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Immunotherapy has become a promising therapeutic option for Head and neck squamous cell carcinoma
(HNSC). However, only a small percentage of patients could benefit from it, and the overall prognosis was
far from satisfactory. In this study, by comprehensively computational analyses of hundreds of HNSC
samples, a prognostic signature composed of 13 immune-related genes (IRGs) was constructed. The
results of the analyses in multiple datasets indicated that our signature had high predictive accuracy
and could serve as an independent prognostic predictor. Based on this signature and multiple clinical
variables, we also established a prognostic nomogram to quantitatively predict the survival risk of indi-
vidual patients. Moreover, this signature could accurately predict survival, reflect the immune microen-
vironment, and predict immunotherapy efficacy among HNSC patients. Two potential drugs (doxorubicin
and daunorubicin) were also identified via Connectivity Map and molecular docking, which could be used
for HNSC combination therapy. Taken together, we developed and validated a robust IRG-based prognos-
tic signature to monitor the prognosis of HNSC, which could provide a solid foundation for individualized
cancer immunotherapy.

� 2021 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Head and neck squamous cell carcinoma (HNSC) is one of the
most prevalent malignant tumors globally, accounting for over
90% of all types of head and neck cancer. Approximately 600,000
people are diagnosed with new cases of HNSC annually worldwide
[1]. Due to the special location and complicated types, HNSC not
only damages the appearance, basic physiological functions, sen-
sory functions and language functions, but also significantly influ-
ences the life quality of patients. However, the therapeutic
approach of HNSC was single for a long period, without satisfactory
outcomes. Until recent years, immunotherapy and targeted ther-
apy have been incorporated into HNSC treatment, which undoubt-
edly provides strong support for cancer management [2,3].
The immune system is vitally involved in controlling tumor
growth and progression, while the tumor immune microenviron-
ment is closely associated with the prognosis of malignant tumors
[4,5]. Some clinical studies have demonstrated that immune check-
point inhibitors (ICIs), such as Nivolumab and Pembrolizumab,
exert a good anti-tumor effect in HNSC [6,7]. At present, the avail-
ability of cancer-related databases and the application of bioinfor-
matics have enabled the development of prognostic biomarkers in
multiple types of malignancies. A guideline concerning the admin-
istration of immunotherapy drugs in patients with recurrent or
metastatic HNSC also has stated that PD-1 expression, tumor
mutation burden (TMB), and immune gene markers could be used
as biomarkers for HNSC [8]. Although extensive researches have
been carried out on developing the signature of HNSC, existing
studies have barely explored a robust prognostic signature based
on immune genes. We believe that the construction of an
immune-related prognostic signature could especially suitable to
monitor the prognosis of HNSC patients treated with
immunotherapy.
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In this study, based on clinical and transcriptomic data of HNSC
samples, an immune-related gene-based prognostic signature was
constructed and validated in multiple datasets. We also thoroughly
investigated the correlation with immune cell infiltration and
immunotherapy response through comprehensive analyses. More-
over, we combined Connectivity Map analysis and molecular dock-
ing to identify potential small molecule drugs. The experimental
technical roadmap was summarized in Fig. 1. Hopefully, this robust
prognostic signature could provide a foundation for HNSC
treatment.
2. Methods

2.1. Acquisition of patient specimens and immune-related genes

Clinical and transcriptomic data for HNSC samples were down-
loaded from The Cancer Genome Atlas (TCGA) data portal
(https://portal.gdc.cancer.gov/) (TCGA cohort, n = 502) and Gene
Expression Omnibus (GEO) (https://www.ncbi.nlm.nih.gov/gds/)
(GSE65858 cohort, n = 270) [9,10]. The TCGA cohort was randomly
divided into two parts of equal size, including a training set and a
validation set. Moreover, Entire TCGA cohort was used as the inter-
nal testing set, while GSE65858 cohort served as the external test-
ing set. Patient demographics and clinical characteristics of the
included datasets were summarized in Table S1. A list of IRGs
was additionally collected from the Immunology Database and
Analysis Portal (ImmPort) database (https://www.immport.org/
home) [11], which is a powerful platform sharing the immunology
data for cancer researches.

