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Abstract

Despite the central role of alternative sigma factors in bacterial stress response and viru-

lence their regulation remains incompletely understood. Here we investigate one of the

best-studied examples of alternative sigma factors: the σB network that controls the general

stress response of Bacillus subtilis to uncover widely relevant general design principles that

describe the structure-function relationship of alternative sigma factor regulatory networks.

We show that the relative stoichiometry of the synthesis rates of σB, its anti-sigma factor

RsbW and the anti-anti-sigma factor RsbV plays a critical role in shaping the network behav-

ior by forcing the σB network to function as an ultrasensitive negative feedback loop. We fur-

ther demonstrate how this negative feedback regulation insulates alternative sigma factor

activity from competition with the housekeeping sigma factor for RNA polymerase and

allows multiple stress sigma factors to function simultaneously with little competitive

interference.

Author Summary

Understanding the regulation of bacterial stress response holds the key to tackling the

problems of emerging resistance to anti-bacteria’s and antibiotics. To this end, here we

study one of the longest serving model systems of bacterial stress response: the σB pathway

of Bacillus subtilis. The sigma factor σB controls the general stress response of Bacillus sub-
tilis to a variety of stress conditions including starvation, antibiotics and harmful environ-

mental perturbations. Recent studies have demonstrated that an increase in stress triggers

pulsatile activation of σB. Using mathematical modeling we identify the core structural

design feature of the network that are responsible for its pulsatile response. We further

demonstrate how the same core design features are common to a variety of stress response

pathways. As a result of these features, cells can respond to multiple simultaneous stresses

without interference or competition between the different pathways.
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Introduction

Bacteria survive in stressful environmental conditions by inducing dramatic changes in their

gene expression patterns [1,2]. For a variety of stresses, these global changes in gene expression

are brought about by the activation of alternative σ-factors that bind the RNA polymerase core

enzyme and direct it towards the appropriate stress response regulons [3]. Consequently, to

ensure that these σ-factors are only active under specific environmental conditions, bacteria

have evolved regulatory systems to control their production, activity and availability [3,4].

These regulatory networks can be highly complex but frequently share features such as anti-σ-

factors, partner switching mechanisms and proteolytic activation [4]. The complexity of these

networks has impeded a clear mechanistic understanding of the resulting dynamical proper-

ties. In this study, we focus on one of the best studied examples of alternative σ-factors, the

general stress-response regulating σB in Bacillus subtilis [5] to understand how the structure of

the σ-factor regulatory networks is related to their functional response.

The σB-mediated response is triggered by diverse energy and environmental stress signals

and activates expression of a broad array of genes needed for cell survival in these conditions

[5]. Activity of σB is tightly regulated by a partner-switching network (Fig 1A and 1B) compris-

ing σB, its antagonist anti-σ-factor RsbW, and anti-anti-σ-factor RsbV. In the absence of stress,

RsbW dimer (RsbW2) binds to σB and prevents its association with RNA polymerase thereby

keeping the σB regulon OFF. Under these conditions most of RsbV is kept in the phosphory-

lated form (RsbV~P) by the kinase activity of RsbW2. RsbV~P has a low affinity for RsbW2

and cannot interact with it effectively [6]. However, in the presence of stress, RsbV~P is

dephosphorylated by one or both of the dedicated phosphatase complexes: RsbQP for energy

stress and RsbTU for environmental stress [7–10]. Dephosphorylated RsbV attacks the σB-

RsbW2 complex to induce σB release, thereby turning the σB regulon ON [11]. Notably, the

genes encoding σB and its regulators lie within a σB-controlled operon [12], thereby resulting

in positive and negative feedback loops.

Recently, it was shown that under energy stress σB is activated in a stochastic series of tran-

sient pulses and increasing stress resulted in higher pulse frequencies [13]. It has also been

shown that increase in environmental stressor such as ethanol leads to a single σB pulse with

an amplitude that is sensitive to the rate of stressor increase [14]. While it is clear that the pul-

satile activation of σB is rooted in the complex architecture of its regulatory network (Fig 1A

and 1B) its mechanism is not fully understood. Previous mathematical models of the σB net-

work either did not produce the pulsatile response [15] or made simplifications to the network

[13] that are somewhat inconsistent with experimentally observed details. As a result, it

remains unclear which design features of the σB network enable its functional properties.

To address these issues we develop a detailed mathematical model of the σB network and

examine its dynamics to understand the mechanistic principles underlying the pulsatile

response. By decoupling the post-translational and transcriptional components of the network

we show that an ultrasensitive negative feedback between the two is the basis for σB pulsing.

Moreover we find that the relative synthesis rates of σB and its operon partners RsbW and

RsbV, plays a critical role in determining the nature of the σB response. We also use our

model, together with previously published experimental data from [13,14], to explain how the

σB network is able to encode the rate of stress increase and the size of stochastic bursts of stress

phosphatase into the amplitudes of σB pulses.

We further develop this model to investigate how the network functions in the context of

other σ-factors. As in many other bacteria, σB is one of the many σ-factors that complex with

RNA-polymerase core that is present in limited amounts [3,16]. Therefore, when induced

these alternative σ-factors compete with one another and the housekeeping σ-factor σA for
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RNA polymerase. We use our model to investigate how the design of this network enables it to

function even in the presence of competition from σA which has a significantly higher affinity

for RNA polymerase [17]. Lastly, we investigate how multiple alternative σ-factors compete

when cells are exposed to multiple stresses simultaneously. Using our model we identify design

features that are ubiquitous in stress σ-factor regulation and critical to bacterial survival under

diverse types of stresses.

Results

Biochemically accurate model of σB pulsing

In a recent study, Locke et al. [13] demonstrated that a step-increase in energy stress results in

pulsatile activation of σB. The study also proposed a minimal mathematical model of the net-

work which reproduced pulsing in σB. However, this model included several assumptions

inconsistent with experimentally observed details: (i) Phosphorylation and dephosphorylation

reactions were assumed to follow Michaelis-Menten kinetics despite the fact that kinase

(RsbW) and phosphatase concentrations are known to be comparable to substrate (RsbV)

Fig 1. σB general stress response network. A. Network diagram of the σB general stress response. The

network has two modules: a transcriptional module that inputs the free σB level and outputs the total

concentrations of operon proteins RsbV (RsbVT), RsbW (RsbWT) and σB (BT); and a post-translational

module that uses RsbVT, RsbWT and BT and the stress phosphatase levels as inputs to output the level of

free σB. In the post-translational module, energy and environmental stresses activate the stress-sensing

phosphatases RsbQP (QP) and RsbTU (TU) which dephosphorylate RsbV which in turn activates σB by

releasing it from the σB-RsbW2 complex. Note only the monomeric forms of RsbW and RsbV have been

shown for simplicity. B. Simplified view of the σB network. The σB network works as a feedback loop wherein

free level controls RsbVT, RsbWT and BT levels via operon transcription and the three operon components

together with the stress level determine the free σB level. The feedback loop sign is can be either positive or

negative depending on whether increase in operon component levels impacts free σB level either positively or

negatively. C-E. Dynamics of free σB in response to a step-increase in phosphatase concentration for different

combinations of the relative synthesis rates of σB operon partners (λW = RsbWT/BT, λV = RsbVT/BT).

doi:10.1371/journal.pcbi.1005267.g001
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concentrations [18] so the approximation breaks down [19], (ii) σB and RsbV are represented

as a single lumped variable rather than separate species and, (iii) partner-switching, and the

formation and dissociation of various RsbW2 complexes were not included explicitly. Though

this minimal model produces pulses resembling their experimental observations, it does not

depict a biochemically accurate picture of the σB network. Consequently it cannot be used to

uncover the design features that enable σB pulsing.

