstrates the strong influence of subject
variability on the dataset since the subject discriminator learns much faster than the
emotion classifier despite having more subject classes (32 in the case of DEAP). If allowed
to continue, there would be an eventual increase in the classification losses due to subjective
overfitting. However, as λ reaches a critical point at around epoch 40, the adversarial
gradients begin to tune the embedding for subject invariability. Eventually, this converges
to a representation that is indiscriminate across subjects but is highly discriminative for
emotion classes.

4.2. Comparison Results

For the comparison experiments all the featured methods used a similar Emotion
Classifier component indicated in Table 2. This allows the comparison to be more even; thus,
we can focus on comparing the efficacy of the different feature embeddings. Specifically,
the following techniques are used for comparison:

• CNN—simple 2D CNN featuring 3 × [Conv2D(3 × 3) + BatchNorm] layers with
∼200,000 trainable parameters

• Resnet-50 [60]—popular DL network for image classification with ∼23 million train-
able parameters

• KPCA [61]—nonlinear dimensionality reduction technique
• VMD [34]—signal decomposition technique used for EEG analysis in Pandey and

Seeja [33]
• MIDA [25]—semi-supervised domain adaptation technique for mapping data to

domain-invariant subspace

In this experiment, we wish to compare the generalization ability of the models. There-
fore, we apply leave-one-subject-out cross-validation for all the quantitative experiments.
That is, the entire dataset is divided such that all samples from a single subject are excluded
from training a model. Subsequently, all samples from that subject are used to measure the
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test performance of the trained model. This is performed for each subject, and we use the
mean accuracy and standard deviation to evaluate the models.

We wish to compare our proposed approach to the standard baseline methods, as well
as to the other comparable domain generalization techniques. For the standard baselines,
we use a standard shallow CNN to represent DL models with lower data requirements,
and ResNet-50 [60] to assess the performance of more complex DNNs. These are both
single-objective models that aim only to minimize the error on the training set. As such,
they can be used as an indication of the inclination of the datasets towards overfitting to
the training distribution. We can expect most classic DNNs applied to the same data to
exhibit similar limitations.

For the generalization approaches, we combine feature extraction procedures that opti-
mize for subject generalization. Since there are currently few state-of-the-art generalization
techniques applied to EEG that experience improvements without including samples from
the test domain, we use label-agnostic and multi-label modeling techniques for comparison.
The algorithms compared include KPCA [61] to represent nonlinear label-agnostic dimen-
sionality reduction approaches, VMD [34] for the EEG signal decomposition approach, and
MIDA [25] for multi-domain adaptation. For VMD, we apply feature extraction on the raw
EEG similar to [33], although we apply the same 15 s window used in the other methods.
The results are shown in Tables 3 and 4 below.

Label-agnostic approaches such as KPCA and VMD operate solely based on the
distribution of the data they are modeling. For KPCA, a nonlinear mapping is generated
based on the principal components of the data and how much each contributes to the
overall variance. Thus, they are suitable for identifying strong latent factors. However,
this also makes them vulnerable to noisy data and outliers. Conversely, VMD is a signal
decomposition method that is designed to be resistant to noise effects, particularly those
in nonlinear and non-stationary signals. It decomposes a signal into a finite number of
IMFs which are comparable to KPCA’s principal components. Moreover, the sifting process
generally leads to approximately Gaussian distributed modes which can minimize the
effect of outlier noise. These two algorithms can indicate how techniques driven only by
data distribution perform on EEG datasets. They can also indicate the strong impact of the
signal noise and outliers on the datasets, since they lie on opposite sides of the spectrum
with regards to this.

Near the end of the section, we also include model ablation tests to investigate the
performance of basic VAEs and DANNs on these datasets.

Table 3. SEED Results (3-class).

CNN Resnet-50 KPCA+DNN VMD+DNN MIDA+DNN BiVDANN

Mean 49.78% 52.31% 51.66% 58.45% 60.14% 63.28%
SD 5.09% 4.51% 6.67% 8.17% 4.51% 6.45%

Table 3 shows the performance on the SEED dataset. Here, the models were classifying
three different emotion classes (positive, negative, neutral);thus, the random point lies at
∼33%. All models could classify significantly better than random; however, our proposed
BiVDANN achieved the best overall subject-independent performance. The MIDA-DNN
model also achieved high relative accuracy, displaying the advantage of enforcing subject-
invariance for generalized models. In contrast, the shallow CNN got the lowest result likely
due to overfitting. This is also reflected by Resnet-50, which only exhibits marginally higher
performance than the shallow CNN despite having a much higher number of parameters.
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Table 4. DEAP Results (2-class).