2.2. Identification of DEIRGs and functional enrichment analysis

We compared 502 HNSC samples and 44 normal samples to
identify differentially expressed genes (DEGs) using R package
‘‘limma”, with the thresholds of |log2(Fold Change)| >1 and P-
value < 0.05 [12]. Afterwards, differentially expressed IRGs
(DEIRGs) were extracted from these DEGs, followed by plotting
of volcano plot of DEIRGs using R package ‘‘ggplot2” [13], and Venn
diagram by Venn diagram web tool (http://bioinformatics.psb.
ugent.be/webtools/Venn/). Functional enrichment analyses were
Fig. 1. Experimental te
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performed using the Database for Annotation, Visualization, and
Integrated Discovery (DAVID) 6.8 [14] based on Kyoto Encyclope-
dia of Genes and Genomes (KEGG) and Gene Ontology (GO) data-
base [15,16]. To be specific, GO terms, including molecular
function (MF), cellular component (CC) as well as biological pro-
cess (BP), and KEGG signaling pathways were enriched based on
the standard of P-value < 0.05. Ultimately, the top 10 most signif-
icant terms or pathways were revealed and visualized by R package
‘‘ggplot2” [13].

2.3. Construction of IRGPI

Among these DEIRGs, the prognosis-related IRGs were identi-
fied and subjected to subsequent analysis. Firstly, the univariate
Cox proportional hazard regression model was used to analyze
the correlation between DEIRGs and overall survival (OS) in the
training set, followed by the Least Absolute Shrinkage and Selec-
tion Operator (LASSO) penalized Cox proportional hazards regres-
sion for selecting the optimal subset of prognosis-related IRGs
[17]. The risk score was then calculated using expression data mul-
tiplied by the regression coefficient from the LASSO regression
model. The formula was as follows: risk score = [Expression level
of Gene 1 * coefficient] + [Expression level of Gene 2 * coefficient]
+ . . . + [Expression level of Gene n * coefficient]. Patients were addi-
tionally separated into high- and low- risk groups according to the
median value of risk score.

2.4. Validation and evaluation of IRGPI

In order to evaluate the reliability of the IRGPI in predicting
prognosis, we plotted the Kaplan-Meier (K-M) survival curves in
the training set, validating set and testing set by R package ‘‘sur-
vival” [18]. To further reflect the sensitivity and specificity of IRGPI,
we performed a time-dependent receiver operating characteristic
(ROC) curve analysis via R package ‘‘survivalROC” [19]. In addition,
univariate and multivariate analyses of OS for IRGPI and clinico-
pathological factors were carried out in entire TCGA cohort and
GSE65858 cohort using R package ‘‘survival” [18]. Moreover, the
association of IRGPI with different clinicopathological factors was
analyzed using independent t-tests.
chnical roadmap.

https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/gds/
https://www.immport.org/home
https://www.immport.org/home
http://bioinformatics.psb.ugent.be/webtools/Venn/
http://bioinformatics.psb.ugent.be/webtools/Venn/


W. Qiang, Y. Dai, X. Xing et al. Computational and Structural Biotechnology Journal 19 (2021) 1263–1276
2.5. Construction of prognostic nomogram

The C-index was calculated via R package ‘‘pROC” to evaluate
the predictive accuracy between multiple clinical models and a
model with clinical variables and IRGPI. Based on the above results,
we constructed a prognostic nomogram to quantitatively estimate
the survival risk of HNSC patients. Moreover, calibration curves
were used to compare the predictive and observed survival possi-
bility. The diagram of both nomogram and calibration curves were
plotted via R package ‘‘rms” [20].
2.6. Assessment of immune cell infiltration in tumors

Based on the principle of linear support vector regression,
CIBERSORT was utilized to estimate the relative percentage of
immune cell infiltration in the RNA-seq data [21]. The correlation
between these immune cells and risk score was analyzed, followed
by survival analysis.
2.7. Tumor mutation burden (TMB) analysis

The mutation data containing somatic variants of HNSC patients
was collected for mutation profile analysis by R package ‘‘maftools”
[22], followed by calculation of TMB and correlation analysis
between TMB and the risk score.
2.8. Immunophenoscore (IPS) analysis

To better predict the response of immune checkpoint inhibitors
(ICIs), the expression of genes comprising major components of
tumor immunity was integrated, followed by the acquisition of
IPS from The Cancer Immunome Atlas (TCIA) (https://tcia.at/home)
[23]. Besides, the expression of several prominent checkpoints was
also explored.
2.9. Connectivity Map analysis

Connectivity Map (CMap, https://portals.broadinstitute.org/
cmap/) is an online analysis platform based on genome-wide tran-
scriptional expression data for the study on the mechanism of
action and repurposing of small molecules [24,25]. CMap contains
more than 7000 expression profiles representing 1309 compounds.
Based on its pattern-matching algorithms, a positive score indi-
cates the induction effect of the small molecules on the query sig-
nature, and a negative score indicates the inhibition effect. Herein,
CMap was used to screen for potential small-molecule drugs
against IRGPI with the cutoff of mean connective score < �0.2
and P-Value < 0.05. The chemical structures of these drugs were
collected from PubChem (https://pubchem.ncbi.nlm.nih.gov/) [26].
2.10. Construction of the protein–protein interaction (PPI) network
and screening of the key target