To understand the σB network response we built on our earlier study [15] to develop a

detailed mathematical model that explicitly includes all known molecular interactions in the

network. Note that we made one significant change to the model discussed in [15]. The model

in [15] assumed that the synthesis rates for σB and its operon partners (RsbW and RsbV) fol-

low the stoichiometry of their binding ratios (i.e. RsbWT/BT = 2 and RsbWT/RsbVT = 1; where

BT, RsbWT and RsbVT represent total σB, RsbW and RsbV concentrations respectively). How-

ever experimental measurements have shown that σB, RsbW and RsbV are produced in non-

stoichiometric ratios [18]. The exact mechanism underlying these non-stoichiometric ratios is

currently only incompletely understood. However, analysis of the open-reading frames in the

operon showed that rsbV and rsbWmay be translationally coupled due to overlapping termi-

nation and initiation codons [20] which may ensure that they are expressed in similar

amounts. The same analysis also showed that the rsbW and sigB reading frames overlapped

and that this overlap was preceded by a region of dyad symmetry which may form a stem-loop

structure [20]. These features may interfere with sigB translation and lead to lower expression

of σB than its binding partners RsbV and RsbW. To account for these features, in contrast to

our earlier study, we assumed σB, RsbW and RsbV can be produced in non-stoichiometric

ratios and studied how changes in relative synthesis rates of σB operon partners affect the

response of the σB network to step-increases in energy stress phosphatase levels. We note that

RsbX, a negative regulator of RsbTU phosphatase [21], is not included in our model. RsbX was

excluded for simplicity since it is not essential for the pulsatile response of the σB network [14].

Simulations of this detailed model showed that different combinations of RsbW:σB (λW)

and RsbV:σB (λV) relative synthesis rates lead to qualitatively different dynamical responses of

the σB network. For operon partner synthesis ratios similar to those estimated in [18], (i.e.

RsbWT > 2BT and RsbWT� RsbVT) our model responded to a step-up increase of the phos-

phatase with a pulsatile σB response (Fig 1C) that resembled the experimentally observed

behavior [13]. In contrast, when RsbW:σB and RsbV:σB relative synthesis rates follow the stoi-

chiometry of their binding ratios pulsing is not observed and the σB activity monotonically

increases over time (Fig 1D). Pulsing also disappears when RsbW synthesis is high enough to

neutralize both its binding partners (Fig 1E).

Pulsing originates from emergent negative feedback in the network

To understand why the pulsatile response is only observed for certain operon partner synthesis

rates, we investigated our mathematical model by decoupling the network’s transcriptional

and post-translational responses (as shown in Fig 1A). By varying the σB operon transcription

rate, while keeping the relative synthesis rates of RsbW:σB (λW) and RsbV:σB (λV) fixed, we

were able to calculate the post-translational response (Fig 2A, blue curve) of the σB network:

[σB] = Fp ([BT], [PT]). This function describes how the free σB concentration varies as a func-

tion of BT (total concentration of σB) and PT (total phosphatase concentration). Note that

although we refer only to BT for brevity, RsbWT and RsbVT are always assumed to increase in

proportion to the BT for this post-translational response. This post-translational function is

analogous to an in vitro assay wherein various combinations of total σB (BT−and proportional

amounts of RsbWT and RsbVT) and total phosphatase (PT) are mixed together and then the
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resulting free σB concentration is measured. In parallel, we calculated the transcriptional

response (Fig 2A, black curve) [BT] = FT ([σB]) which analogous to a transcriptional reporter

construct in vivo, describes how changes in the free σB concentration affect total σB concentra-

tions (and RsbWT and RsbVT concentrations which are always proportional to BT). In this

analysis framework, the steady state of the complete closed loop network can be determined

by simultaneously solving the post-translational and transcriptional equations, [σB] = FP ([BT],

[PT]) and [BT] = FT ([σB]) at each phosphatase concentration PT. Graphing both functions pro-

vided the steady-state solution as their intersection point (Fig 2A, red circle).

This decoupling approximation allows us to quantify the sign and strength of feedback in

the full model. The effective sign of the feedback in the σB network is given by the sign of the

product of the sensitivities of two response functions, i.e. sign ((@FT / @[σB])�(@FP / @[BT])).

Since σ-factors function as activators of transcription, FT ([σB]) is a monotonically increasing

function of σB (i.e. @FT / @[σB]> 0). Consequently, the sign of the feedback in the σB network is

Fig 2. Negative feedback drives the pulsatile response of the σB network. A. Decoupled post-

translational (blue curve) and transcriptional (black curve) responses of the σB network for λW = RsbWT/BT =

4, λV = RsbVT/BT = 4.5. σB and BT represent the concentrations of free and total σB. Red circle marks the

steady states of the full system. Note that RsbWT and RsbVT are assumed to always increase in proportion to

the BT for both post-translational and transcriptional responses. B. Sensitivity of the post-translational

response (LGP) to changes in total σB concentration (operon production). C. Representation of the σB

pulsatile trajectory in the σB-BT phase plane (green curve). Blue and cyan curves are the decoupled post-

translational responses at high and low phosphatase concentrations. Black curve is the transcriptional

response. D. (λW, λV) relative synthesis parameter space is divided into regions with positive (Region I),

negative (Region II) and zero (Region III) post-translational sensitivity that respectively correspond to an

effective positive, negative and no feedback in the σB network. Red and black lines represent the analytically

calculated region boundaries λW = 2 + λV and λW = 2(1 + λVkdeg / kk).

doi:10.1371/journal.pcbi.1005267.g002
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given by the sign of the sensitivity of the post-translational response to RsbBT (i.e. @FP / @[BT]).

In other words, if increase in the operon production leads to an increase in free σB then the

feedback is positive, whereas if increase in the operon production leads to a decrease in free σB

then the feedback is negative. Our results show that for the parameters chosen in Fig 1C FP is a

non-monotonic function of BT (Fig 2A, blue curve). At low RsbBT, free σB increases as a func-

tion of BT because RsbW is sequestered in the W2V2 complex. However at higher BT, the kinase

flux dominates the phosphatase flux resulting in an increased RsbV~P and the freeing of

RsbW2 from RsbV. Freed RsbW2 sequesters σB in the W2σB complex. Furthermore, in the total

σB concentration range where @FP / @[BT]< 0 in Fig 2B, the post-translational response is quite

steep (Fig 2A), i.e. small changes in BT lead to significant decreases in free σB. This ultrasensitiv-

ity can be quantified by calculating the slope in logarithmic space, i.e.

LGP ¼
d½sB�=½sB�

d½BT �=½BT �
¼
d log½sB�

d log½BT �

This dimensionless quantity characterizes the ratio of relative changes in σB and BT at steady

state (Fig 2B). The sign of LGP defines the effective sign of the feedback loop and if the magni-

tude of |LGP|> 1 defines an ultrasensitive response. For the σB network, in the region around

the steady state LGP< −1 indicating that the σB network operates in an ultrasensitive negative

feedback regime. Two types of post-translational reactions that are known to produce ultrasen-

sitivity play a role here (S1A and S1B Fig): (1) Zero-order ultrasensitivity due to competition

between RsbW kinase and RsbQP/RsbTU phosphatases for RsbV and (2) molecular titration

due to sequestration of σB by RsbW. Notably around the steady state, whereas both the fraction

of unphosphorylated RsbV and the fraction of free σB decrease ultrasensitively as a function of

increase in operon expression (proportional to BT) the latter is far more sensitive (S1C Fig).

This indicates that molecular titration between σB and its binding partners may contribute

more to the ultrasensitivity of the post-translational response than the zero-order competition

between RsbW and stress phosphatases. Irrespective of their relative contributions however,

our results show that both mechanisms combine to ensure that near the steady state the σB net-

work operates in an ultrasensitive negative feedback regime.

Notably, negative feedback is one of the few network motifs capable of producing adaption-

like pulsatile responses [22]. Moreover, ultrasensitivity of the feedback ensures homeostatic

behavior—making the steady state robust to variations of parameters [22]. This explains why

in Fig 1C a step-increase in the phosphatase concentration in our model leads to a σB pulse fol-

lowed by return to nearly the same steady state. Plotting the trajectory of the σB pulse (green

curve, Fig 2C) on the ([σB], [BT]) plane and over the post-translational and transcriptional

responses (Fig 2C) illustrates the mechanism driving this pulsatile response. Starting at the ini-

tial steady state (red circle), an increase in phosphatase shifts the ultrasensitive post-transla-

tional response (cyan to blue curve) so that free σB is rapidly released from the RsbW2-σB

complex whereas total σB levels remain relatively unchanged. The increase in σB operon tran-

scription eventually causes accumulation of total σB and the anti-σ-factor RsbW. This in turn

forces the σB level to decrease, following the post-translational response curve, to the new

steady state (gray circle) which has very little free σB thereby completing the σB pulse.