CNN Resnet-50 KPCA+DNN VMD+DNN MIDA+DNN BiVDANN

Mean 51.64% 52.14% 55.31% 57.78% 60.97% 63.52%
SD 5.20% 7.32% 9.14% 6.75% 5.57% 5.21%

Next, Table 4 shows the results on the DEAP dataset. Despite being only a binary
classification problem, all the models had greater difficulty with this task compared to the
3-class SEED dataset case. Once again, our BiVDANN achieved the best overall accuracy,
followed by MIDA. Similarly, the CNN and Resnet-50 models fared the worst, this time
showing more similar performances. However, this time, their performance was not
significantly better (p > 0.05) than that of a random classifier. This indicates that without
proper controls, models trained on the DEAP dataset may have a higher probability of
leaning toward overfitting. One possible cause of this could be that each subject only
contributes a single continuous session of data. This may have lead to a compounding of
environmental and subject-induced variances. By environmental variances, we refer to
variabilities such as how the headset was worn, the background EM noise at the time of
recording, and other external sources that could affect the signal. In contrast, the multiple
sessions in the SEED dataset may be reducing the overfitting effect of these environmental
variances since each subject’s training data is composed of combined data distributions
across different sessions. However, more study is required to confirm this hypothesis.

4.3. Qualitative Analysis of Embeddings

Next, we wish to evaluate the effects of the characteristics of the different embed-
dings generated by the different methods on the model performance. To visualize the
embeddings, we apply t-Distributed Stochastic Neighbor Embedding (t-SNE) [62] and mul-
tidimensional scaling (MDS) [63]. t-SNE is a nonlinear dimensionality reduction method
that focuses on preserving small pairwise distances or local similarities between neighbors.
Conversely, MDS is a technique for plotting data in lower dimensions while preserving
a global distance metric (e.g., Euclidean distance). It works by using pairwise dissimilar-
ities to reconstruct a mapping that preserves the triangle distances. t-SNE is effective at
emphasizing data clustering, while MDS is more effective at showing the global patterns
of the data distribution. Here, we use the 2D maps to qualitatively assess how the data
points and classes are clustered in the embedding spaces for the different techniques. To
generate the visualizations, we train the respective algorithms with a random 70% batch
from the datasets. As for the inputs to the visualization algorithms, in the case of the
deep models, we use the embedding layer outputs of the models, or in other words, the data
embeddings positioned right before the final set of fully-connected classification layers, as
shown in the right side of Figure 2. For VMD and MIDA, we use the raw features generated
by the algorithms. Finally, for KPCA, we visualize the embeddings using the first two
principal components.

4.3.1. SEED Embeddings

From the embeddings of the SEED dataset shown in Table 5, we observe that all the DL
models can generate features that are clearly optimized for emotion separation. However,
for the CNN and Resnet-50 models, we also observe some subject-based clusters leaking
into the distributions. This indicates the presence of strong subject-dependent effects in the
dataset and could indicate that features found by these models are also somewhat subject-
dependent. Judging by their weak classification performance in the subject-independent
tests, this inherent dependence may significantly limit their generalization performance.
Meanwhile, for KPCA, we also observe some class-based separation of clusters, although
subject clusters are much more dominant here than in the other models. This indicates that
the variances of the features themselves are strongly influenced by the different subjects.
This typically leads to poor generalization performance, as indicated in Table 3. VMD



Sensors 2021, 21, 1792 20 of 29

seems to be an exception to this since it shows heavy subjective clustering effects despite
exhibiting better performance than the other baseline models. This could be due to its
relatively normal distribution of features as shown in the MDS visualization. Meanwhile,
for MIDA, the HSIC-based regularization exhibits the best mixing of the subject clusters,
however this comes at the expense of the class clusters which show many incorrectly
mapped data points. Finally, for the BiVDANN embeddings, we see strong class separation
and minimal subjective influence in the feature distributions. The model is also able to
generate a much more Gaussian feature distribution that emulates a more comprehensive
dataset while prioritizing class separation.