To screen the IRGPI’s key target, all genes were mapped to the
STRING database (https://string-db.org/), a database of known
and predicted PPIs [27]. Afterwards, the PPI network with a com-
bined score of >0.4 was constructed. Subsequently, a topological
analysis was carried out using the Network Analyzer plug-in con-
tained in Cytoscape, and the main topological parameters of the
PPI network were obtained. In this research, three centrality algo-
rithms, including degree centrality, closeness centrality and
betweenness centrality, was adopted to identify the key target.
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2.11. Molecular docking

Firstly, the crystal structure of the key target of IRGPI was
obtained from the RCSB PDB (http://www.rcsb.org/) based on the
optimal available resolution [28]. Secondly, the Schrödinger’s pro-
tein preparation wizard module was utilized to prepare the protein
crystallographic structure [29]. Thirdly, the Schrödinger’s LigPrep
module was adopted to obtain the 3D structures and energy min-
imization of the potential small-molecule drugs from CMap analy-
sis. Finally, based on the protein’s specific known active sites, the
Schrödinger’s Glide module was adopted for molecular docking
[30].

2.12. Statistical analysis

Univariate and multivariate Cox regressions analyses were
performed via R package ‘‘survival” [18], shown as hazard ratios
(HRs) and 95% confidence intervals (CIs). The difference among
various clinical factors was analyzed by independent t-tests.
A P-value < 0.05 indicated a statistical significance.
3. Results

3.1. Identification of DEIRGs and functional enrichment analysis

According to the filtering criteria, a total of 4788 DEGs were
identified in 502 HNSC samples after comparison with 44 normal
samples, including 3605 up-regulated genes and 1183 down-
regulated genes. Besides, 1811 unique IRGs were collected from
the ImmPort database. Therefore, 400 DEIRGs were extracted and
displayed in an overlap region of the Venn diagram, including
305 up-regulated genes and 95 down-regulated genes (Fig. 2A-B).
To explore the potential mechanisms, GO/KEGG functional enrich-
ment analysis for these DEIRGs was performed. As shown in
Fig. 2C, ‘‘cytokine-cytokine receptor interaction” was the most
related signaling pathway to DEIRGs. ‘‘Immune response”, ‘‘extra-
cellular region”, and ‘‘antigen binding” were the most frequent
terms among BP, CC, and MF, respectively (Fig. 2D). Both biological
processes and signaling pathways were closely related to
immunity.

3.2. Construction of the IRGPI

To explore DEIRGs closely associated with HNSC prognosis, a
univariate Cox regression analysis was employed. As a result, 49
DEIRGs were ascertained as OS-related DEIRGs and selected for
subsequent LASSO regression analysis (Fig. S1), which gave rise
to an optimal subset consisting of 13 IRGs: PLAU, IRF9, CCL26, BLNK,
SEMA3G, FPR2, GAST, IL34, SLURP1, STC1, STC2, TNFRSF12A and
TNFRSF25 (Fig. 3). Further, the association of 13 IRGs with OS or
progression free survival (PFS) was analyzed by univariate Cox
regression analysis (Fig. S2). The results showed that 13 IRGs were
significantly correlated with OS of HNSC patients (P < 0.05), 6 of 13
IRGs (PLAU, CCL26, IL34, STC1, STC2, TNFRSF12A) were significantly
related to PFS of HNSC patients (P < 0.05). Besides, the expression
levels of these 13 IRGs were significantly increased in a wide vari-
ety of tumor tissues in comparison with normal tissues (Fig. S3).
Based on multivariate Cox regression analysis, the forest plot of
hazard ratios revealed that the majority of these genes were haz-
ardous factors. Ultimately, we established an IPGPI and calculated
the risk score based on the relative expression level of these IRGs
and their corresponding regression coefficients as follows: risk
score = [Expression level of PLAU * 0.000511] + [Expression level
of IRF9 * (-0.02022)] + [Expression level of CCL26 * 0.002514] +
[Expression level of BLNK * (-0.00517) ] + [Expression level of

https://tcia.at/home
https://portals.broadinstitute.org/cmap/
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Fig. 2. Differentially expressed immune-related genes (DEIRGs) and functional enrichment analysis. (A) Volcano plot showing DEIRGs between head and neck squamous cell
carcinoma and normal tissues. (B) Venn diagram visualizing the intersections between DEGs and IRGs. (C) The top 10 most significantly enriched KEGG signaling pathways.
(D) GO enrichment analysis. Green, blue, and orange parts indicated biological process, cellular component, and molecular function, respectively. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

W. Qiang, Y. Dai, X. Xing et al. Computational and Structural Biotechnology Journal 19 (2021) 1263–1276
SEMA3G * (-0.14066)] + [Expression level of FPR2 * 0.105068] +
[Expression level of GAST * 0.018375] + [Expression level of
IL34 * (-0.0564)] + [Expression level of SLURP1 * (-0.00147)] +
[Expression level of STC1 * 0.011072] + [Expression level of
STC2 * 0.011025] + [Expression level of TNFRSF12A * 0.003982] +
[Expression level of TNFRSF25 * (-0.06533)].