The same analysis can be applied for different values of relative synthesis rates, i.e. those

that correspond to Fig 1D and 1E. As shown in S2 Fig these parameter values do not produce

an ultrasensitive non-monotonic post-translational response. Consequently they do not lead

to the emergence of overall negative feedback explaining their non-pulsing dynamics. To

determine if the presence or absence of negative feedback more generally explains the different

dynamical responses in Fig 1C–1E, we sampled different combinations of relative synthesis
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rates ([RsbWT] / [BT] = λW and [RsbVT] / [BT] = λV) and calculated the post-translational sensi-

tivities. Our calculations showed that based on the sign of post-translational sensitivity (LGP)
the relative synthesis parameter space can be divided into three regions (Fig 2D). For (λW, λV)

combinations in Region I the sensitivity is always positive. Increase in λW leads the system into

an ultrasensitive negative regime (LGP< 0 and |LGP|� 1) in Region II. A further increase in

λW or a decrease in λV transitions the system into a non-responsive (LGP * 0) state in Region

III. Dynamic simulations for sampled (λW, λV) combinations confirm that pulsatile responses

to step-up in phosphatase concentration are restricted to Region II where the effective feed-

back is negative (S2 Fig).

To understand the boundaries between the three regions and how the level of the phospha-

tase affects the network, we developed a simplified analytical model that is based on the obser-

vation that RsbW and RsbV bind strongly to each other [18] (see S1 Text for details). This

approximation allowed us to determine the boundaries in Fig 2D (black and red lines) and

resulted in a clear biological interpretation of the three regions. In Region I the amount of

RsbW, irrespective of phosphatase level, is insufficient to bind all of its partners and conse-

quently some fraction of σB always remains free or unbound to RsbW. In contrast in Region

II, the amount of phosphatase determines how much RsbV is in its inactive phosphorylated

form RsbV~P and therefore whether the amount of RsbW is sufficient to bind all of its part-

ners depends on the levels of RsbV~P. As a result, for this region, the ratio of kinase and phos-

phatase (PT) fluxes determines the post-translational response. Lastly, Region III is the

opposite of Region I in that the amount of RsbW is more than sufficient to bind all of its part-

ners, even when all RsbV is unphosphorylated. As a result, irrespective of phosphatase levels,

very little σB is free and its level is nearly insensitive to changes in total σB. Thus negative feed-

back and consequently pulsing are only possible in Region II where changes in phosphatase

can shift the balance between the prevalent partner complexes.

The role of negative feedback in producing a pulsatile response also explains why pulsing

does not occur in strains where σB operon is transcribed constitutively [13]. In this case, the σB

network lacks the negative feedback necessary to produce a pulsatile response. A step-increase

in phosphatase still leads to an increase in free σB due to the change in the post-translational

response; however, this not followed by an increase in total σB levels (S2C Fig). Consequently,

an increase in phosphatase results in a monotonic increase in free σB rather than a pulse

(S2F Fig).

The only actual measurements of λW and λV were made by Delumeau et al. [18] using a

quantitative western blot assay. Interestingly they report that λW = 2.9, λV = 1.7 in the absence

of stress and λW = 2.4, λV = 2.65 in the presence of stress. These measurements suggest that the

ratios might change depending on whether cells are under stress. Although the mechanism

underlying this change is unclear, our model predicts that both measured ratio pairs lie within

the negative feedback regime shown in Fig 2D. Accordingly our simulations show that the net-

work responds to step-increases in phosphatase levels with a pulsatile response for both pre-

stress and post-stress (λW, λV) values (S3 Fig). However, due to reduced ultrasensitivity of the

system for these parameters, concertation of free σB following increase in the stress (phospha-

tase) does not perfectly adapt to the pre-stress value (S3 Fig). In an attempt to match the near-

perfect adaptation reported in Refs. [13,14] we’ve chosen to do further analysis with λW = 4

and λV = 4.5.

Notably, our simulations also showed that it is not essential for the phosphatase level to

remain fixed after a stress-induced step-increase. In fact, we found that a dilution mediated

decline in phosphatase level post-step-increase has little impact on the pulse amplitude (S4

Fig). This observation can be explained by the relatively rapid dynamics of the post-transla-

tional response as compared to the gradual nature of dilution and suggests that pulsatile
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dynamics are relevant even for experimental conditions where phosphatase levels do not

remain fixed in stressful conditions [14,23].

Further our decoupling method also sheds light on another experimental observation by

Locke et al. [13]: the dependence of σB pulse amplitude on the phosphatase level. Specifically,

we found that σB pulse amplitude is a threshold-linear function of the phosphatase concentra-

tion (S5 Fig). Our decoupling method shows that this threshold-linear behavior arises because

the σB network only operates in a negative feedback regime for phosphatase concentrations

higher than a threshold. Below the phosphatase threshold, the post-translational response

[σB] = FP ([BT], [PT]) * 0 and is insensitive to RsbBT (S5B and S5C Fig). Thus, the full system

lacks the negative feedback and as a result σB does not pulse. Using our analytical approxima-

tion we found that this phosphatase threshold is proportional to the basal level of RsbW kinase

synthesis rate and the ratio of the kinase and phosphatase catalytic rate constants (S5D and

S5E Fig). Increase in the basal σB operon expression rate increases the phosphatase threshold.

Further, an increase in the relative synthesis rate of RsbW (λW = [RsbWT] / [BT]) makes the

phosphatase threshold more sensitive to the σB operon expression rate, whereas a decrease in

ratio of the kinase and phosphatase catalytic rate constants makes it less sensitive (S5D and

S5E Fig). This shows that the phosphatase threshold represents the concentration at which the

phosphatase is able to match the basal kinase flux.

Altogether these results show how the ultrasensitive negative feedback plays a critical role

in determining many properties of the σB network pulsatile response and how the decoupling

method can facilitate the identification of essential design features that enable the existence of

this negative feedback.

Under energy stress conditions σB network encodes phosphatase burst

size into pulse amplitudes

In the preceding sections we have shown how the σB network responds to a step-increase in

RsbQP or RsbTU phosphatases by producing a single pulse of activity. However, Locke et al.

[13] have shown that an increase in energy stress leads to a sustained response with a series of

stochastic pulses in σB activity. This study further showed that this sustained pulsing response

is driven by noisy fluctuations in level of energy-stress-sensing phosphatase RsbQP. While the

mean level of RsbQP is regulated transcriptionally by energy stress, its concentration in single

cells can fluctuate due to the stochasticity of gene expression [8,13]. To determine if our model

could explain this response to stochastic fluctuations in RsbQP, we modified it to include fluc-

tuations in the concentration of this phosphatase.

Based on previous theoretical [24,25] and experimental [26] studies we assume that fluctu-

ating phosphatase level follows a gamma distribution which is described by two parameters—

burst size (b, average number of molecules produced per burst) and burst frequency (a, num-

ber of bursts per cell cycle). The mean phosphatase in this case is the product of burst size and

burst frequency (hPTi = ab). Thus, energy stress can increase mean phosphatase by changing

burst size or burst frequency or both. In other words, stress conditions can increase phospha-

tase levels by either producing more phosphatase molecules per transcription-translation

event or by making these events more frequent. While the results of [13] cannot exclude either

mechanism, we can use our model to uncover which mechanisms is dominant.

First, we performed stochastic simulations in which mean phosphatase concentration was

varied by changing burst size. These simulations reproduced all the experimentally-observed

features of the σB pulsatile response. Specifically our results show that stochastic bursts in stress

phosphatase levels lead to pulses of σB activity (Fig 3A). Moreover, consistent with the experi-

mental observations of [13], our model showed that the amplitude of σB pulses increases
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linearly with the stress phosphatase level (Fig 3A and 3B). Finally, we found that stress-medi-

ated increases in phosphatase concentration lead to an ultrasensitive (effective Hill coefficient

~5.6) increase in the frequency of σB pulsing (Fig 3C) and an ultrasensitive (effective Hill coef-

ficient ~2) increase in the level of σB target expression (Fig 3D).