4.3.2. DEAP Embeddings

Next, we analyze the embeddings for the DEAP dataset shown in Table 6. Again, we
observe a similar pattern in the case of the DL models, where the embeddings show clear
emotion class separation. However, there is also much stronger subject-dependent cluster-
ing compared to the results from SEED. This is most evident for the CNN model, where
subject clusters are even more dominant than the class clusters. This could explain the poor
performance of the CNN model, which was only slight better than a random classifier at
just 51.64% binary accuracy. Resnet-50 was better able to avoid subject-dependent effects;
however, it also generated separate and lopsided clusters for the negative and positive
classes. In this case, most of the testing samples are seen between the two clusters, leading
to poor classification performance. The results for KPCA are once again similar to SEED,
where subject-based clusters dominate the feature distribution. Therefore, it is unsurprising
that its classification performance was similarly poor. Meanwhile, the BiVDANN was
once again able to generate a feature distribution that separates the emotion classes while
minimizing overfitting to subject-based variances.

4.3.3. General Observations

Based on the visualization results, we made several observations. First, we see that
while class-based clustering is generally favorable, the generalization performance is also
strongly influenced by other effects, such as subjective clustering. It may be better to
minimize subjective clustering, particularly for datasets where distributions naturally
lean towards subjective variance, as shown by the KPCA tests. Second, even in cases
where subjective clustering is avoided, other unlabeled variances can also contribute to
distribution imbalances to reduce generalization performance, such as in the Resnet-50
embeddings. Conversely, the VMD results demonstrate that well-distributed embeddings,
even when strongly influenced by subjective variances, can still produce well-performing
models. In summary, the best results seem to come from embeddings that favor class-based
clustering and avoid subjective variances, while maintaining a balanced (i.e., Normal)
data distribution.
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Table 5. SEED embedding visualizations for the tested models. Different colors correspond to their respective emotion class
(negative, neutral, positive) or unique subject. The axis values represent the arbitrary 2D feature mapping performed by
the dimension reduction algorithms.

Model
t-SNE MDS

Classes Subjects Classes Subjects

CNN

Resnet-50

VMD

MIDA

BiVDANN
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Table 5. Cont.

KPCA

Classes Subjects

With the qualitative analysis, we showed that our proposed model successfully
achieved its main objectives of generating an effective generalized feature embedding
for EEG emotion classification. Unlike label-agnostic approaches, such as KPCA, it can
leverage subject label data to avoid the effects of subjective variance. Additionally, unlike
single-objective methods like unregularized DL techniques, it generates a more contiguous
distribution, which seems to better accommodate unseen data samples. This is best demon-
strated in Table 6, where both CNN and Resnet-50 generate good class-based clusters, but
also have distributions with a high tendency of test samples landing between or outside of
the known clusters. This could explain the poor classification performance and showcases
the unpredictability introduced when treating emotion as discrete classes. Intuitively,
negative and positive emotions should not be clearly separable classes; rather, they are
different ends of the same spectrum. In effect, we expect that their distributions should
overlap possibly at the point where neutral emotions should be located. By generating
models that violate this smooth continuity, we may end up with overfitting representations
that perform poorly on new samples. This is generally avoided by employing large com-
prehensive datasets. However, in cases where such a dataset is not available, such as in
EEG-emotion analysis, regularization constraints, such as in our proposed BiVDANN , can
provide a good alternative. In the next section, we test the contributions of the different
components of BiVDANN with model ablation tests.

Table 6. DEAP embedding visualizations for the tested models. Different colors correspond to their respective emotion
class (negative, positive) or unique subject. The axis values represent the arbitrary 2D feature mapping performed by the
dimension reduction algorithms.

Model
t-SNE MDS

Classes Subjects Classes Subjects

CNN
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Table 6. Cont.

Model
t-SNE MDS

Classes Subjects Classes Subjects

Resnet-50

VMD

MIDA

BiVDANN

KPCA

Classes Subjects
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4.4. Model Ablation Study

For the model ablation study, we are interested in learning the contribution of the
different components of the system to the overall model performance. The BiVDANN
model features the following main components: bilateral inputs, variational regularizer,
domain-independent regularizer, and emotion classifier. To test each of these components
independently, the following models are trained and tested:

• BiCNN—includes bilateral inputs, but no variational regularization or domain-
independent regularization.