3.3. Assessment of the predictive ability of IRGPI

In both training set and testing sets, risk scores of all patients
were calculated, followed by classification into high- and low-
risk groups according to the median value (Fig. 4A). As expected,
low-risk patients exhibited better survival probability than high-
risk patients (Fig. 4B, P < 0.05), which was also observed in the
analysis of progression free survival (Fig. S4). Besides,
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time-dependent ROC curves were adopted to explore the 1-year,
3-year, and 5-year mortality for IRGPI in multiple datasets
(Fig. 4C). The results showed that most of the area under curves
(AUCs) of 1-year, 3-year, and 5-year were greater than 0.65 in
these datasets, indicating the good potential of our IRGPI in moni-
toring mortality.

3.4. Relationship between IRGPI and patient prognosis

For comparison of the predictive power of IRGPI with multiple
clinicopathologic factors, univariate and multivariate analysis on
OS was conducted in entire TCGA cohort and GSE65858 cohort.
Consequently, tumor status, N stage, and IRGPI were significantly
associated with OS in univariate and multivariate analysis in entire
TCGA cohort (P < 0.05) (Table 1); while only age and IRGPI had a



Fig. 3. The forest plot of multivariate Cox regression analysis of each gene in IRGPI.

Fig. 4. Assessment of the predictive ability of IRGPI in TCGA training set, TCGA validation set, entire TCGA cohort, and GSE65858 cohort. (A) Risk score distribution, survival
status, and 13 IRGs expression patterns of patients in both high- and low-risk groups. (B) The Kaplan-Meier analysis of OS for HNSC patients in multiple datasets. (C) Time-
dependent ROC curve analysis of IRGPI in multiple datasets.
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Table 1
Univariate and multivariate Cox regression analyses of IRGPI and other clinicopathological factors for OS in entire TCGA cohort and GSE65858 cohort.

Overall survival Univariate analysis Multivariate analysis

HR 95%CI P-value HR 95%CI P-value

Entire TCGA cohort
Age 1.011 0.993–1.028 0.228 1.011 0.992–1.030 0.259
Gender (male vs. female) 0.765 0.514–1.137 0.185 0.705 0.463–1.074 0.103
Tumor status (with tumor vs. tumor free) 9.330 6.242–13.947 <0.001 6.463 4.246–9.839 <0.001
Tumor grade 1.184 0.884–1.587 0.257 0.950 0.695–1.299 0.749
Pathological stage 1.866 1.399–2.489 <0.001 1.266 0.801–2.001 0.313
T stage 1.361 1.121–1.653 0.002 0.954 0.721–1.262 0.740
N stage 1.748 1.424–2.146 <0.001 1.382 1.048–1.822 0.022
IRGPI (high-risk vs. low-risk) 3.178 2.265–4.458 <0.001 2.068 1.416–3.022 <0.001

GSE65858 cohort
Age 1.027 1.006–1.048 0.013 1.028 1.007–1.051 0.011
Gender (male vs. female) 1.046 0.617–1.771 0.868 1.086 0.637–1.852 0.762
UICC stage 1.615 1.204–2.168 0.001 1.177 0.735–1.887 0.497
T stage 1.512 1.222–1.872 <0.001 1.234 0.937–1.625 0.135
N stage 1.415 1.129–1.774 0.003 1.195 0.867–1.648 0.275
M stage 3.705 1.634–8.400 0.002 2.254 0.907–5.599 0.080
IRGPI (high-risk vs. low-risk) 1.739 1.186–2.552 0.005 1.815 1.219–2.702 0.003
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significant correlation with OS in univariate and multivariate anal-
ysis in GSE65858 cohort (P < 0.05) (Table 1). Overall, IRGPI was
more sensitive than other clinicopathologic factors, which could
be used as an independent prognostic predictor.