Next, we compared these results with stochastic simulations in which burst frequency was

modulated (Fig 3E–3H). These simulations also led to an increase in σB pulsing (Fig 3E) and a

non-linear increase in the level of σB target expression as mean phosphatase level was increased

with more frequent bursts (Fig 3H). However, we found that σB pulse amplitude remains con-

stant for burst frequency modulation (Fig 3E and 3F) unlike the ~5-fold increase for burst-size

modulation (Fig 3B). Moreover, the frequency of σB pulses increase linearly with phosphatase

level unlike the non-linear increase observed with burst-size-increase simulations (compare

Fig 3C and 3G). Notably the experimental observations reported in [13] show that σB pulse

amplitude does increase (~3-fold) with an increase in energy stress thus suggesting that

increase in phosphatase concentration at high stress is primarily the result of increase in burst

size.

To further reinforce the role of mean burst-size modulation in controlling the σB pulsatile

response we next examined the cumulative histograms of pulse amplitudes at different phos-

phatase concentrations. These histograms carry different signatures for burst-size or burst-fre-

quency encoding. The distribution of pulse amplitudes is unchanged with increase in burst

frequency (S6A Fig) because σB pulse amplitude is determined by phosphatase burst size and

not burst frequency. In contrast, if phosphatase levels are controlled by changing mean burst

size then the distribution of pulse amplitudes changes accordingly. Consequently, the

Fig 3. Pulsatile response of the σB network to stochastic phosphatase bursts during energy stress.

Model simulations for σB network response where energy stress leads to an increase in stress-sensing

phosphatase RsbQP burst size (A-D) or RsbQP burst frequency (E-H). A,E. Simulations show stochastic

bursts in levels of RsbQP lead to pulses of σB target promoter activity. Light and dark green curves are sample

trajectory from stochastic simulation at high and low stress respectively. Note that σB target promoter activity

pulse amplitude increases significantly with increasing stress for burst size modulation (A) but not for burst

frequency modulation (E). B,F. Mean σB pulse amplitude increases linearly as a function of mean

phosphatase level for burst size modulation (B) but is insensitive to mean phosphatase level for burst

frequency modulation (F). Green circles and errorbars show means and standard deviations calculated from

stochastic simulations. Black line is a linear fit. C,G. With increasing mean phosphatase level, mean σB pulse

frequency increases ultrasensitively for burst size modulation (C) and linearly for burst frequency modulation

(G). Green circles and errorbars show means and standard deviations calculated from stochastic simulations.

Black curves are a Hill-equation fit with nHill = 5.6 in (C) and a linear fit in (G) respectively. D,H. Mean σB target

expression increases ultrasensitively as a function of mean phosphatase level for both burst size (D) and

burst frequency (H) modulation. Green circles are the mean σB target expression calculated from stochastic

simulations. Black curve is a Hill-equation fit with nHill = 2 in (D) and in nHill = 1.2 (H).

doi:10.1371/journal.pcbi.1005267.g003
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normalized cumulative histograms of pulse amplitudes overlap for burst-frequency encoding

(S6A Fig) but not burst-size encoding (S6B Fig). Applying this test to the data from [13], we

found that the normalized cumulative pulse amplitudes histograms do not overlap (S6C Fig).

These results predict that stress affects the σB network via burst-size modulation of phospha-

tase production which is then encoded into σB pulse amplitudes. While the molecular mecha-

nism that introduces energy stress to the network is still not fully understood, our prediction

places an important constraint on it.

σB network encodes rate of environmental stress increase into pulse

amplitudes

Our model can also be used to study the response of σB network to environmental stress.

Unlike the energy stress phosphatase, the environmental stress phosphatase RsbU is regulated

post-translationally by binding of RsbT [27–29]. RsbT is trapped by its negative regulators

under unstressed conditions but is released upon stress. Consequently, the concentration of

RsbTU complex is tightly controlled at the post-translational level and is therefore expected to

be relatively insensitive to gene expression fluctuations but sensitive to the level of environ-

mental stress. As a result, step-up increases in environmental stress agents like ethanol produce

rapid increases in RsbTU and result in only a single pulse of σB activity [14]. However it has

been shown that for gradual increases in stress, σB pulse amplitude depends on the rate of

stress increase [14]. To explain this response, we modeled gradual stress with ramped increase

in RsbTU complex concentration (Fig 4A). Our simulations showed that the detailed model of

σB network is indeed able to capture the effect of rate of stress increase on σB pulse amplitudes.

Specifically for a fixed increase in RsbTU complex, the pulse amplitude decreases non-linearly

as a function of the duration of phosphatase ramp (Fig 4B and 4E).

Fig 4. Rate sensitivity of the σB pulsatile response to environmental stress. A. Ramped increases in

RsbTU complex concentration were used as model inputs to simulate different rates of stress increase in σB

network. B. σB pulse amplitudes in the wildtype model (kdeg = 0.72 hr-1 is the degradation rate of σB operon

proteins) resulting from the ramped increases in phosphatase concentration shown in (A). C,D. σB pulse

amplitudes resulting from the ramped increase in phosphatase concentration shown in (C) for various

degradation/dilution rates (D). E. Non-linear dependence σB pulse amplitude on phosphatase ramp duration

for various degradation/dilution rates. Circles and solid curves represent simulation results and Hill-equation

fits respectively. Colors represent different kdeg values as in (D). F. Kramp, the half-maximal constant of the

non-linear dependence of amplitude on ramp duration, as a function of kdeg.

doi:10.1371/journal.pcbi.1005267.g004
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We hypothesized that this ramp rate encoding is the result of the timescale separation

between the fast post-translational and the slow transcriptional responses of the σB network.

During the pulsed σB activation, post-translational response is rate-limited by the phosphatase

ramp. In contrast, the transcriptional response is slow and its rate is set by the degradation rate

of σB operon proteins. Following a step-increase in phosphatase, the fast post-translational

response ensures that σB reaches its post-translational steady state before the slow increase in

RsbW sequesters σB and turns off the pulse (Fig 4A and 4B). However, for a ramped increase

in phosphatase the post-translational increase in σB is limited by the rate of phosphatase ramp.

This allows RsbW to catch up and terminate the σB pulse earlier, thereby decreasing the pulse

amplitude. To test this, we varied the degradation rate of σB operon proteins and proportion-

ally changed the operon transcription rate to ensure that the total concentrations of σB, RsbW

and RsbV are kept fixed. We found that indeed pulse amplitude decreases with increase in deg-

radation/dilution rate (Fig 4C and 4D). Our simulations showed that Kramp, the half-maximal

constant for the dependence of pulse amplitude on ramp duration, was indeed sensitive to the

degradation rate (Fig 4E and 4F). This suggests that the timescale separation between the

post-translational and transcriptional responses is the basis of ramp rate encoding into pulse

amplitude.

The design of the σB network enables it to compete with σA for RNA

polymerase

The results thus far indicate that σB network functions in the effectively negative feedback

regime where increase in the operon expression decreases σB activity. Negative feedback loops

have been shown to increase the robustness of the system to perturbations. We therefore

decided to investigate how the σB network design affects its performance when it faces compe-

tition for RNA polymerase from other σ-factors, e.g. from the housekeeping σ-factor σA

[16,30,31]. Since σA has a much higher affinity for RNA polymerase [17], a small increase in

σA can dramatically increase the amount of σB necessary to activate the transcription of the σB

regulon. Thus, changes in σA can alter the input-output relationship of a stress-response σ-fac-

tor like σB (S7A and S7B Fig) and thereby adversely affect the survival of cells under stress.

To understand how the σB network handles competition for RNA polymerase, we expanded

our model to explicitly include σA, RNA polymerase (RNApol) and its complexes with both σ-

factors. The presence of σA will affect transcriptional activity of σB but not post-translational

interactions between σB operon partners (Fig 5A, left panel). Therefore, post-translational

response [σB] = FP ([BT], [PT]) is not affected by σA. In contrast, in the transcription response,

an increase in σA decreased the ‘effective affinity’ of σB for RNApol and consequently higher

levels of free σB are necessary to achieve the same production rate for σB target genes.