• BiVAE—includes bilateral inputs, includes variational regularization, but no domain-
independent regularization.

• BiDANN—includes bilateral inputs, includes domain-independent regularization, but
no variational regularization.

• L-VDANN—only left-hemisphere inputs, includes both variational regularization and
domain-independent regularization.

• R-VDANN—only right-hemisphere inputs, includes both variational regularization
and domain-independent regularization.

The subject-independent test results for the ablation tests are summarized in Tables 7 and 8.
The tests show that without the regularizers, the performance of the BiCNN model is equiv-
alent to that of Resnet-50. As such, we can expect other complex unregularized deep
learning models to show similarly overfit performance. Next, the BiVAE model shows im-
proved results with the aid of variational regularization. By jointly optimizing for emotion
classes and a normal distribution, it achieves better performance than the VMD model, but
worse than the MIDA model. The BiDANN model shows mostly equivalent performance
to the MIDA, indicating that the domain-independent regularization is roughly equivalent
to MIDA. Compared to BiVAE, BiDANN also shows comparable though slightly weaker
performance. For the unilateral input tests, both models perform better than most other
ablation models except for the BiDANN. This showcases the generalization ability of
models that utilize the DANN regularization. Additionally, the R-VDANN model shows
better performance than the L-VDANN model, though neither performs better than the
bi-lateral BiVDANN . These results support the bilateral theory of emotion, although it
also lends some credence to the right hemisphere hypothesis in the case of the unilateral
input models.

Table 7. SEED Results (3-class).

BiCNN BiVAE BiDANN L-VDANN R-VDANN BiVDANN

Mean 52.02% 53.41% 60.71% 57.49% 58.54% 63.28%
SD 5.29% 3.80% 5.33% 6.11% 5.66% 6.45%

Table 8. DEAP Results (2-class).

BiCNN BiVAE BiDANN L-VDANN R-VDANN BiVDANN

Mean 52.15% 58.08% 61.59% 60.69% 62.10% 63.52%
SD 6.42% 6.32% 5.09% 4.11% 5.45% 5.21%

5. Discussion

Among generalized models that do not require additional fine-tuning, BiVDANN
showed superior performance, beating comparable state-of-the-art techniques including
KPCA, VMD and MIDA, even when these were supplemented with DNN classifiers. It
consistently achieved the highest subject-independent accuracy on both the SEED and
DEAP datasets and showed promising performance even when constrained to only right
hemisphere features. The qualitative embedding analysis also revealed clues regarding the
advantages of the proposed model. Unlike label-agnostic approaches, such as VMD and
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KPCA, BiVDANN directly addresses the primary source of signal noise, which is subject
variability. This results in features that are less prone to overfitting to certain subjects.
Meanwhile, compared to purely context-focused approaches, such as DANN and MIDA,
the proposed model can discover a well-distributed Gaussian feature space even when
given a relatively small training set for the large number of model parameters. The VAE
pretraining step also allows the model to learn salient features even when emotion labels
are not yet available. As more EEG data become publicly available, it will be interesting to
see at what point databases can achieve generalized distributions by virtue of their sample
sizes. At that point, Gaussian regularization may no longer be necessary and regularization
can be geared more toward other sources of variability.

Ablation testing allowed us to assess how each component of the model contributed
to the improved performance. Among the ablated models, subject adversarial training
(BiDANN) showed the best overall improvement. This supports the initial hypothesis that
subject variability is a primary limiting factor for EEG-emotion models. Meanwhile, the
VAE regularized model seemed to allow unseen samples to better fit within the primary
distribution as opposed to the periphery, which may be overfit to a single emotion label.
With non-regularized distributions, there is an increased chance that unseen users form
their own feature clusters regardless of the emotion label. Another interesting finding
was that a right-hemisphere model outperformed the left-hemisphere model, lending
itself to the right-hemisphere hypothesis of emotion. Nevertheless, neither model could
outperform the bi-lateral model; thus, lateralization may still play an important role in
detecting human emotion.