3.5. Relevance between the IRGPI and clinicopathologic factors

To further explore the correlation between IRGPI and multiple
clinicopathologic factors, correlation analysis was carried out via
independent t-tests. As shown in Fig. 5, age, tumor status, patho-
logical stage, and T stage were significantly and positively corre-
lated with IRGPI in entire TCGA cohort. Additionally, higher risk
scores generally appeared on increased age, tumor-bearing status,
advanced pathological stage, and advanced T stage (P < 0.05).
Fig. 5. The correlations between the IRGPI and multiple clinicopathological factors in
pathological stage; (F) T stage; (G) N stage.
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3.6. Construction and calibration of the nomogram

We compared the C-index amongmultiple clinical models and a
combined model that included clinical variables and IRGPI. The
combination of the IRGPI with clinical variables had a higher C-
index (0.8503; 95% CI: 0.8042–0.8964) than the IRGPI or the clinical
variables alone (Fig. 6A). The results indicated that the combined
model could improve prognostic accuracy for HNSC patients. To
quantitatively predict the survival probability of individual
patients, we further established the prognostic nomogram integrat-
ing the IRGPI and multiple clinical variables (Fig. 6B). Furthermore,
the calibration curves of the prognostic nomogram were applied,
showing good consistency between predictive and observed 1-,
3-, and 5-year survival in entire TCGA cohort (Fig. 6C–E).
entire TCGA cohort. (A) age; (B) gender; (C) tumor status; (D) tumor grade; (E)



Fig. 6. Construction and calibration of nomogram in HNSC patients. (A) Comparison of the predictive power of the prognostic models in entire TCGA cohort. C-index: Harrell’s
concordance index; CI: confidence interval. Combined model: IRGPI + age + gender + tumor status + tumor grade + pathological stage + T stage + N stage. (B) Nomogram to
predict 1-, 3-, and 5-year OS in entire TCGA cohort. (C-E) Calibration curves of nomogram on the consistency between predictive and observed 1-, 3-, and 5-year outcomes in
entire TCGA cohort. Dashed line at 45� indicated perfect prediction. Actual performances of the nomogram were shown in blue lines. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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3.7. TIME changing associated with the IRGPI

In order to explore the correlation between the specific type of
immune cells and IRGPI, the CIBERSORT algorithm was applied to
estimate the infiltration of 22 immune cells in each HNSC sample.
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The relative proportion and correlation matrix of these 22 immune
cells were shown in Fig. S5. Among the 22 cell types, over half of
the immune cells were significantly correlated with risk score.
The relative proportion of some cells had a negative correlation
with risk score, such as naive B cells and CD8 T cells, while others
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had a positive correlation with risk score, such as resting memory
CD4 T cells and M2 macrophages (P < 0.05, Fig. 7A). Additionally,
survival analysis revealed that the relative proportion of naive B
cells (Fig. 7B), plasma cells (Fig. 7C), regulatory T cells (Fig. 7D)
and activated mast cells (Fig. 7E) were significantly related to sur-
vival rate (P < 0.05). Among them, naive B cells, plasma cells, reg-
ulatory T cells with lower levels in high-risk groups were related to
poorer OS, and activated mast cells with higher levels in high-risk
groups were associated with poorer OS.

3.8. Relationship between IRGPI and TMB

To explore the correlation between IRGPI and TMB, available
somatic mutation data were analyzed in entire TCGA cohort. The
overall mutation profile with statistical analysis was revealed in
Fig. S6. The frequently mutated genes in low- and high-risk groups
were summarized in Fig. 8A-B, with TP53 being the most fre-
quently mutant one. And more coincident associations across
mutated genes existed in the low-risk group (Fig. 8C-D). Besides,
the high-risk group had a higher TMB, which was associated with
worse OS (P < 0.05) (Fig. 8E-F).

3.9. Prediction of ICIs response

Due to the close association of immunity with tumors, the cor-
relation between IRGPI and anti-cancer immune responses was
investigated. As a result, IRGPI was negatively correlated with most
Fig. 7. Immune cell infiltration analysis. (A) The correlation of IRGPI with immune ce
respectively, and the white points in the violin indicated median values. The relationsh
activated mast cells (E). (For interpretation of the references to colour in this figure lege
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of anti-cancer immune responses (Fig. 9A). In consideration of the
importance of ICIs in immunotherapy, the response of patients on
ICIs should be explored. Notably, IPS was conducive to predict this
response, and the correlation between the IRGPI and IPS in HNSC
patients was established. The scores of IPS, IPS-CTLA4 blocker,
IPS-PD1/PD-L1/PD-L2 blocker, and IPS-CTLA4 + PD1/PD-L1/PD-L2
blocker were used for estimation of the potential of ICIs’ applica-
tion. As shown in Fig. 9B, there was a significant increase of all
IPS scores in the low-risk group, suggesting more immunogenicity
on ICIs. Besides, the correlation between IRGPI and some critical
immune checkpoints was also explored, revealing that IRGPI was
related to all these immune checkpoints (Fig. 9C). Moreover, the
expression of these critical immune checkpoints was investigated,
showing that the expression of CTLA-4, PD-1, LAG-3, and TIGIT
were significantly higher in the low-risk group than the high-risk
group (Fig. 9D). In order to validate the performance of IRGPI pre-
dicting ICIs response, we also analyzed the correlation between
IRGPI and the response of cancer patients treated with ICIs in mul-
tiple cohorts [31–33]. The results showed that patients with low
risk score were more likely to be responders, which indicated that
IRGPI had good potential in predicting ICIs response (Fig. S7).