Using our model, we examined how changes in σA level affect the network response to

energy stress signal, i.e. under stochastically fluctuating RsbQP phosphatase levels. Our simu-

lations showed that phosphatase bursts lead to pulses of free σB and pulsatile transcription of

σB-controlled promoters (Fig 5B and 5C) as the presence of σA does not affect the effective

feedback sign. Notably our results also showed that the amplitudes of σB target promoter pulses

are hardly affected by a ~30% increase in σA (Fig 5C, left panel). This surprising insensitivity of

the phosphatase-σB target dose-response to RNApol competition is the result of the ultrasensi-

tive negative feedback between free σB and total σB. Due to the ultrasensitivity of this feedback,

a small decrease in total σB levels resulting from the increase in σA causes a large increase in σB

pulse amplitude (Fig 5B left panel, Fig 5D green line). This increased amplitude compensates

for the increased competition for RNApol and insulates the network from perturbations (Fig

5D and 5E, green curves).
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To further illustrate the importance of the negative feedback in insulating the network, we

compared the response of the wildtype network to an “in silico” mutant network wherein the

σB operon is constitutive rather than σB dependent (Fig 5A). Consequently this network lacks

any feedback between free σB and total σB. Our simulations (Fig 5B, right panel) show that the

free σB concentration of the no-feedback-network does not show adaptive pulsing and there-

fore σB concentration fluctuates along with the phosphatase levels. Increase in σA did not affect

this response. This is expected since in the absence of feedback σA only affects the expression

of σB targets in this network (Fig 5A, right panel). Without an increase in free σB (Fig 5D), the

increased competition for RNApol at higher σA reduced the σB target promoter activity (Fig

5C and 5E). Similarly a positive feedback network design is also incapable of increasing free σB

in response to an increase in σA (S5C, S5D and S5E Fig). Thus fluctuations in σA can interfere

with the σB stress-response of these alternative network designs. In contrast, the wildtype σB

network with its ultrasensitive negative feedback design can compensate for competition

effects (Fig 5D and 5E).

Negative feedback designs of stress-response σ-factor networks

minimizes interference

The emergent negative feedback design of the network discussed here is not unique to σB.

Transcription of many alternative σ-factors in B. subtilis as well in other bacteria is often posi-

tively auto-regulated but sigma-factor operons often include post-translational negative regu-

lators [3,12,32–35]. For example σW, a σ-factor in B. subtilis that controls the response to

alkaline shock [36] is co-transcribed with its anti-σ-factor RsiW. In the absence of stress, RsiW

sequesters σW in an inactive complex. σW is activated by stress signals which trigger the

Fig 5. Negative feedback insulates the σB response from competition with houskeepingσ-factorσA.

A. Simplified network diagrams of stress σ-factor σB competing with housekeeping σ-factor σA for RNA

polymerase. In all cases, a σB phosphatase controls the stress-signal driven activation of σB. (B,C).

Trajectories of free σB (B) and σB target promoter activity (C) in response to stochastic phosphatase input for

both networks at two different levels of σA (σA = 9μM—low competition-regime and σA = 12μM—high-

competition regime for RNA polymerase). D-E. Mean free σB concentration (D) and mean σB target promoter

activity (E) as a function of total σA concentration (AT) for both networks in (A) at fixed mean phosphatase

(mean PT = 0.5 μM). Gray vertical line shows the total RNA polymerase level which was fixed at 10 μM.

doi:10.1371/journal.pcbi.1005267.g005
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cleavage and degradation of RsiW thereby releasing and activating σW target expression [37].

Although it is unknown whether the σW network functions in a negative feedback regime simi-

lar to σB or if it pulses, it is possible for this network to exhibit these design properties. If RsiW

is expressed in stoichiometric excess of its binding partner σW from the σW-regulated operon

which they share [38], then similar to the σB network, σW would operate in a negative feedback

regime.

To determine if negative feedback control offers any advantages when multiple stress σ-fac-

tors are active, we built a new model that includes three σ-factors: σB
, σW and σA (Fig 6A). In

this model we use σB and σW to denote two generic stress σ–factors and accordingly anti-σ-fac-

tors RsbW (RsiW) and other details of post-translational regulation were excluded for simplic-

ity. Thus our results apply to any combination of alternative σ-factors with ultrasensitive

negative feedback control. In this general model, regulation of free σB and σW was modeled

with simplified identical versions of the negative feedback design of the σB network (S7A Fig).

Under this simplification, free σB and free σW are non-monotonic functions of their respective

total concentrations BT andWT. These non-monotonic functions are qualitatively similar to

the post-translational response function shown in Fig 2B and depend on a signaling proteins

PB (for σB) and PW (for σW). Following the previous section, this model explicitly includes σA,

RNApol and its complexes with σ-factors. As a result, transcriptional activity of both σB and

σW depend on σA and RNApol concentrations (see S1 Text). Concentrations of RNApol and

σA were chosen to ensure that amount of RNApol is insufficient to bind to all σ-factors at the

same time. All other parameters of the simplified model were chosen to approximately match

the full σB network model and ensure that both σB and σW operate in the negative feedback

regime. Consequently for the chosen parameters this simplified model acts like our detailed

model and responds to step increases in the stress signaling protein PB (or PW) by producing a

pulse of σB (or σW) activity (S7C and S7D Fig). To enable a comparison of the competition

Fig 6. Negative feedback minimizes competition between stressσ factors for RNA polymerase. A,B.

Simplified network diagrams of stress σ-factors σB and σW and housekeeping σ-factor σA competing with

each other for RNA polymerase. σB and σW activities are regulated by negative and positive feedbacks in (A)

and (B) respectively. In both cases, signaling proteins PB and PW control the stress-signal driven activation of

σB and σW respectively. C, D. Dependence of free σB and σW levels on PB at fixed PW (= 2μM). In the wildtype

negative feedback system (C), increase in σB phosphatase leads to an increase in both free σB (green curve)

and free σW (red curve). In the positive feedback system (D), increase in σB phosphatase leads to an increase

in free σB (green curve) and a decrease in free σW (red curve). E, F. σB and σW target promoter activities as a

function of PB at fixed PW in the wildtype negative feedback system (E), and the positive feedback system (F).

G, H. RNA polymerase bound σB (Rpol-σB) as a function of PB at fixed PW in the wildtype negative feedback

system (G) and the positive feedback system (H). Increase in σB phosphatase (PB) leads to an increase in

Rpol-σB (green curve) and corresponding decreases ΔRpol-σW (core complex with σW, red area) and ΔRpol-

σA (complex with σA, blue area).

doi:10.1371/journal.pcbi.1005267.g006
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between σ-factors for different types of feedback we hereafter focus on only steady state

response, however our conclusions are also valid for the averaged pulsatile dynamical

responses that could be characteristic of the negative feedback σ-factor networks.

We used this simple model to study the response when cells are simultaneously exposed

to multiple stresses creating competition for RNApol. For these simulations we fixed σA lev-

els and studied how activation signals for one alternative σ-factor affects the activity of

another. As before (S7A and S7B Fig), increased availability of one stress σ-factor leads to a

competition for RNA polymerase and as a result reduces the activity of another stress σ-fac-

tor (S8E and S8F Fig). However, when negative feedback loops are present, surprisingly,

increasing the stress signal for one σ-factor did not lead to any significant change in the

activity of another σ-factor. For example, increasing stress signaling protein PB while keeping

PW fixed leads to an increase in free σB but also results in a small increase in free σW (Fig 6C).

This response can be explained by the ultrasensitive negative feedback loops controlling the

two stress σ-factors. An increase in free σB by stress signaling protein PB leads to increased

competition for RNApol resulting in a decrease in the production of RsbW. But since σW is

regulated by a negative feedback, a decrease in total RsbW concentration actually frees up

more σW thereby insulating σW target activity from the effects of RNApol (Fig 6E). Similarly

the dynamic response of the stress σ-factors is also insulated from competition and an

increase in fixed PW levels increases the pulse amplitude of σB in response to step changes in

stress signaling protein PB (S8A–S8D Fig). This compensation of changes in RNA polymer-

ase availability comes about because both σB and σW are regulated by ultrasensitive negative

feedbacks in our model. As a result of this negative feedback, both σ-factor networks func-

tion as homeostatic modules. Homeostatic resistance to changes in signals is an intrinsic

property of ultrasensitive negative feedback motifs.

Thus the two stress σ-factors are able to function simultaneously despite the scarcity of

RNApol. The mechanism minimizing competition between stress σ-factors becomes clearer

when we track the changes in σ–RNApol complexes as a function of the stress signaling pro-

tein PB. As PB increases, more free-σB becomes available and binds to RNApol (Fig 6G). How-

ever this RNApol must be accounted for by the RNApol lost by the other operating σW and σA

factors. Comparing the contributions of each σ-factor shows that despite the fact that σA has a

much higher affinity for RNApol, most of the RNApol in the σB-RNApol complex is drawn

from the σA-RNApol pool rather than σW-RNApol pool (Fig 6G). Thus the negative feedback

design allows stress σ-factors to minimize their competition with each other at the expense of

the housekeeping factor σA.