Overall, it appears that the proposed model achieves its goal of providing a good
generalized representation without the need for retraining. However, this comes with
a trade-off in overall peak performance which was well below that of fine-tuned mod-
els adjusted for the target subject’s data [14,28,30]. Among these works, some [28] have
claimed over 90% accuracy under certain conditions; however, it is unclear what affects
this and how much manual tuning is required to get these results consistently for each
new subject. It is also uncertain if this is a reasonable expectation across datasets when
considering the inherent unpredictability of human emotions and the dataset labels them-
selves. Investigating this could be a challenge for future works and may be essential to
proving if machine learning models are actually detecting emotion or if there is some
other neurological phenomenon guiding the models. In any case, our approach provides a
good starting point for general-use EEG-based systems while reserving the possibility for
additional fine tuning when the necessary data requirements for new subjects are met.

One issue that remained unaddressed is the influence of EMG artifacts, particularly
from facial expressions. This is a problem that is rarely addressed even in the related
literature. EEG preprocessing in most publicly available EEG-Emotion datasets is often
limited to bandpass frequency filters applied by their respective authors (4–45 Hz for DEAP
and 0–75 Hz for SEED). While some datasets provide EMG readings, this is not a standard
followed by most. Advanced source separation and decomposition methods remain good
options for removing these artifacts, given enough time and expertise. However, in the
interest of providing a scalable and easy-to-use method, these were not used in the current
work. As with most machine learning methods, if these artifacts prove to be discriminative
of emotion, they will be prioritized by the algorithm. More research may be needed to
ascertain that machine-learned models are in fact using brain-sourced signals for detecting
emotions. This may involve proving that learned features are sufficiently decorrelated
from facial movements.

6. Conclusions

In this paper, we propose the BiVDANN model, which learns a generalized model
of emotion by jointly optimizing objectives for learning normally distributed and subject-
independent feature embeddings. It uses spectral topography data as the input to maximize
dataset inter-compatibility, improve robustness to localized electrode noise, and enable
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investigations into neuroscience theories, such as the neural lateralization of emotion. The
topography maps are processed by layered convolutions connected to a pair of beta-VAEs
with Gaussian regularization. This allows the model to generate generalized hemispheric
feature embeddings from relatively small datasets with biased feature distributions. This is
followed by bi-lateral convolutions combined with domain adversarial training to discover
subject-independent features. Thus, the resulting BiVDANN model learns a feature em-
bedding that effectively separates emotion classes, minimizes subjective overfitting, and
generalizes well to unseen samples. Quantitative and qualitative analyses were employed
to compare the proposed work to a number of EEG generalization techniques such KPCA,
VMD, and MIDA. In addition, an ablative experiment was performed to test the contribu-
tions of the individual components of the architecture. The findings of the experiments are
summarized as follows:

• BiVDANN exhibits superior subject-independent classification performance among
the context-generalization methods tested for both the SEED and DEAP datasets (see
Tables 3 and 4)

• The embeddings learned by BiVDANN exhibit both strong subject-invariance and a
robust Gaussian distribution, allowing it to better accommodate unseen subjects (see
Tables 5 and 6)

• Ablation tests show that both VAE and DANN components contribute significantly to
the robustness of the model, and that lateralization could be a significant contributor
to identifying emotions in EEG (see Tables 7 and 8)

Future works may benefit from the modular structure of the proposed method by
extending any of its existing capabilities. For instance, it may be possible to improve the
cross-dataset performance by employing additional context-based regularizers to minimize
domain drift between datasets. Another direction could be to improve the processing
of input features, e.g., by adding components for discovering complex spatial-temporal
features equivalent to ICA or DE. Additionally, it may be of interest to include other signal
modalities, such as ECG or GSR, together with EEG in order to find features unique to
each but complementary to each other. Conversely, a weakness of the proposed work is its
black-box nature, which makes it difficult to directly assess the features discovered. The
large number of nonlinear components and varied types of parameter interactions makes
it difficult to understand precisely how the trained model makes its decisions [64]. While
DNN parameter visualization methods exist [64], they are generally geared more toward
image-based models. Additionally, while there have been attempts to visualize deep EEG
features [8], this required model architectures designed specifically for the visualization
task. Future studies could find ways to combine these techniques to discover generalizable
features that may be applied to manual EEG analysis. Finally, as more data becomes
available or as more sophisticated noise rejection techniques are discovered, it may be
possible to extend the method to a full end-to-end model by combining it with low-level
EEG time-frequency feature extractors proposed by other ongoing works.
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