3.10. Screening of small-molecule drugs

The CMap analysis was conducted to screen for small-
molecule drugs against IRGPI. Totally, 27 drugs were identified:
Arachidonic acid, Doxorubicin, Xamoterol, Levodopa,
ll infiltration. The blue and red violin represented the low- and high-risk group,
ips between OS and naive B cells (B), plasma cells (C), regulatory T cells (D), and
nd, the reader is referred to the web version of this article.)



Fig. 8. The mutation profile and TMB of low- and high-risk groups. Mutation profile of the high-risk group (A) and low-risk group (B). The coincident and exclusive correlation
across mutated genes in the high-risk group (C) and low-risk group (D). (E) The association of IRGPI with TMB. (F) The relationship between TMB and OS.
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Camptothecin, Ranitidine, Piromidic acid, Minaprine, Ethaverine,
Daunorubicin, Lomefloxacin, Captopril, Clonidine, Dihydroer-
gocristine, Vorinostat, Ribavirin, Levonorgestrel, Fluorometholone,
Apigenin, Doxycycline, Norfloxacin, Tretinoin, Wortmannin, Tri-
chostatin A, Etilefrine, Cyanocobalamin and Pyrithyldione
(Table 2).
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3.11. Screening of key target

To screen the key target of IRGPI, we constructed a PPI network
that contains 19 interactive proteins. As shown in Fig. 10, PLAU
was located at the hub of the network. Furthermore, three algo-
rithms were adopted to calculate the whole network, and all these



Fig. 9. The correlation between the IRGPI and immune checkpoints. (A) Correlation matrix of IRGPI and anti-cancer immune responses. (B) The relationship between IRGPI
and IPS. (C) Correlation of IRGPI with several prominent checkpoints. (D) Gene expression of prominent checkpoints.
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19 targets were ranked according to the results of three centrality
algorithms (Table S2). Notably, PLAU ranked first in all three cen-
trality algorithms. Therefore, PLAU was considered the key target.
3.12. Molecular docking

Molecular docking is an efficient and fast method for compound
screening, which uses free binding energy to infer binding stability.
Table 3 showed the top 10 compounds that bind well to the key
target. Compared with the native ligand, doxorubicin and daunoru-
bicin possessed the lower binding energy towards PLAU, which
suggested that these two compounds displayed a high affinity
towards PLAU. The 3D interaction diagrams of these two com-
pounds with PLAU were displayed to visualize the docking results.
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The interaction diagram of doxorubicin at the active site of PLAU
(Fig. 11A) revealed hydrogen bonds’ formation with the key resi-
dues TYP-99, GLY-219, THR-97A, and LEU-97B. Meanwhile, a pi-
pi stacking interaction with HID-57 also contributed to stabilizing
the ligand at the active site. Similarly, daunorubicin also relied on
four hydrogen bonds and one pi-pi stacking interaction to maintain
its favorable binding with PLAU (Fig. 11B). The difference was that
one of the hydrogen bonds of daunorubicin is formed with
GLY-193 rather than GLY-219.
4. Discussion

In recent years, tumor immunotherapy has set off a wave,
which has also been widely recognized as an effective strategy



Table 2
Potential targeted therapeutic drugs for IRGPI based on CMap analysis.

CMap name Mean connective score n Enrichment P-Value Specificity Percent non-null