The role of the negative feedback in producing this response becomes clear when we com-

pare the response of an “in silico” mutant network with positive feedback loops between σB

and BT and σW and WT (Fig 6B). These positive feedback loops are expected to display no

homeostatic properties and as a result, in this network activation of σB should significantly

decrease σW activity. Indeed, our simulation for the positive feedback network (Fig 6D) dem-

onstrates that with increase in stress signaling protein PB and the resulting increase in free σB,

the free σW concentration decreases. As a result of the increased competition for RNApol and

the decreased free σW, σW target promoter activity in this network decreases as a function of

PB (Fig 6F). Moreover comparing changes in σ–RNApol complexes as a function of stress sig-

naling protein PB we find that most of the RNApol in the σB-RNApol complex is drawn from

the σW-RNApol pool rather than σA-RNApol pool (Fig 6H). Thus the negative feedback

designs are essential for stress σ-factors not only to tolerate competition from σA, but also to

avoid competing with each other when the cell is simultaneously exposed to multiple types of

stresses.
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Discussion

Taken together, our results show how the design of the σB network includes an implicit ultra-

sensitive negative feedback that plays multiple functional roles. This design enables pulsatile

activation of σB in response to energy stress and rate-sensitivity to increases in environmental

stress. Moreover, our model predicts that the same design feature allows the network to effec-

tively compete with house-keeping and other alternative σ-factors for RNA polymerase core.

Prompted by recent observations of the highly dynamic pulsatile response of the σB net-

work [13,14], we have developed a mathematical model that reproduces all reported features

of the response including pulsatile activation in response to stress. Our model avoids making

ad hoc simplifications and instead captures all the known molecular details of the network. By

decoupling the post-translational and transcriptional responses in our model we were able to

derive a simplified view of the network that illustrates how the pulsatile response is mechanisti-

cally based on the ultrasensitive negative feedback in the network. Using this method we iden-

tified the ratios of σB, RsbW and RsbV synthesis rates as the most critical design property,

which by controlling the post-translational response determines the sign of the feedback in the

network as well as all qualitative features of the network response. This highlights how ignor-

ing non-transcriptional interactions and focusing on transcriptional regulatory interactions

alone can be misleading when trying to identify or characterize network motifs. Notably,

recent analyses of networks like bacterial two-component systems [39] and the sporulation

phosphorelay [40] have similarly shown how the effective sign of feedback in these networks

depends critically on their post-translational interactions.

Interestingly previously reported measurements of the relative amounts of σB, RsbW and

RsbV using a quantitative western blot assay showed that the ratios between these components

may change depending upon stress [18]. Our model shows that for both pre- and post-stress

values of these synthesis ratios, the σB network lies within the negative feedback regime and

responds to step-increases in phosphatase levels with a pulsatile response. Thus these stress

induced expression changes do not affect our conclusions about the function of the σB net-

work. Nevertheless their mechanistic basis, whether transcriptional or post-translational,

remains unclear and may add an additional layer of complexity to regulation. Together with

our modeling results these observations highlight the need for more quantitative experimental

methods to determine the relative synthesis rates of σB operon components.

The decoupling of the post-translational and transcriptional response greatly facilitated the

identification of critical design features despite the complexity of the network. This separation

greatly reduces the dimensionality of the dynamical system by enabling an independent

input–output analysis for the two modules. Similar methods have also been applied to deduce

core functional properties in other bacterial networks comprising two-component systems

and alternative σ-factors [41–43]. Interestingly our analysis revealed that the post-translational

and transcriptional module structures of the σB network and the phosphorelay controlling B.

subtilis sporulation are remarkably similar [40]. Despite the differences in molecular details, in

both networks increase in total transcription factor levels produces a non-monotonic response

in the active transcription factor. Combining this response with the transcriptional feedback

produces an ultrasensitive negative feedback in both networks. The relevance of these similari-

ties is evidenced by the fact that both networks produce dynamically similar pulsatile responses

even though they are activated by entirely different stimuli.

We further used our model to establish that energy stress controls σB pulses frequency by

modulating the size of stochastic bursts of energy stress phosphatase rather than burst fre-

quency. We reached this conclusion by showing that only burst size modulation can explain

the experimentally observed changes in mean pulse amplitude and pulse amplitude
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distribution with increasing energy stress level. It should be noted that although our results

provide clear evidence in favor of phosphatase burst-size modulation, direct confirmation of

this mechanism necessitates the use of single-molecule techniques such as RNA-FISH [44,45]

that can be used to estimate stochastic properties of gene expression. This result raises the

question whether pulsatile σB response can achieve proportional expression of downstream

genes, as was previously suggested [13,46]. This proportional control requires the distribution

of pulse amplitudes to remain fixed even as stress levels increase. However under the burst-

size encoding strategy, pulse amplitude distributions change as stress levels increase thereby

negating the efficacy of a pulsed response in producing proportional expression of down-

stream genes.

The functional significance of pulsatile response may instead lie in its ability to encode the

rate of environmental stress increase. Our model showed that this rate encoding follows from

the timescale separation between the fast post-translational and the slow transcriptional

responses in the network. As a result cells are able to encode the rate of stress increase into σB

pulses. This rate responsiveness is only possible with adaptive pulsatile responses and thus may

explain the need for σB pulsing to control the general stress response.

We also used our model to understand the response when placed in the larger context of

other σ-factor networks and competition for RNA polymerase. Our results show how the net-

work design is uniquely suited to insulating its response from RNA polymerase competition

from the housekeeping σ-factor. Finally we demonstrated how ultrasensitive negative feed-

back, a ubiquitous feature of stress σ-factor regulation enables different stress σ-factors to

operate simultaneously without inhibiting each other. These results are relevant not only for

understanding the stress response of bacteria but also increasingly for the design of synthetic

circuits. The movement towards the construction of larger genetic circuits has produced

numerous recent designs that include multiple independent modules that rely on shared

resources or actuators to function [47–49]. Our results highlight how competition between

modules for shared resources can significantly affect the performance of these synthetic cir-

cuits. Further, inspired by the design of naturally occurring stress σ-factor network we provide

new design rules that can improve the performance and robustness of the synthetic networks.

Methods

The details of all biochemical reactions in the model and the corresponding differential equa-

tions are described in the S1 Text.

Mathematical model of σB stress-response network

Our mathematical model of σB network is based on a previous model proposed in [15]. This

ODE-based model explicitly includes all known molecular species, post-translational reactions

and the transcriptional regulation of the σB operon by σB. Below we formulate the set of reac-

tions and associated differential equations.

Model reactions

The events shown in Fig 1A can be described by the following set of biochemical reactions:

• Dimerization of anti-σ-factor RsbW

2RsbWÐ
kbw

kdw
RsbW2 ð1Þ
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• Reversible binding of the anti-anti-σ-factor RsbV to anti-σ-factor dimer RsbW2 to form the

complexes RsbW2-RsbV and RsbW2-RsbV2

RsbW2þRsbVÐ
kb1

kd1

RsbW2‐RsbV ð2Þ

RsbW2‐RsbVþ RsbVÐ
kb2

kd2

RsbW2‐RsbV2 ð3Þ

• Phosphorylation of the anti-anti-σ-factor RsbV by RsbW2

RsbW2‐RsbV!
kk1 RsbW2þRsbVP ð4Þ

RsbW2‐RsbV2!
kk2 RsbW2‐RsbVþ RsbVP ð5Þ

• Reversible binding of σB to RsbW2 to form the complex RsbW2-σB

RsbW2þsB
Ð
kb3

kd3

RsbW2‐sB ð6Þ

• Reversible displacement of σB by RsbV in the complex RsbW2

RsbW2‐sBþRsbVÐ
kb4

kd4

RsbW2‐RsbVþsB ð7Þ

• Dephosphorylation of phosphorylated anti-anti-σ-factor RsbV~P

RsbVPþRsbPÐ
kb5

kd5

RsbVP‐RsbP!
kp

RsbVþ RsbP ð8Þ

• Protein degradation/dilution due to cell growth

X!
kdeg

0 ð9Þ

where X is any protein or complex in the σB network. For simplicity the degradation/ dilu-

tion rate of all proteins and complexes are assumed to be equal.

• Production of σB, RsbW and RsbV

!
vB

sBþlWRsbWþlVRsbV ð10Þ

σB, RsbW and RsbV were assumed to be synthesized proportionally as all three are part of

the same operon. λW and λV are respectively the ratio of synthesis rate of RsbW and RsbV to

σB. Because of σB autoregulation, synthesis was modeled as a hyperbolically increasing func-

tion of σB concentration, [σB]
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vB ¼ v0 1 þ
f ½sB�=

ðK þ ½sB�Þ

� �

Here ν0 is the basal synthesis rate, f is the fold change in protein synthesis due to positive

autoregulation and K is the equilibrium dissociation constant for the binding of σB to the pro-

moter DNA.

The stress signals were assumed to control the concentrations of stress phosphatases

RsbTU and RsbQP. For RsbQP, energy stress was assumed to regulate the transcription rate of

the phosphatase and the phosphatase concentration was assumed to be subject to stochastic

fluctuations resulting from gene expression noise. In contrast, RsbTU concentration is regu-

lated by environmental stress post-translationally [27–29], consequently RsbTU concentration

was assumed to be stress-dependent but not subject to stochastic fluctuations.

Model equations

We assume mass-action kinetics for all the above reactions (Eqs 1–10) to obtain the following

set of equations that describe network dynamics:

d½BT �
dt
¼ vB � kdeg½BT �

d½RsbWT �

dt
¼ lWvB � kdeg½RsbWT �

d½RsbVT �
dt

¼ lVvB � kdeg½RsbVT �

d½sB�

dt
¼ vB þ kd3½W2s

B� þ kb4½W2s
B�½V�‐kb3½W2�½s

B�‐kd4½W2V�½s
B�‐kdeg½s

B�

d½W2�

dt
¼ kd½W�

2
þ ðkd1 þ kk1Þ½W2V� þ kd3½W2s

B�‐ðkb1½V� þ kb3½sB� þ kdegÞ½W2�

d½VP�

dt
¼ kk1½W2V� þ kk2½W2V2� þ kd5½VPP� � ðkb5½P� þ kdegÞ½VP�

d½W2V�
dt

¼ kb1½W2�½V� þ ðkd2 þ kk2Þ½W2V2� þ kb4½W2s
B�½V�

� ðkd1 þ kk1 þ kb2½V� þ kd4½s
B� þ kdegÞ½W2V�

d½W2V2�

dt
¼ kb2½W2V2�½V� � ðkd2 þ kk2 þ kdegÞ½W2V2�

d½VPP�
dt

¼ kb5½VP�½P� � ðkd5 þ kp þ kdegÞ½VPP�

Here [σB] is the concentration of free σB; [W2] is the concentrations of dimeric RsbW; [V]

and [VP] are the concentrations of unphosphorylated and phosphorylated RsbV; [W2σB],

[W2V], [W2V2] and [VPP] are the concentrations of the corresponding protein complexes.

[BT], [RsbWT], [RsbVT] and [PT] are the concentrations of total σB, RsbW, RsbV and
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phosphatase:

½W2s
B� þ ½sB� ¼ ½BT �

½W� þ 2½W2� þ 2½W2s
B� þ 2½W2V� þ 2½W2V2� ¼ ½RsbWT �

½V� þ ½W2V� þ 2½W2V2� þ ½VP� þ ½VPP� ¼ ½RsbVT �

½P� þ ½VPP� ¼ ½PT �

ð11Þ

All model parameters are summarized in Table 1.

Additional reactions for the model of competition between σB and σA

To model the competition for RNA polymerase between σB and the housekeeping σ-factor σA

(Figs 5 and S5), we extended the model described above and supplemented reactions (1–9)

with the following reactions for σA, RNA polymerase (RNApol) and σ–RNApol binding:

Table 1. List of parameters values used in the model for σB network.

Parameter Description Value References/Notes

kbw RsbW dimerization rate constant 3600 μM-1hr-1 [15,18]

kdw RsbW2 dimer dissociation rate constant 18 hr-1 [15,18]

kb1, kb2, kb3,

kb5

σB operon partner complex association rate

constants

3600 μM-1hr-1 [15]

kd1, kd2, kd3,

kd5

σB operon partner complex dissociation rate

constants

18 hr-1 Estimated—Assuming binding affinity of σB operon partner

complexes ~ 5nM [15,18]

kb4 Rate constant for displacement of σB by RsbV in the

complex RsbW2

1800 μM-1hr-1 [15]

kd4 Rate constant for displacement of RsbV by σB in the

complex RsbW2

1800 μM-1hr-1 [15]

kk1, kk2 RsbV phosphorylation rate constant 36 hr-1 Turnover rate for RsbW2 kinase: 10−3–10−2 s-1 [18]

kp RsbV dephosphorylation rate constant 180 hr-1 [15]

kdeg Degradation/dilution rate 0.7 hr-1 Estimated—Based on ~1hr doubling time

v0 Basal rate of σB operon transcription 0.4 μMhr-1 Estimated—Chosen to ensure total σB level ~1μM in the absence of

stress [18]

F Fold-change of the σB operon 30 [13]

K Binding affinity for σB promoter 0.2 μM Estimated–Based on intermediate binding constant for σ-factor

promoters (Typical range: 10−9–10−6 M; [16])

λW, λV Relative synthesis rates of RsbW and RsbV 4, 4.5 Values adjusted from reported in [18] to match near-perfect

adaptation observed in Refs. [13,14].

kbb, kba, kbpb Diffusion limited association constants for σ, RNA

polymerase and promoter

720 μM-1hr-1 Estimated–Based on diffusion-limited on-rate for proteins (typical

range: 104–106 M−1 s−1; [51])

kdb Dissociation rate constant of σB-RNA polymerase

holoenzyme

864 hr-1 Estimated—RNApol- σB dissociation constant assuming a binding

affinity of 1.2μM [16]

kda Dissociation rate constant of σA- RNA polymerase

holoenzyme

14.4 hr-1 Estimated -RNApol- σA dissociation constant assuming a binding

affinity of 0.02μM [16]

kdpb RNApol- σB-pB dissociation constant 72 hr-1 Estimated—assuming a binding affinity of 0.1μM

[pB]tot Concentration of σB target promoter binding sites 0.05 μM Estimated—Assuming ~50 specific binding sites for σB per genome

[52,53]

RNApoltot Total RNA polymerase 10 μM [16]

doi:10.1371/journal.pcbi.1005267.t001
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• Reversible binding of σ-factors and RNA polymerase

sB þ RNApolÐ
kbb

kdb
RNApol‐sB

sA þ RNApolÐ
kba

kda
RNApol‐sA

• Reversible binding of RNApol-σB complexes to target promoters

RNApol‐sBþpBÐ
kbb

kdpb
RNApol‐sB‐pB

• Production of σB, RsbW and RsbV

RNApol‐sB‐pB!
vB RNApol‐sBþpB þ sBþlWRsbWþlVRsbV

!
v0

sBþlWRsbWþlVRsbV

Where v0 is the basal synthesis rate and νB = ν0f / [pB]tot is the maximal rate. f is the fold

change in protein synthesis due to positive autoregulation and [pB]tot is the total concentra-

tion of the σB promoter.

To investigate the competition between σB, σW and σA, we used a phenomenological non-

monotonic function to model the post-translational regulation of stress σ-factors (σB and σW;

see S1 Text for details).

Calculation of steady state post-translational and transcriptional

responses

The decoupled transcriptional and post-translational responses of the network at steady state

were calculated using the bifurcation package MATCONT[50]. The post-translational

response [σB] = FP ([BT],[PT]), was calculated by varying the rate of operon transcription while

keeping the component synthesis rates (λW, λV) and the total phosphatase concentration (PT)

fixed. Similarly, the transcriptional response [BT] = FT ([σB]), was calculated by varying the

free σB concentration as an independent variable to calculate the total concentrations of σB,

RsbW and RsbV.