Arachidonic acid �0.592 3 �0.812 0.0133 0.0128 100
Doxorubicin �0.57 3 �0.798 0.01695 0.2181 100
Xamoterol �0.536 3 �0.806 0.01462 0.0343 100
Levodopa �0.51 5 �0.703 0.00505 0.0152 80
Camptothecin �0.499 3 �0.773 0.024 0.2614 100
Ranitidine �0.498 5 �0.661 0.01059 0 80
Piromidic acid �0.489 4 �0.772 0.00547 0.0214 100
Minaprine �0.483 5 �0.617 0.02233 0.0236 80
Ethaverine �0.47 4 �0.721 0.01239 0.0191 75
Daunorubicin �0.47 4 �0.66 0.03032 0.1754 75
Lomefloxacin �0.465 6 �0.639 0.00638 0.0051 83
Captopril �0.463 5 �0.607 0.02637 0.0423 80
Clonidine �0.462 4 �0.631 0.04518 0.0148 75
Dihydroergocristine �0.449 4 �0.74 0.00897 0.0308 75
Vorinostat �0.412 12 �0.552 0.00068 0.3097 66
Ribavirin �0.407 4 �0.688 0.02039 0.0921 75
Levonorgestrel �0.402 6 �0.525 0.04676 0.1913 66
Fluorometholone �0.4 4 �0.651 0.03503 0.057 75
Apigenin �0.379 4 �0.686 0.02103 0.1304 75
Doxycycline �0.308 5 �0.587 0.03507 0.0622 80
Norfloxacin �0.289 5 �0.614 0.02357 0.0263 60
Tretinoin �0.272 22 �0.342 0.00826 0.1397 50
Wortmannin �0.269 18 �0.321 0.04013 0.3758 50
Trichostatin A �0.264 182 �0.441 0 0.2772 51
Etilefrine �0.254 4 �0.653 0.03428 0.0426 50
Cyanocobalamin �0.243 4 �0.642 0.03945 0.0432 50
Pyrithyldione �0.207 4 �0.657 0.03191 0.0986 50

Fig. 10. Protein-protein interaction network. The red node represents the key
target, which was calculated by three centrality algorithms. Green nodes represent
the other 18 targets that make up the network. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this
article.)

Table 3
The results of molecular docking.

Rank Pubchem
CID

Compound name Glide
gscore

1 31703 Doxorubicin �8.062
2 30323 Daunorubicin �8.018
3 3306 Etilefrine �6.63
4 107715 Dihydroergocristine �6.512
5 6047 Levodopa �6.132
6 4539 Norfloxacin �5.891
7 54671203 Doxycycline �5.578
8 24360 Camptothecin �5.507
9 4855 Piromidic Acid �5.357
10 5311498 Cyanocobalamin �4.993
Native ligand 137349240 3-Azanyl-5-(Azepan-1-Yl)-

N-Carbamimidoyl-6-(Furan-2-Yl)
Pyrazine-2-Carboxamide

�7.457
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for managing solid tumors [34]. Therefore, immunotherapy has
become a promising treatment option for HNSC patients [35,36].
Numerous clinical studies have evaluated the efficacy of ICIs alone
or combined with radiotherapy, chemotherapy, and other immune
therapies in HNSC [37–39]. As the first approved ICI in treating
platinum-refractory recurrent or metastatic HNSC, pembrolizumab
and nivolumab increased the OS of patients as well as disease-free
survival, which declares that HNSC has entered the era of
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immunotherapy [40,41]. However, the therapeutic response varies
from person to person. Moreover, only a small proportion of
patients could experience objective clinical benefit. Therefore, it
is urgent to develop a robust indicator to monitor prognosis and
predict immunotherapy response.

A strong relationship between immune and tumor has been
reported in the literature [42–44]. The tremendous diversity and
plasticity have promise immune exerting multifaceted functions
on tumorigenicity and progression. Although some studies have
established prognostic indicators based on lncRNA or miRNA
[45,46], we still believe that the signature based on immune genes
is more suitable to predict the prognosis of immunotherapy. In this
study, multiple genomic data enabled the identification of 400
DEIRGs in HNSC tissues, of which biological process and signaling
pathway were most relevant to immunity. The optimal indicator
IRGPI was further identified, which include 13 IRGs: PLAU, IRF9,
CCL26, BLNK, SEMA3G, FPR2, GAST, IL34, SLURP1, STC1, STC2,
TNFRSF12A and TNFRSF25.

According to the reports, among these 13 IRGs, some genes may
be involved in immunomodulatory activities, such as IL34 [47],
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FPR2 [48], SLURP1 [49], STC1 [50], and STC2 [51], while other genes
are closely correlated with immune cells. For instance, IRF9 [52]
and BLNK [53] are separately required for the survival of CD8+ T cell
or B lymphocytes, while PLAU [54] and TNFRSF25 [55] play decisive
roles in the suppressive function of Tregs. Besides, CCL26 [56] is
involved in the hypoxia-mediated monocyte migration, and
TNFRSF25 [57] functions as a costimulatory receptor for memory
CD8+ T cells. Previous studies have also suggested the prognostic
value of these genes. For example, PLAU [58,59] is related to OS
of HNSC patients, while STC2 [60] and FPR2 [61] are involved in
HNSC metastasis. BLNK was also reported to have significant
potential as candidate therapeutics for the clinical management
of HNSC [62]. Moreover, SEMA3G [63] is a potential target for
anti-tumor migration and invasion, typically associates with sur-
vival advantage. In addition, the interactions between these 13
genes were explored by GAIL (Gene-Gene Association Inference
based on biomedical literature) [64]. As shown in Fig. S8, the result
showed that PLAU interacts with FPR2, SEMA3G, and TNFRSF12A,
while TNFRSF25 has an interaction with TNFRSF12A and BLNK.
The gene STC1 and STC2 influence each other. The interactions
between the other genes remain unknown and deserve further
exploration.

Stability is crucial for a model, so K-M survival analysis and
time-dependent ROC curves were applied to assess the predictive
ability of IRGPI. The results in multiple datasets suggested that
our prognostic signature had good potential in monitoring progno-
sis. Since there were some clinicopathologic factors related to OS,
we further compare the predictive capabilities of IRGPI with them,
and found that IRGPI could be used as an independent prognostic
predictor.

To further explore the potential of IRGPI in clinical applications,
we comprehensively examined the correlation of IRGPI with
immune cell infiltration, TMB and IPS. Firstly, the relative propor-
tion of 22 types immune cells in each HNSC sample was assessed,
most of which were found to be related to IRGPI. Naive B cells,
Fig. 11. Structures and orthogonal views of the pocket of binding between the well-mat
binding between doxorubicin and PLAU. (B) Structures and orthogonal views of the poc
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plasma cells, regulatory T cells which have lower levels in the
high-risk group, and activated mast cells which have higher levels
in the high-risk group were related to worse OS, partially explain-
ing the survival status of the high-risk group. A previous study has
shown that regulatory T cells could further subdivide HNSC and
highly expressed in ‘‘inflamed” tumors for improving OS [65]. Sec-
ondly, TMB that can reflect the total number of mutations in tumor
cells was analyzed in entire TCGA cohort. Consistent with litera-
ture reports [66], the high-risk group had a higher TMB and a
poorer OS. Finally, we evaluated the response to ICIs. Since
immune checkpoint therapy is selective, it is critical to identify
patients who may benefit from it. As a reliable tool, IPS was estab-
lished on the grounds of the gene expression that determines the
immunogenicity of the tumors, including immunomodulators,
MHC molecules, effector cells as well as immunosuppressive cells
[23]. Our study revealed that higher scores of IPS, IPS-CTLA4, IPS-
PD1/PD-L1/PD-L2, and IPS-CTLA4 + PD1/PD-L1/PD-L2 appeared in
the low-risk group. Intriguingly, all seven prominent checkpoints
were associated with IRGPI, among which CTLA-4, PD-1, LAG-3 as
well as TIGIT were highly expressed in the low-risk group. All these
findings implied that the low-risk group had more immunogenicity
on ICIs. Nevertheless, the prognostic value of our signature should
be further estimated in prospective cohort studies.

In order to find some potential small molecule drugs for the
clinic, we identified 27 small-molecule drugs that have an inhibi-
tory effect on the signature by CMap analysis. Thereinto, camp-
tothecin, a potent topoisomerase inhibitor, was reported to
reduce the risk of developing HNSC [67], and its analogs exhibited
a good anti-tumor efficacy toward esophageal squamous cell carci-
noma [68]. Ribavirin is not only effective in inhibiting nasopharyn-
geal carcinoma but also reduces the risk of HCV-related oral cancer
[69,70]. These identified small molecules may be applicable in the
clinical treatment of HNSC in the future, or used in conjunction
with existing drugs to enhance the therapeutic effect in treating
HNSC.
ched chemicals and key target. (A) Structures and orthogonal views of the pocket of
ket of binding between daunorubicin and PLAU.
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Meanwhile, we constructed a PPI network for these IRGs that
constitute the prognostic signature. Among 19 interactive targets,
PLAU was considered as the key target. Previous studies have
reported that PLAU could regulate cell proliferation, migration
and invasion, closely related to the initiation and prognosis of
HNSC [71,72]. We found doxorubicin and daunorubicin, two
well-known chemotherapy drugs, had a higher affinity towards
PLAU than the native ligand by molecular docking. Although the
connection with PLAU has not been studied yet, the anti-cancer
effects of these two compounds have been widely recognized
[73–75]. Considering the potential to suppress the expression level
of PLAU, doxorubicin and daunorubicin may be used in conjunction
with cancer immunotherapy to improve the HNSC high-risk
group’s prognosis. Even so, these potential compounds and their
specific molecular mechanism need more in-depth exploration
and experimental verification.

In conclusion, we developed an IRG-based prognostic signature
of HNSC and proved its predictive capability in multiple datasets,
as well as explored potential small molecule drugs for clinical com-
bination therapy. Hopefully, this signature could provide a solid
foundation for individualized cancer immunotherapy.
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