Simulations

The parameter values for reversible binding and phosphorylation reactions were taken from

[15] or were analysis driven to obtain pulsing in σB. All the parameters used in the model are

summarized in Table 1. In the deterministic set-up (Figs 1, 2, 4 and 6, S1–S5 and S8) the sys-

tem of differential equations was solved using standard ode15s solver in MATLAB(The Math-

works Inc., Natick, MA). For stochastic simulations in Figs 3, 5, S6 and S7, the time-varying

total phosphatase level [PT] (= [P] + [VPP]) was pre-computed using a gamma distributed

Ornstein-Uhlenbeck process as in [13]. This gamma distributed Ornstein-Uhlenbeck process

permits independent modulation of mean burst size (b) and frequency (a) [51]. For each phos-

phatase level, 50 simulations were performed each lasting 10 hours. Pulses were detected by

examining local maxima and minima of the simulated trajectories, and subsequently this

information was used to compute statistics for pulse amplitude and frequency.
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For the simulations of the effect of competition for RNA polymerase (Figs 5 and S7), the

total housekeeping σ-factor concentration was varied between 5 and 15 μM. In these simula-

tions we used λW = 4, λV = 4.5 and λW = 2, λV = 2 to simulate the wildtype (negative feedback)

and positive feedback networks respectively. For the simulations of the no feedback network

we used (λW = 4, λV = 4.5) and f = 0 and v0 = 8.64 μMhr-1 to model the σB–independent consti-

tutive production of operon components.

For the simulations of the competition between σB, σW and σA (Figs 6 and S8), the total

housekeeping σ-factor concentration was kept fixed at 12 μM. The post-translational response

of stress σ-factors σB (and σW) in this model was described using the following phenomenolog-

ical function: σB
free = BT / (1 + ([BT] / KB)nb / [PB]mb). Here the constants nb and mb describe

the non-linear dependence of free σ on total-σ. We used (nb = 7,mb = 5) and (nb = 0,mb = 3)

to simulate the wildtype (negative feedback) and positive feedback networks respectively. KB
and KW were fixed at 5μM for simulations of both networks.

Supporting Information

S1 Text. Supplementary Methods and Derivations.

(PDF)

S1 Fig. Ultrasensitive negative feedback in the σB network. A. Decoupled post-translational

(blue curve) and transcriptional (black curve) responses of the σB network for λW = RsbWT /

BT = 4, λV = RsbVT / BT = 4.5. σB and BT represent the concentrations of free and total σB. Gray

circle marks the steady states of the full system. Red and blue lines represent the piecewise ana-

lytical approximations of the post-translational response. B. Decrease in the fraction of phos-

phorylated RsbV (VP + VPP–orange curve) and unbound σB (green curve) as a function total

operon expression level according to the post-translational response. C. Sensitivity of the post-

translational response of phosphorylated RsbV (Vp+VpP—orange curve) and unbound σB

(green curve) to changes in total operon expression level (BT). At the shown steady state (gray

circles) both responses have LG<-1.

(PDF)

S2 Fig. σB does not pulse for networks that lack negative feedback. A-C. Decoupled post-

translational and transcriptional responses of σB networks that lack negative feedback. (A)

λW = 2, λV = 2 (Region I in Fig 2D)—positive feedback system (LG>0); (B) λW = 8, λV = 4.5

(Region III in Fig 2D) a non-responsive system (LG~0); (C) λW = 4, λV = 4.5 with no transcrip-

tional feedback—no feedback system (LG = 0). In each panel cyan and blue curves show the

post-translational response at low and high phosphatase concentrations, and black curve

shows the transcriptional response. Gray and black circles mark the steady states of the full sys-

tem. Step-increase in phosphatase causes a shift in the post-translational response from low

phosphatase-cyan to high phosphatase-blue and leads to an increase in σB (green curve) in all

three systems. D-F. Time-course representations of green trajectories described in A-C. Note

that σB does not pulse in any of the three systems.

(PDF)

S3 Fig. σB pulse response for λW, λV calculated from the results of Delumeau et. al. [18].

Dynamics of free σB in response to a step-increase in phosphatase concentration for the two

different ratios measured in Delumeau et. al. [18]. (A) Pre-stress: λW = 2.9, λV = 1.7 (B) Post-

stress: λW = 2.4, λV = 2.65.

(PDF)
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S4 Fig. Phosphatase level decrease after step-up does not affect σB pulsing. A. Dynamics of

free σB in response to a step-increase in phosphatase concentration. B. Dynamics of free σB in

response to a step-increase in phosphatase concentration which is followed by decay due to

dilution.

(PDF)

S5 Fig. Dependence of σB pulse amplitude on phosphatase concentrations and post-trans-

lational parameters. A. Time-course representations of σB pulse trajectories for small (0.1μM-

orange curve) and large (0.4μM-blue curve) step-increases in phosphatase. λW = 4, λV = 4.5 for

both trajectories. B,C. Representation of the σB pulse trajectories and decoupled post-transla-

tional and transcriptional responses of σB network for small (B) and large (C) step-increases in

phosphatase. Cyan and green curves show the post-translational responses at initial and final

phosphatase levels. Black curves show the transcriptional response. Black and gray circles

mark the steady states of the full system. Note that at the initial phosphatase level the σB~0 and

BT is at the basal level of σB operon transcription. The small step-increase in phosphatase does

not significantly shift the post-translational response around the initial steady state leading to

minor, transient increase in σB (orange curve in B). The large step-increase in phosphatase (C)

does significantly shift the post-translational response around the initial steady state leading to

prominent pulse in σB (blue curve in C). D. σB pulse amplitudes show a threshold linear

response to increase in phosphatase level. The threshold phosphatase level increases with

increasing basal level of σB operon transcription (Basal BT). E,F. Phosphatase threshold for

pulsing as a function of Basal BT for different values of the (E) RsbW relative synthesis rate

(λW) and (F) the ratio of phosphatase to kinase rates (kp / kk). The circles represent threshold

levels calculated from simulations. The black lines represent the analytical approximation:

PT = ν0kk (λW / 2–1 –λWkdeg / kk) / (kp / kdeg), where v0 is the basal rate of σB operon transcrip-

tion and kdeg is protein degradation/dilution rate. Basal BT = ν0 / kdeg.
(PDF)

S6 Fig. Pulsatile response of the σB network encodes phosphatase burst size not burst fre-

quency. A-C. Normalized pulse amplitude cumulative histograms for stochastic simulations

with (A) burst frequency modulation, (B) burst-size modulation and (C) experimental data

taken from [13]. Different colors represent varying levels of mean phosphatase (PT) in the

model or mycophenolic acid (MPA, energy stress) in experiments.

(PDF)

S7 Fig. Sensitivity of the σB target expression to σA and competition for RNA polymerase.

A. Steady-state dependence of σB target expression on free σB for different total levels of the

housekeeping σ-factor (AT). B. KsigB, the half-maximal constant of the dependence of σB target

expression, as a function of the total levels of the housekeeping σ-factor (AT). C. Simplified

network diagrams of a positive feedback regulated stress σ-factor σB competing with house-

keeping σ-factor σA for RNA polymerase. D-E. Trajectories of free σB (D) and σB target pro-

moter activity (E) in response to stochastic phosphatase input at two different levels of total σA

(AT = 9μM-low competition for RNA polymerase; AT = 12μM-high competition for RNA

polymerase).

(PDF)

S8 Fig. Pulsatile response and RNApol competition in the multiple stress σ-factor model.

A,B. Decoupled σB post-translational and transcriptional components in the simplified model

for the competition of stress σ-factors. Cyan and blue curves show the post-translational

response at low and high concentration of σB stress signaling protein PB. Black curve shows

the transcriptional responses. A step-increase in PB causes a shift in the steady-state post-
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translational response (from low phosphatase-cyan to high phosphatase-blue) and leads to a

pulsatile σB response trajectory (green curve). Concentration of σW stress signaling protein PW

was kept fixed at 0.1 μM (A) and 2 μM (B). C,D. Time-course representations of the green tra-

jectories in (A,B) showing σB (C) and σB promoter activity (D) respectively. E. Steady state

dependence of σB target promoter activity on the level of free σB for different levels of the σ-fac-

tor σW. F. KsigB, the half-maximal constant of the dependence of target expression on σB as a

function of the concentration of the stress σ-factor σW for different levels of the housekeeping

σ-factor σA. Total RNA polymerase core concentration was kept fixed at 10μM for all simula-

tions.

(PDF)
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